Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Role of Bisphenol A in Autophagy Modulation: Understanding the Molecular Concepts and Therapeutic Options

Author(s): Srinivasa Rao Sirasanagandla, R.G. Sumesh Sofin, Isehaq Al-Huseini and Srijit Das*

Volume 22, Issue 17, 2022

Published on: 18 April, 2022

Page: [2213 - 2223] Pages: 11

DOI: 10.2174/1389557522666220214094055

Price: $65

Abstract

Bisphenol A (4,4′-isopropylidenediphenol) is an organic compound commonly used in plastic bottles, packaging containers, beverages, and resin industry. The adverse effects of bisphenol A in various systems of the body have been studied. Autophagy is a lysosomal degradation process that leads to the regeneration of new cells. The role of bisphenol A in autophagy modulation involved in the pathogenesis of diseases is still debatable. A few research studies have shown bisphenol Ainduced adverse effects to be associated with autophagy dysregulation, while a few have shown the activation of autophagy to be mediated by bisphenol A. Such contrasting views make the subject more interesting and debatable. In the present review, we discuss the different steps of autophagy, genes involved, and the effect of autophagy modulation by bisphenol A on different systems of the body. We also discuss the methods for monitoring autophagy and the roles of drugs, such as chloroquine, verteporfin, and rapamycin, in autophagy. A proper understanding of the role of bisphenol A in the modulation of autophagy may be important for future treatment and drug discovery.

Keywords: Bisphenol A, autophagy, apoptosis, molecular biology, lysosome, drugs.

Graphical Abstract

[1]
Michałowicz, J.; Bisphenol, A. Bisphenol A--sources, toxicity and biotransformation. Environ. Toxicol. Pharmacol., 2014, 37(2), 738-758.
[http://dx.doi.org/10.1016/j.etap.2014.02.003] [PMID: 24632011]
[2]
Almeida, S.; Raposo, A.; Almeida-González, M.; Carrascosa, C.; Bisphenol, A.; Bisphenol, A. Food exposure and impact on human health. Compr. Rev. Food Sci. Food Saf., 2018, 17(6), 1503-1517.
[http://dx.doi.org/10.1111/1541-4337.12388] [PMID: 33350146]
[3]
Flint, S.; Markle, T.; Thompson, S.; Wallace, E. Bisphenol A exposure, effects, and policy: A wildlife perspective. J. Environ. Manage., 2012, 104, 19-34.
[http://dx.doi.org/10.1016/j.jenvman.2012.03.021] [PMID: 22481365]
[4]
Hoffmann, M.; Fiedor, E.; Ptak, A. Bisphenol A and its derivatives tetrabromobisphenol A and tetrachlorobisphenol A induce apelin expression and secretion in ovarian cancer cells through a peroxisome proliferator-activated receptor gamma-dependent mechanism. Toxicol. Lett., 2017, 269, 15-22.
[http://dx.doi.org/10.1016/j.toxlet.2017.01.006] [PMID: 28111160]
[5]
European Food Safety Authority (EFSA). Bisphenol A (BPA) hazard assessment protocol. Available from: https://www.efsa.europa.eu/en/supporting/pub/en-1354 Accessed on July 03, 2021
[6]
Geens, T.; Roosens, L.; Neels, H.; Covaci, A. Assessment of human exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere, 2009, 76(6), 755-760.
[http://dx.doi.org/10.1016/j.chemosphere.2009.05.024] [PMID: 19535125]
[7]
Rochester, J.R. Bisphenol A and human health: A review of the literature. Reprod. Toxicol., 2013, 42, 132-155.
[http://dx.doi.org/10.1016/j.reprotox.2013.08.008] [PMID: 23994667]
[8]
Donohue, K.M.; Miller, R.L.; Perzanowski, M.S.; Just, A.C.; Hoepner, L.A.; Arunajadai, S.; Canfield, S.; Resnick, D.; Calafat, A.M.; Perera, F.P.; Whyatt, R.M. Prenatal and postnatal bisphenol A exposure and asthma development among inner-city children. J. Allergy Clin. Immunol., 2013, 131(3), 736-742.
