Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Biological Activities, Pharmacokinetics and Toxicity of Nootkatone: A Review

Author(s): Ankush Kumar Jha, Shobhit Gairola, Sourav Kundu, Pakpi Doye, Abu Mohammad Syed, Chetan Ram, Uttam Kulhari, Naresh Kumar, Upadhyayula Suryanarayana Murty and Bidya Dhar Sahu*

Volume 22, Issue 17, 2022

Published on: 19 April, 2022

Page: [2244 - 2259] Pages: 16

DOI: 10.2174/1389557522666220214092005

Price: $65

Abstract

Plant-based drugs have a significant impact on modern therapeutics due to their vast array of pharmacological activities. The integration of herbal plants in the current healthcare system has emerged as a new field of research. It can be used for the identification of novel lead compound candidates for future drug development. Nootkatone is a sesquiterpene derivative and an isolate of grapefruit. Shreds of evidence illustrate that nootkatone targets few molecular mechanisms to exhibit its pharmacological activity and yet needs more exploration. The current review is related to nootkatone, drafted through a literature search using research articles and books from different sources, including Science Direct, Google Scholar, Elsevier, PubMed, and Scopus. It has been reported to possess a wide range of pharmacological activities such as anti-inflammatory, anticancer, antibacterial, hepatoprotective, neuroprotective, and cardioprotective. Although preclinical studies in experimental animal models suggest that nootkatone has therapeutic potential, it is further warranted to evaluate its toxicity and pharmacokinetic parameters before being applied to humans. Hence, in the present review, we have summarized the scientific knowledge on nootkatone with a particular emphasis on its pharmacological properties to encourage researchers for further exploration in preclinical and clinical settings.

Keywords: Nootkatone, pharmacological activities, pharmacokinetic, toxicity, anticancer, anti-inflammatory.