[http://dx.doi.org/10.1016/j.jaci.2012.12.1573] [PMID: 23452902]
[9]
Spanier, A.J.; Kahn, R.S.; Kunselman, A.R.; Hornung, R.; Xu, Y.; Calafat, A.M.; Lanphear, B.P. Prenatal exposure to bisphenol A and child wheeze from birth to 3 years of age. Environ. Health Perspect., 2012, 120(6), 916-920.
[http://dx.doi.org/10.1289/ehp.1104175] [PMID: 22334053]
[10]
Meeker, J.D.; Calafat, A.M.; Hauser, R. Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environ. Sci. Technol., 2010, 44(4), 1458-1463.
[http://dx.doi.org/10.1021/es9028292] [PMID: 20030380]
[11]
Doherty, L.F.; Bromer, J.G.; Zhou, Y.; Aldad, T.S.; Taylor, H.S. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm. Cancer, 2010, 1(3), 146-155.
[http://dx.doi.org/10.1007/s12672-010-0015-9] [PMID: 21761357]
[12]
Clayton, E.M.; Todd, M.; Dowd, J.B.; Aiello, A.E. The impact of bisphenol A and triclosan on immune parameters in the U.S. population, NHANES 2003-2006. Environ. Health Perspect., 2011, 119(3), 390-396.
[http://dx.doi.org/10.1289/ehp.1002883] [PMID: 21062687]
[13]
Visser, S.N.; Danielson, M.L.; Bitsko, R.H.; Holbrook, J.R.; Kogan, M.D.; Ghandour, R.M.; Perou, R.; Blumberg, S.J. Trends in the parent-report of health care provider-diagnosed and medicated attention-deficit/hyperactivity disorder: United States, 2003-2011 J. Am. Acad. Child Adolesc. Psychiatry, 2014, 53(1), 34-46.
[14]
Murata, M.; Kang, J.H.; Bisphenol, A.; Bisphenol, A. (BPA) and cell signaling pathways. Biotechnol. Adv., 2018, 36(1), 311-327.
[http://dx.doi.org/10.1016/j.biotechadv.2017.12.002] [PMID: 29229539]
[15]
Wetherill, Y.B.; Petre, C.E.; Monk, K.R.; Puga, A.; Knudsen, K.E. The xenoestrogen bisphenol A induces inappropriate androgen receptor activation and mitogenesis in prostatic adenocarcinoma cells. Mol. Cancer Ther., 2002, 1(7), 515-524.
[PMID: 12479269]
[16]
Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol., 2010, 221(1), 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[17]
Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell, 2011, 147(4), 728-741.
[http://dx.doi.org/10.1016/j.cell.2011.10.026] [PMID: 22078875]
[18]
Levine, B.; Kroemer, G. Biological functions of autophagy genes: A disease perspective. Cell, 2019, 176(1-2), 11-42.
[http://dx.doi.org/10.1016/j.cell.2018.09.048] [PMID: 30633901]
[19]
Galluzzi, L.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cecconi, F.; Choi, A.M.; Chu, C.T.; Codogno, P.; Colombo, M.I.; Cuervo, A.M.; Debnath, J.; Deretic, V.; Dikic, I.; Eskelinen, E.L.; Fimia, G.M.; Fulda, S.; Gewirtz, D.A.; Green, D.R.; Hansen, M.; Harper, J.W.; Jäättelä, M.; Johansen, T.; Juhasz, G.; Kimmelman, A.C.; Kraft, C.; Ktistakis, N.T.; Kumar, S.; Levine, B.; Lopez-Otin, C.; Madeo, F.; Martens, S.; Martinez, J.; Melendez, A.; Mizushima, N.; Münz, C.; Murphy, L.O.; Penninger, J.M.; Piacentini, M.; Reggiori, F.; Rubinsztein, D.C.; Ryan, K.M.; Santambrogio, L.; Scorrano, L.; Simon, A.K.; Simon, H.U.; Simonsen, A.; Tavernarakis, N.; Tooze, S.A.; Yoshimori, T.; Yuan, J.; Yue, Z.; Zhong, Q.; Kroemer, G. Molecular definitions of autophagy and related processes. EMBO J., 2017, 36(13), 1811-1836.
[http://dx.doi.org/10.15252/embj.201796697] [PMID: 28596378]
[20]
Komatsu, M.; Waguri, S.; Koike, M.; Sou, Y.S.; Ueno, T.; Hara, T.; Mizushima, N.; Iwata, J.; Ezaki, J.; Murata, S.; Hamazaki, J.; Nishito, Y.; Iemura, S.; Natsume, T.; Yanagawa, T.; Uwayama, J.; Warabi, E.; Yoshida, H.; Ishii, T.; Kobayashi, A.; Yamamoto, M.; Yue, Z.; Uchiyama, Y.; Kominami, E.; Tanaka, K. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell, 2007, 131(6), 1149-1163.
[http://dx.doi.org/10.1016/j.cell.2007.10.035] [PMID: 18083104]
[21]
Lőrincz, P.; Juhász, G. Autophagosome-lysosome fusion. J. Mol. Biol., 2020, 432(8), 2462-2482.
[http://dx.doi.org/10.1016/j.jmb.2019.10.028] [PMID: 31682838]
[22]
Diao, J.; Liu, R.; Rong, Y.; Zhao, M.; Zhang, J.; Lai, Y.; Zhou, Q.; Wilz, L.M.; Li, J.; Vivona, S.; Pfuetzner, R.A.; Brunger, A.T.; Zhong, Q. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature, 2015, 520(7548), 563-566.
[http://dx.doi.org/10.1038/nature14147] [PMID: 25686604]
[23]
Yao, Z.; Delorme-Axford, E.; Backues, S.K.; Klionsky, D.J. Atg41/Icy2 regulates autophagosome formation. Autophagy, 2015, 11(12), 2288-2299.
[http://dx.doi.org/10.1080/15548627.2015.1107692] [PMID: 26565778]
[24]
Ye, X.; Zhou, X.J.; Zhang, H. Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Front. Immunol., 2018, 9, 2334.
[http://dx.doi.org/10.3389/fimmu.2018.02334] [PMID: 30386331]
[25]
Mayes, M.D.; Bossini-Castillo, L.; Gorlova, O.; Martin, J.E.; Zhou, X.; Chen, W.V.; Assassi, S.; Ying, J.; Tan, F.K.; Arnett, F.C.; Reveille, J.D.; Guerra, S.; Teruel, M.; Carmona, F.D.; Gregersen, P.K.; Lee, A.T.; López-Isac, E.; Ochoa, E.; Carreira, P.; Simeón, C.P.; Castellví, I.; González-Gay, M.Á.; Zhernakova, A.; Padyukov, L.; Alarcón-Riquelme, M.; Wijmenga, C.; Brown, M.; Beretta, L.; Riemekasten, G.; Witte, T.; Hunzelmann, N.; Kreuter, A.; Distler, J.H.; Voskuyl, A.E.; Schuerwegh, A.J.; Hesselstrand, R.; Nordin, A.; Airó, P.; Lunardi, C.; Shiels, P.; van Laar, J.M.; Herrick, A.; Worthington, J.; Denton, C.; Wigley, F.M.; Hummers, L.K.; Varga, J.; Hinchcliff, M.E.; Baron, M.; Hudson, M.; Pope, J.E.; Furst, D.E.; Khanna, D.; Phillips, K.; Schiopu, E.; Segal, B.M.; Molitor, J.A.; Silver, R.M.; Steen, V.D.; Simms, R.W.; Lafyatis, R.A.; Fessler, B.J.; Frech, T.M.; Alkassab, F.; Docherty, P.; Kaminska, E.; Khalidi, N.; Jones, H.N.; Markland, J.; Robinson, D.; Broen, J.; Radstake, T.R.; Fonseca, C.; Koeleman, B.P.; Martin, J. Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am. J. Hum. Genet., 2014, 94(1), 47-61.
[http://dx.doi.org/10.1016/j.ajhg.2013.12.002] [PMID: 24387989]
[26]
Erbil, S.; Oral, O.; Mitou, G.; Kig, C.; Durmaz-Timucin, E.; Guven-Maiorov, E.; Gulacti, F.; Gokce, G.; Dengjel, J.; Sezerman, O.U.; Gozuacik, D. RACK1 is an interaction partner of ATG5 and a novel regulator of autophagy. J. Biol. Chem., 2016, 291(32), 16753-16765.
[http://dx.doi.org/10.1074/jbc.M115.708081] [PMID: 27325703]
[27]
Petiot, A.; Ogier-Denis, E.; Blommaart, E.F.; Meijer, A.J.; Codogno, P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem., 2000, 275(2), 992-998.