Graphical Abstract

[1]
Jiang, M.; Yang, J.; Zhang, C.; Liu, B.; Chan, K.; Cao, H.; Lu, A. Clinical studies with traditional Chinese medicine in the past decade and future research and development. Planta Med., 2010, 76(17), 2048-2064.
[http://dx.doi.org/10.1055/s-0030-1250456] [PMID: 20979016]
[2]
Hung, L.V.M.; Moon, J.Y.; Ryu, J.Y.; Cho, S.K. Nootkatone, an AMPK activator derived from grapefruit, inhibits KRAS downstream pathway and sensitizes non-small-cell lung cancer A549 cells to adriamycin. Phytomedicine, 2019, 63, 153000.
[http://dx.doi.org/10.1016/j.phymed.2019.153000] [PMID: 31280139]
[3]
Leonhardt, R.H.; Berger, R.G. Nootkatone. Adv. Biochem. Eng. Biotechnol., 2015, 148, 391-404.
[http://dx.doi.org/10.1007/10_2014_279] [PMID: 25326849]
[4]
Kfoury, M.; Landy, D.; Ruellan, S.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Nootkatone encapsulation by cyclodextrins: Effect on water solubility and photostability. Food Chem., 2017, 236, 41-48.
[http://dx.doi.org/10.1016/j.foodchem.2016.12.086] [PMID: 28624088]
[5]
Bezerra Rodrigues Dantas, L.; Silva, A.L.M.; da Silva Júnior, C.P.; Alcântara, I.S.; Correia de Oliveira, M.R.; Oliveira Brito Pereira Bezerra Martins, A.; Ribeiro-Filho, J.; Coutinho, H.D.M.; Rocha Santos Passos, F.; Quintans-Junior, L.J.; Alencar de Menezes, I.R.; Pezzani, R.; Vitalini, S. Nootkatone inhibits acute and chronic inflammatory responses in mice. Molecules, 2020, 25(9), 2181.
[http://dx.doi.org/10.3390/molecules25092181] [PMID: 32392744]
[6]
Qi, Y.; Cheng, X.; Jing, H.; Yan, T.; Xiao, F.; Wu, B.; Bi, K.; Jia, Y. Combination of schisandrin and nootkatone exerts neuroprotective effect in Alzheimer’s disease mice model. Metab. Brain Dis., 2019, 34(6), 1689-1703.
[http://dx.doi.org/10.1007/s11011-019-00475-4] [PMID: 31422511]
[7]
Chan, K.C.; Lee, D.U. Nootkatone from the Rhizomes ofCyperus rotundus protects against ischemia-reperfusion mediated acute myocardial injury in the rat. Int. J. Pharmacol., 2016, 12(8), 845-850.
[http://dx.doi.org/10.3923/ijp.2016.845.850]
[8]
Kurdi, A.; Hassan, K.; Venkataraman, B.; Rajesh, M. Nootkatone confers hepatoprotective and anti-fibrotic actions in a murine model of liver fibrosis by suppressing oxidative stress, inflammation, and apoptosis. J. Biochem. Mol. Toxicol., 2018, 32(2), e22017.
[http://dx.doi.org/10.1002/jbt.22017] [PMID: 29214688]
[9]
Yamaguchi, T. Antibacterial properties of nootkatone against gram-positive bacteria. Nat. Prod. Commun., 2019, 14(6), 1-5.
[http://dx.doi.org/10.1177/1934578X19859999]
[10]
Furusawa, M.; Hashimoto, T.; Noma, Y.; Asakawa, Y. Highly efficient production of nootkatone, the grapefruit aroma from valencene, by biotransformation. Chem. Pharm. Bull. (Tokyo), 2005, 53(11), 1513-1514.
[http://dx.doi.org/10.1248/cpb.53.1513] [PMID: 16272746]
[11]
Gliszczyńska, A.; Łysek, A.; Janeczko, T.; Świtalska, M.; Wietrzyk, J.; Wawrzeńczyk, C. Microbial transformation of (+)-nootkatone and the antiproliferative activity of its metabolites. Bioorg. Med. Chem., 2011, 19(7), 2464-2469.
[http://dx.doi.org/10.1016/j.bmc.2011.01.062] [PMID: 21377882]
[12]
Li, Y-H.; Li, P.P.; Tan, Y.F.; Cai, H.D.; Zhang, X.P.; Li, Y.; Zhang, J.Q. Comparative pharmacokinetics of nootkatone in a rat model of chronic kidney diseaseversus normal controls. J. Anal. Chem., 2019, 74(7), 722-727.
[http://dx.doi.org/10.1134/S1061934819070050]
[13]