[http://dx.doi.org/10.1074/jbc.275.2.992] [PMID: 10625637]
[28]
Obara, K.; Ohsumi, Y. PtdIns 3-kinase orchestrates autophagosome formation in yeast. J. Lipids, 2011, 2011, 498768.
[http://dx.doi.org/10.1155/2011/498768] [PMID: 21490802]
[29]
Xiong, Q.; Li, W.; Li, P.; Zhao, Z.; Wu, C.; Xiao, H. Functional evidence for a de novo mutation in WDR45 leading to BPAN in a Chinese girl. Mol. Genet. Genomic Med., 2019, 7(9), e858.
[http://dx.doi.org/10.1002/mgg3.858] [PMID: 31332960]
[30]
Bakula, D.; Müller, A.J.; Zuleger, T.; Takacs, Z.; Franz-Wachtel, M.; Thost, A.K.; Brigger, D.; Tschan, M.P.; Frickey, T.; Robenek, H.; Macek, B.; Proikas-Cezanne, T. WIPI3 and WIPI4 β-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy. Nat. Commun., 2017, 8, 15637.
[http://dx.doi.org/10.1038/ncomms15637] [PMID: 28561066]
[31]
Berger, D.M.A.M.R. Autophagy-related gene expression changes are found in pancreatic cancer and neurodegenerative diseases. Available from: https://www.intechopen.com/books/gene-expression-and-control/autophagy-related-gene-expression-changes-are-found-in-pancreatic-cancer-and-neurodegenerative-disea [Accessed on July 03, 2021].
[32]
Donohue, E.; Tovey, A.; Vogl, A.W.; Arns, S.; Sternberg, E.; Young, R.N.; Roberge, M. Inhibition of autophagosome formation by the benzoporphyrin derivative verteporfin. J. Biol. Chem., 2011, 286(9), 7290-7300.
[http://dx.doi.org/10.1074/jbc.M110.139915] [PMID: 21193398]
[33]
Singh, S.S.; Vats, S.; Chia, A.Y.; Tan, T.Z.; Deng, S.; Ong, M.S.; Arfuso, F.; Yap, C.T.; Goh, B.C.; Sethi, G.; Huang, R.Y.; Shen, H.M.; Manjithaya, R.; Kumar, A.P. Dual role of autophagy in hallmarks of cancer. Oncogene, 2018, 37(9), 1142-1158.
[http://dx.doi.org/10.1038/s41388-017-0046-6] [PMID: 29255248]
[34]
Quan, C.; Wang, C.; Duan, P.; Huang, W.; Chen, W.; Tang, S.; Yang, K. Bisphenol A induces autophagy and apoptosis concurrently involving the Akt/mTOR pathway in testes of pubertal SD rats. Environ. Toxicol., 2017, 32(8), 1977-1989.
[http://dx.doi.org/10.1002/tox.22339] [PMID: 27539358]
[35]
Zhang, Y.; Han, L.; Yang, H.; Pang, J.; Li, P.; Zhang, G.; Li, F.; Wang, F. Bisphenol A affects cell viability involved in autophagy and apoptosis in goat testis sertoli cell. Environ. Toxicol. Pharmacol., 2017, 55, 137-147.
[http://dx.doi.org/10.1016/j.etap.2017.07.014] [PMID: 28846990]
[36]
Balci, A.; Ozkemahli, G.; Erkekoglu, P.; Zeybek, N.D.; Yersal, N.; Kocer-Gumusel, B. Histopathologic, apoptotic and autophagic, effects of prenatal bisphenol A and/or di(2-ethylhexyl) phthalate exposure on prepubertal rat testis. Environ. Sci. Pollut. Res. Int., 2020, 27(16), 20104-20116.
[http://dx.doi.org/10.1007/s11356-020-08274-6] [PMID: 32239407]
[37]
Wang, T.; Han, J.; Duan, X.; Xiong, B.; Cui, X.S.; Kim, N.H.; Liu, H.L.; Sun, S.C. The toxic effects and possible mechanisms of Bisphenol A on oocyte maturation of porcine in vitro. Oncotarget, 2016, 7(22), 32554-32565.
[http://dx.doi.org/10.18632/oncotarget.8689] [PMID: 27086915]
[38]
Guo, J.; Zhao, M.H.; Shin, K.T.; Niu, Y.J.; Ahn, Y.D.; Kim, N.H.; Cui, X.S. The possible molecular mechanisms of bisphenol A action on porcine early embryonic development. Sci. Rep., 2017, 7(1), 8632.
[http://dx.doi.org/10.1038/s41598-017-09282-2] [PMID: 28819136]
[39]
Jiao, X.F.; Liang, Q.M.; Wu, D.; Ding, Z.M.; Zhang, J.Y.; Chen, F.; Wang, Y.S.; Zhang, S.X.; Miao, Y.L.; Huo, L.J. Effects of acute fluorene-9-bisphenol exposure on mouse oocyte in vitro maturation and its possible mechanisms. Environ. Mol. Mutagen., 2019, 60(3), 243-253.
[http://dx.doi.org/10.1002/em.22258] [PMID: 30499614]
[40]
Lin, M.; Hua, R.; Ma, J.; Zhou, Y.; Li, P.; Xu, X.; Yu, Z.; Quan, S. Bisphenol A promotes autophagy in ovarian granulosa cells by inducing AMPK/mTOR/ULK1 signalling pathway. Environ. Int., 2021, 147, 106298.
[http://dx.doi.org/10.1016/j.envint.2020.106298] [PMID: 33387880]
[41]
Mahemuti, L.; Chen, Q.; Coughlan, M.C.; Qiao, C.; Chepelev, N.L.; Florian, M.; Dong, D.; Woodworth, R.G.; Yan, J.; Cao, X.L.; Scoggan, K.A.; Jin, X.; Willmore, W.G. Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch. Toxicol., 2018, 92(4), 1453-1469.
[http://dx.doi.org/10.1007/s00204-017-2150-3] [PMID: 29275510]
[42]
Wang, S.; Yang, Y.; Luo, D.; Wu, D.; Liu, H.; Li, M.; Sun, Q.; Jia, L. Lung inflammation induced by exposure to Bisphenol-A is associated with mTOR-mediated autophagy in adolescent mice. Chemosphere, 2020, 248, 126035.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126035] [PMID: 32014637]
[43]
Ding, S.; Fan, Y.; Zhao, N.; Yang, H.; Ye, X.; He, D.; Jin, X.; Liu, J.; Tian, C.; Li, H.; Xu, S.; Ying, C. High-fat diet aggravates glucose homeostasis disorder caused by chronic exposure to Bisphenol A. J. Endocrinol., 2014, 221(1), 167-179.
[http://dx.doi.org/10.1530/JOE-13-0386] [PMID: 24501380]
[44]
Anand, S.K.; Sharma, A.; Singh, N.; Kakkar, P. Activation of autophagic flux via LKB1/AMPK/mTOR axis against xenoestrogen Bisphenol-A exposure in primary rat hepatocytes. Food Chem. Toxicol., 2020, 141, 111314.
[http://dx.doi.org/10.1016/j.fct.2020.111314] [PMID: 32305408]
[45]
Qin, J.; Ru, S.; Wang, W.; Hao, L.; Ru, Y.; Wang, J.; Zhang, X. Long-term bisphenol S exposure aggravates non-alcoholic fatty liver by regulating lipid metabolism and inducing endoplasmic reticulum stress response with activation of unfolded protein response in male zebrafish. Environ. Pollut., 2020, 263(Pt B), 114535.
[http://dx.doi.org/10.1016/j.envpol.2020.114535]
[46]
Gu, Z.; Jia, R.; He, Q.; Cao, L.; Du, J.; Feng, W.; Jeney, G.; Xu, P.; Yin, G. Alteration of lipid metabolism, autophagy, apoptosis and immune response in the liver of common carp (Cyprinus carpio) after long-term exposure to bisphenol A. Ecotoxicol. Environ. Saf., 2021, 211, 111923.
[http://dx.doi.org/10.1016/j.ecoenv.2021.111923] [PMID: 33493725]
[47]
Meng, Y.; Yannan, Z.; Ren, L.; Qi, S.; Wei, W.; Lihong, J. Adverse reproductive function induced by maternal BPA exposure is associated with abnormal autophagy and activating inflamation via mTOR and TLR4/NF-κB signaling pathways in female offspring rats. Reprod. Toxicol., 2020, 96, 185-194.