Qi, Y.; Cheng, X.; Jing, H.; Yan, T.; Xiao, F.; Wu, B.; Bi, K.; Jia, Y. Comparative pharmacokinetic study of the components in Alpinia oxyphylla Miq.-Schisandra chinensis (Turcz.) Baill. herb pair and its single herb between normal and Alzheimer’s disease rats by UPLC-MS/MS. J. Pharm. Biomed. Anal., 2020, 177, 112874.
[http://dx.doi.org/10.1016/j.jpba.2019.112874] [PMID: 31542420]
[14]
Khasawneh, M.A.; Xiong, Y.; Peralta-Cruz, J.; Karchesy, J.J. Biologically important eremophilane sesquiterpenes from Alaska cedar heartwood essential oil and their semi-synthetic derivatives. Molecules, 2011, 16(6), 4775-4785.
[http://dx.doi.org/10.3390/molecules16064775] [PMID: 21654582]
[15]
Li, R.; Zeng, C.; Li, J.; Zhu, K.; Lin, X.; Wen, J.; Guo, H.; Weng, W.; Wang, D.; Ji, S. Characterization of the Fruits and Seeds of Alpinia Oxyphylla Miq by High-Performance Liquid Chromatography (HPLC) and near-Infrared Spectroscopy (NIRS) with Partial Least-Squares (PLS) Regression. Anal. Lett., 2020, 53(11), 1667-1682.
[http://dx.doi.org/10.1080/00032719.2020.1715996]
[16]
Seo, E.J.; Lee, D.U.; Kwak, J.H.; Lee, S.M.; Kim, Y.S.; Jung, Y.S. Antiplatelet effects ofCyperus rotundus and its component (+)-nootkatone. J. Ethnopharmacol., 2011, 135(1), 48-54.
[http://dx.doi.org/10.1016/j.jep.2011.02.025] [PMID: 21354294]
[17]
Maistrello, L.; Henderson, G.; Laine, R.A. Efficacy of vetiver oil and nootkatone as soil barriers against Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol., 2001, 94(6), 1532-1537.
[http://dx.doi.org/10.1603/0022-0493-94.6.1532] [PMID: 11777060]
[18]
MacLEOD, W. D.; BUIGUES, N. M. Sesquiterpenes. I. Nootkatone, A new grapefruit flavor constituent. J. Food Sci., 1964, 29(5), 565-568.
[http://dx.doi.org/10.1111/j.1365-2621.1964.tb00411.x]
[19]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[20]
Huang, A.L.; Vita, J.A. Effects of systemic inflammation on endothelium-dependent vasodilation. Trends Cardiovasc. Med., 2006, 16(1), 15-20.
[http://dx.doi.org/10.1016/j.tcm.2005.10.002] [PMID: 16387625]
[21]
Prame Kumar, K.; Nicholls, A.J.; Wong, C.H.Y. Partners in crime: Neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res., 2018, 371(3), 551-565.
[http://dx.doi.org/10.1007/s00441-017-2753-2] [PMID: 29387942]
[22]
Yu, S.H.; Kim, H.J.; Jeon, S.Y.; Kim, M.R.; Lee, B.S.; Lee, J.J.; Kim, D.S.; Lee, Y.C. Anti-inflammatory and anti-nociceptive activities of Alpinia oxyphylla Miquel extracts in animal models. J. Ethnopharmacol., 2020, 260, 112985.
[http://dx.doi.org/10.1016/j.jep.2020.112985] [PMID: 32439403]
[23]
Jha, A.K.; Gairola, S.; Kundu, S.; Doye, P.; Syed, A.M.; Ram, C.; Murty, U.S.; Naidu, V.G.M.; Sahu, B.D. Toll-like receptor 4: An attractive therapeutic target for acute kidney injury. Life Sci., 2021, 271, 119155.
[http://dx.doi.org/10.1016/j.lfs.2021.119155] [PMID: 33548286]
[24]
Yang, Y.; Lv, J.; Jiang, S.; Ma, Z.; Wang, D.; Hu, W.; Deng, C.; Fan, C.; Di, S.; Sun, Y.; Yi, W. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis., 2016, 7(5), e2234.
[http://dx.doi.org/10.1038/cddis.2016.140] [PMID: 27228349]
[25]
Molteni, M.; Gemma, S.; Rossetti, C. The role of toll-like receptor 4 in infectious and noninfectious inflammation. Mediators Inflamm., 2016, 2016, 6978936.
[http://dx.doi.org/10.1155/2016/6978936] [PMID: 27293318]
[26]
Wang, Z.; Zhang, S.; Xiao, Y.; Zhang, W.; Wu, S.; Qin, T.; Yue, Y.; Qian, W.; Li, L. NLRP3 inflammasome and inflammatory diseases. Oxid. Med. Cell. Longev., 2020, 2020, 4063562.