[http://dx.doi.org/10.1016/j.reprotox.2020.07.001] [PMID: 32634549]
[48]
Yang, S.; Zhang, A.; Li, T.; Gao, R.; Peng, C.; Liu, L.; Cheng, Q.; Mei, M.; Song, Y.; Xiang, X.; Wu, C.; Xiao, X.; Li, Q. Dysregulated autophagy in hepatocytes promotes bisphenol A-induced hepatic lipid accumulation in male mice. Endocrinology, 2017, 158(9), 2799-2812.
[http://dx.doi.org/10.1210/en.2016-1479] [PMID: 28323964]
[49]
Lin, R.; Wu, D.; Wu, F.J.; Meng, Y.; Zhang, J.H.; Wang, X.G.; Jia, L.H. Non-alcoholic fatty liver disease induced by perinatal exposure to bisphenol a is associated with activated mTOR and tlr4/Nf-Κb signaling pathways in offspring rats. Front. Endocrinol., (Lausanne), 2019, 10, 620.
[50]
Song, D.; Chen, Y.; Wang, B.; Li, D.; Xu, C.; Huang, H.; Huang, S.; Liu, R. Bisphenol A inhibits autophagosome-lysosome fusion and lipid droplet degradation. Ecotoxicol. Environ. Saf., 2019, 183, 109492.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109492] [PMID: 31421534]
[51]
Dong, Y.; Zhang, Z.; Liu, H.; Jia, L.; Qin, M.; Wang, X. Exacerbating lupus nephritis following BPA exposure is associated with abnormal autophagy in MRL/lpr mice Am. J. Transl. Res., 2020, 12(2), 649-659.
[PMID: 32194912]
[52]
Agarwal, S.; Yadav, A.; Tiwari, S.K.; Seth, B.; Chauhan, L.K.; Khare, P.; Ray, R.S.; Chaturvedi, R.K. Dynamin-related protein 1 inhibition mitigates bisphenol A-mediated alterations in mitochondrial dynamics and neural stem cell proliferation and differentiation. J. Biol. Chem., 2016, 291(31), 15923-15939.
[http://dx.doi.org/10.1074/jbc.M115.709493] [PMID: 27252377]
[53]
Tiwari, S.K.; Agarwal, S.; Seth, B.; Yadav, A.; Ray, R.S.; Mishra, V.N.; Chaturvedi, R.K. Inhibitory effects of bisphenol-A on neural stem cells proliferation and differentiation in the rat brain are dependent on Wnt/β-catenin pathway. Mol. Neurobiol., 2015, 52(3), 1735-1757.
[http://dx.doi.org/10.1007/s12035-014-8940-1] [PMID: 25381574]
[54]
Tiwari, S.K.; Agarwal, S.; Tripathi, A.; Chaturvedi, R.K. Bisphenol-A mediated inhibition of hippocampal neurogenesis attenuated by curcumin via canonical wnt pathway. Mol. Neurobiol., 2016, 53(5), 3010-3029.
[http://dx.doi.org/10.1007/s12035-015-9197-z] [PMID: 25963729]
[55]
Quan, C.; Wang, C.; Duan, P.; Huang, W.; Yang, K. Prenatal bisphenol A exposure leads to reproductive hazards on male offspring via the Akt/mTOR and mitochondrial apoptosis pathways. Environ. Toxicol., 2017, 32(3), 1007-1023.
[http://dx.doi.org/10.1002/tox.22300] [PMID: 27296223]
[56]
Santangeli, S.; Maradonna, F.; Gioacchini, G.; Cobellis, G.; Piccinetti, C.C.; Dalla Valle, L.; Carnevali, O. BPA-induced deregulation of epigenetic patterns: Effects on female zebrafish reproduction. Sci. Rep., 2016, 6, 21982.
[http://dx.doi.org/10.1038/srep21982] [PMID: 26911650]
[57]
Rubinsztein, D.C.; Codogno, P.; Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov., 2012, 11(9), 709-730.
[http://dx.doi.org/10.1038/nrd3802] [PMID: 22935804]
[58]
Rubinsztein, D.C.; Mariño, G.; Kroemer, G. Autophagy and aging. Cell, 2011, 146(5), 682-695.
[http://dx.doi.org/10.1016/j.cell.2011.07.030] [PMID: 21884931]
[59]
Rose, C.; Menzies, F.M.; Renna, M.; Acevedo-Arozena, A.; Corrochano, S.; Sadiq, O.; Brown, S.D.; Rubinsztein, D.C. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington’s disease. Hum. Mol. Genet., 2010, 19(11), 2144-2153.
[http://dx.doi.org/10.1093/hmg/ddq093] [PMID: 20190273]
[60]
Decensi, A.; Puntoni, M.; Goodwin, P.; Cazzaniga, M.; Gennari, A.; Bonanni, B.; Gandini, S. Metformin and cancer risk in diabetic patients: A systematic review and meta-analysis. Cancer Prev. Res. (Phila.), 2010, 3(11), 1451-1461.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0157] [PMID: 20947488]
[61]
Su, Y.; Quan, C.; Li, X.; Shi, Y.; Duan, P.; Yang, K. Mutual promotion of apoptosis and autophagy in prepubertal rat testes induced by joint exposure of bisphenol A and nonylphenol. Environ. Pollut., 2018, 243((Pt A)), 693-702.
[http://dx.doi.org/10.1016/j.envpol.2018.09.030]
[62]
Jia, Z.; Wang, H.; Feng, Z.; Zhang, S.; Wang, L.; Zhang, J.; Liu, Q.; Zhao, X.; Feng, D.; Feng, X. Fluorene-9-bisphenol exposure induces cytotoxicity in mouse oocytes and causes ovarian damage. Ecotoxicol. Environ. Saf., 2019, 180, 168-178.
[http://dx.doi.org/10.1016/j.ecoenv.2019.05.019] [PMID: 31082581]
[63]
Wang, S.; Yang, Y.; Luo, D.; Zhai, L.; Bai, Y.; Wei, W.; Sun, Q.; Jia, L. Bisphenol A increases TLR4-mediated inflammatory response by up-regulation of autophagy-related protein in lung of adolescent mice. Chemosphere, 2021, 268, 128837.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128837] [PMID: 33187652]
[64]
Sachdeva, K.; Do, D.C.; Zhang, Y.; Hu, X.; Chen, J.; Gao, P. Environmental exposures and asthma development: autophagy, mitophagy, and cellular senescence. Front. Immunol., 2019, 10, 2787.
[http://dx.doi.org/10.3389/fimmu.2019.02787] [PMID: 31849968]
[65]
He, W.; Xiong, W.; Xia, X. Autophagy regulation of mammalian immune cells. Adv. Exp. Med. Biol., 2019, 1209, 7-22.
[http://dx.doi.org/10.1007/978-981-15-0606-2_2] [PMID: 31728862]
[66]
Painter, J.D.; Galle-Treger, L.; Akbari, O. Role of autophagy in lung inflammation. Front. Immunol., 2020, 11, 1337.
[http://dx.doi.org/10.3389/fimmu.2020.01337] [PMID: 32733448]
[67]
Martinet, W.; Timmermans, J.P.; De Meyer, G.R. Methods to assess autophagy in situ--transmission electron microscopy versus immunohistochemistry. Methods Enzymol., 2014, 543, 89-114.
[http://dx.doi.org/10.1016/B978-0-12-801329-8.00005-2] [PMID: 24924129]
[68]
Tanida, I.; Ueno, T.; Kominami, E. LC3 and autophagy. Methods Mol. Biol., 2008, 445, 77-88.
[http://dx.doi.org/10.1007/978-1-59745-157-4_4] [PMID: 18425443]
[69]
Bjørkøy, G.; Lamark, T.; Brech, A.; Outzen, H.; Perander, M.; Overvatn, A.; Stenmark, H.; Johansen, T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol., 2005, 171(4), 603-614.
[http://dx.doi.org/10.1083/jcb.200507002] [PMID: 16286508]
[70]
Kimura, S.; Noda, T.; Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy, 2007, 3(5), 452-460.
[http://dx.doi.org/10.4161/auto.4451] [PMID: 17534139]
[71]
Mizushima, N.; Yoshimori, T.; Levine, B. Methods in mammalian autophagy research. Cell, 2010, 140(3), 313-326.