[PMID: 32148650]
[27]
Wang, X.; Wang, S.; Hu, C.; Chen, W.; Shen, Y.; Wu, X.; Sun, Y.; Xu, Q. A new pharmacological effect of levornidazole: Inhibition of NLRP3 inflammasome activation. Biochem. Pharmacol., 2015, 97(2), 178-188.
[http://dx.doi.org/10.1016/j.bcp.2015.06.030] [PMID: 26212544]
[28]
Ram, C.; Jha, A.K.; Ghosh, A.; Gairola, S.; Syed, A.M.; Murty, U.S.; Naidu, V.G.M.; Sahu, B.D. Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: Preclinical evidences with therapeutic approaches. Eur. J. Pharmacol., 2020, 885, 173503.
[http://dx.doi.org/10.1016/j.ejphar.2020.173503] [PMID: 32858047]
[29]
Tsoyi, K.; Jang, H.J.; Lee, Y.S.; Kim, Y.M.; Kim, H.J.; Seo, H.G.; Lee, J.H.; Kwak, J.H.; Lee, D.U.; Chang, K.C. (+)-Nootkatone and (+)-valencene from rhizomes ofCyperus rotundus increase survival rates in septic mice due to heme oxygenase-1 induction. J. Ethnopharmacol., 2011, 137(3), 1311-1317.
[http://dx.doi.org/10.1016/j.jep.2011.07.062] [PMID: 21843620]
[30]
Choi, H.J.; Lee, J.H.; Jung, Y.S. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells. Biochem. Biophys. Res. Commun., 2014, 447(2), 278-284.
[http://dx.doi.org/10.1016/j.bbrc.2014.03.121] [PMID: 24704449]
[31]
Leung, D.Y.M.; Boguniewicz, M.; Howell, M.D.; Nomura, I.; Hamid, Q.A. New insights into atopic dermatitis. J. Clin. Invest., 2004, 113(5), 651-657.
[http://dx.doi.org/10.1172/JCI21060] [PMID: 14991059]
[32]
Cho, J.W.; Lee, K.S.; Kim, C.W. Curcumin attenuates the expression of IL-1β, IL-6, and TNF-α as well as cyclin E in TNF-α-treated HaCaT cells; NF-kappaB and MAPKs as potential upstream targets. Int. J. Mol. Med., 2007, 19(3), 469-474.
[http://dx.doi.org/10.3892/ijmm.19.3.469] [PMID: 17273796]
[33]
Román, M.; Baraibar, I.; López, I.; Nadal, E.; Rolfo, C.; Vicent, S.; Gil-Bazo, I. KRAS oncogene in non-small cell lung cancer: Clinical perspectives on the treatment of an old target. Mol. Cancer, 2018, 17(1), 33.
[http://dx.doi.org/10.1186/s12943-018-0789-x] [PMID: 29455666]
[34]
Hollstein, P.E.; Eichner, L.J.; Brun, S.N.; Kamireddy, A.; Svensson, R.U.; Vera, L.I.; Ross, D.S.; Rymoff, T.J.; Hutchins, A.; Galvez, H.M.; Williams, A.E.; Shokhirev, M.N.; Screaton, R.A.; Berdeaux, R.; Shaw, R.J. The AMPK-related kinases SIK1 and SIK3 mediate key tumor-suppressive effects of LKB1 in NSCLC. Cancer Discov., 2019, 9(11), 1606-1627.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1261] [PMID: 31350328]
[35]
Papadimitrakopoulou, V.; Adjei, A.A. The Akt/mTOR and mitogen-activated protein kinase pathways in lung cancer therapy. J. Thorac. Oncol., 2006, 1(7), 749-751.
[PMID: 17409953]
[36]
Luo, Z.; Zang, M.; Guo, W. AMPK as a metabolic tumor suppressor: Control of metabolism and cell growth. Future Oncol., 2010, 6(3), 457-470.
[http://dx.doi.org/10.2217/fon.09.174] [PMID: 20222801]
[37]
Jin, L.; Chun, J.; Pan, C.; Kumar, A.; Zhang, G.; Ha, Y.; Li, D.; Alesi, G.N.; Kang, Y.; Zhou, L.; Yu, W.M.; Magliocca, K.R.; Khuri, F.R.; Qu, C.K.; Metallo, C.; Owonikoko, T.K.; Kang, S. The PLAG1-GDH1 axis promotes anoikis resistance and tumor metastasis through CamKK2-AMPK signaling in LKB1-deficient lung cancer. Mol. Cell, 2018, 69(1), 87-99.e7.
[http://dx.doi.org/10.1016/j.molcel.2017.11.025] [PMID: 29249655]
[38]
Yoo, E.; Lee, J.; Lertpatipanpong, P.; Ryu, J.; Kim, C.T.; Park, E.Y.; Baek, S.J. Anti-proliferative activity ofA. Oxyphylla and its bioactive constituent nootkatone in colorectal cancer cells. BMC Cancer, 2020, 20(1), 881.
[http://dx.doi.org/10.1186/s12885-020-07379-y] [PMID: 32928152]
[39]
Baek, S.J.; Kim, K.S.; Nixon, J.B.; Wilson, L.C.; Eling, T.E. Cyclooxygenase inhibitors regulate the expression of a TGF-β superfamily member that has proapoptotic and antitumorigenic activities. Mol. Pharmacol., 2001, 59(4), 901-908.
[http://dx.doi.org/10.1124/mol.59.4.901] [PMID: 11259636]
[40]
Baek, S.J.; Kim, J.S.; Moore, S.M.; Lee, S.H.; Martinez, J.; Eling, T.E. Cyclooxygenase inhibitors induce the expression of the tumor suppressor gene EGR-1, which results in the up-regulation of NAG-1, an antitumorigenic protein. Mol. Pharmacol., 2005, 67(2), 356-364.
[http://dx.doi.org/10.1124/mol.104.005108] [PMID: 15509713]
[41]
Nair, P.; Muthukkumar, S.; Sells, S.F.; Han, S.S.; Sukhatme, V.P.; Rangnekar, V.M. Early growth response-1-dependent apoptosis is mediated by p53. J. Biol. Chem., 1997, 272(32), 20131-20138.
[http://dx.doi.org/10.1074/jbc.272.32.20131] [PMID: 9242687]
[42]
Meeran, M.F.N.; Azimullah, S.; Adeghate, E.; Ojha, S. Nootkatone attenuates myocardial oxidative damage, inflammation and apoptosis by modulating altered TLR4/NF-KB/MAPK signaling and activating PI3K/Nrf2/Akt signaling cascades in β-adrenergic agonist induced myocardial infarction in rats. Phytomedicine, 2020, 84, 153405.
[http://dx.doi.org/10.1016/j.phymed.2020.153405] [PMID: 33636578]
[43]
Thygesen, K.; Alpert, J.S.; White, H.D.; Jaffe, A.S.; Apple, F.S.; Galvani, M.; Katus, H.A.; Newby, L.K.; Ravkilde, J.; Chaitman, B.; Clemmensen, P.M.; Dellborg, M.; Hod, H.; Porela, P.; Underwood, R.; Bax, J.J.; Beller, G.A.; Bonow, R.; Van der Wall, E.E.; Bassand, J.P.; Wijns, W.; Ferguson, T.B.; Steg, P.G.; Uretsky, B.F.; Williams, D.O.; Armstrong, P.W.; Antman, E.M.; Fox, K.A.; Hamm, C.W.; Ohman, E.M.; Simoons, M.L.; Poole-Wilson, P.A.; Gurfinkel, E.P.; Lopez-Sendon, J.L.; Pais, P.; Mendis, S.; Zhu, J.R.; Wallentin, L.C.; Fernández-Avilés, F.; Fox, K.M.; Parkhomenko, A.N.; Priori, S.G.; Tendera, M.; Voipio-Pulkki, L.M.; Vahanian, A.; Camm, A.J.; De Caterina, R.; Dean, V.; Dickstein, K.; Filippatos, G.; Funck-Brentano, C.; Hellemans, I.; Kristensen, S.D.; McGregor, K.; Sechtem, U.; Silber, S.; Tendera, M.; Widimsky, P.; Zamorano, J.L.; Morais, J.; Brener, S.; Harrington, R.; Morrow, D.; Lim, M.; Martinez-Rios, M.A.; Steinhubl, S.; Levine, G.N.; Gibler, W.B.; Goff, D.; Tubaro, M.; Dudek, D.; Al-Attar, N. Universal definition of myocardial infarction. Circulation, 2007, 116(22), 2634-2653.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.187397] [PMID: 17951284]
[44]
Rao, P.R.; Viswanath, R.K. Cardioprotective activity of silymarin in ischemia-reperfusion-induced myocardial infarction in albino rats. Exp. Clin. Cardiol., 2007, 12(4), 179-187.
[PMID: 18651002]
[45]
Kaminski, K.A.; Bonda, T.A.; Korecki, J.; Musial, W.J. Oxidative stress and neutrophil activation-the two keystones of ischemia/reperfusion injury. Int. J. Cardiol., 2002, 86(1), 41-59.
[http://dx.doi.org/10.1016/S0167-5273(02)00189-4] [PMID: 12243849]
[46]
Sahu, B.D.; Kuncha, M.; Rachamalla, S.S.; Sistla, R. Lagerstroemia speciosa L. attenuates apoptosis in isoproterenol-induced cardiotoxic mice by inhibiting oxidative stress: Possible role of Nrf2/HO-1. Cardiovasc. Toxicol., 2015, 15(