[http://dx.doi.org/10.1016/j.cell.2010.01.028] [PMID: 20144757]
[72]
Mushtaque, M. Shahjahan, Reemergence of chloroquine (CQ) analogs as multi-targeting antimalarial agents: A review. Eur. J. Med. Chem., 2015, 90, 280-295.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.022] [PMID: 25461328]
[73]
Choi, D.S.; Blanco, E.; Kim, Y.S.; Rodriguez, A.A.; Zhao, H.; Huang, T.H.; Chen, C.L.; Jin, G.; Landis, M.D.; Burey, L.A.; Qian, W.; Granados, S.M.; Dave, B.; Wong, H.H.; Ferrari, M.; Wong, S.T.; Chang, J.C. Chloroquine eliminates cancer stem cells through deregulation of Jak2 and DNMT1. Stem Cells, 2014, 32(9), 2309-2323.
[http://dx.doi.org/10.1002/stem.1746] [PMID: 24809620]
[74]
Galluzzi, L.; Kepp, O.; Kroemer, G. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol., 2012, 13(12), 780-788.
[http://dx.doi.org/10.1038/nrm3479] [PMID: 23175281]
[75]
Tavakol, S.; Ashrafizadeh, M.; Deng, S.; Azarian, M.; Abdoli, A.; Motavaf, M.; Poormoghadam, D.; Khanbabaei, H.; Afshar, E.G.; Mandegary, A.; Pardakhty, A.; Yap, C.T.; Mohammadinejad, R.; Kumar, A.P. Autophagy modulators: mechanistic aspects and drug delivery systems. Biomolecules, 2019, 9(10), 530.
[http://dx.doi.org/10.3390/biom9100530] [PMID: 31557936]
[76]
Liang, J.; Wang, L.; Wang, C.; Shen, J.; Su, B.; Marisetty, A.L.; Fang, D.; Kassab, C.; Jeong, K.J.; Zhao, W.; Lu, Y.; Jain, A.K.; Zhou, Z.; Liang, H.; Sun, S.C.; Lu, C.; Xu, Z.X.; Yu, Q.; Shao, S.; Chen, X.; Gao, M.; Claret, F.X.; Ding, Z.; Chen, J.; Chen, P.; Barton, M.C.; Peng, G.; Mills, G.B.; Heimberger, A.B. Verteporfin inhibits PD-L1 through autophagy and the STAT1-IRF1-TRIM28 signaling axis, exerting antitumor efficacy. Cancer Immunol. Res., 2020, 8(7), 952-965.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0159] [PMID: 32265228]
[77]
Li, J.; Kim, S.G.; Blenis, J. Rapamycin: One drug, many effects. Cell Metab., 2014, 19(3), 373-379.
[http://dx.doi.org/10.1016/j.cmet.2014.01.001] [PMID: 24508508]
[78]
Yu, Y.; Yoon, S.O.; Poulogiannis, G.; Yang, Q.; Ma, X.M.; Villén, J.; Kubica, N.; Hoffman, G.R.; Cantley, L.C.; Gygi, S.P.; Blenis, J. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science, 2011, 332(6035), 1322-1326.
[http://dx.doi.org/10.1126/science.1199484] [PMID: 21659605]
[79]
Sarbassov, D.D.; Ali, S.M.; Sengupta, S.; Sheen, J.H.; Hsu, P.P.; Bagley, A.F.; Markhard, A.L.; Sabatini, D.M. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell, 2006, 22(2), 159-168.
[http://dx.doi.org/10.1016/j.molcel.2006.03.029] [PMID: 16603397]
[80]
Wu, L.; Feng, Z.; Cui, S.; Hou, K.; Tang, L.; Zhou, J.; Cai, G.; Xie, Y.; Hong, Q.; Fu, B.; Chen, X. Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PLoS One, 2013, 8(5), e63799.
[http://dx.doi.org/10.1371/journal.pone.0063799] [PMID: 23667674]
[81]
Qiu, X.X.; Liu, Y.; Zhang, Y.F.; Guan, Y.N.; Jia, Q.Q.; Wang, C.; Liang, H.; Li, Y.Q.; Yang, H.T.; Qin, Y.W.; Huang, S.; Zhao, X.X.; Jing, Q. Rapamycin and CHIR99021 coordinate robust cardiomyocyte differentiation from human pluripotent stem cells via reducing p53-dependent apoptosis. J. Am. Heart Assoc., 2017, 6(10), e005295.
[http://dx.doi.org/10.1161/JAHA.116.005295] [PMID: 28971953]
[82]
Gao, G.; Chen, W.; Yan, M.; Liu, J.; Luo, H.; Wang, C.; Yang, P. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int. J. Mol. Med., 2020, 45(1), 195-209.
[PMID: 31746373]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy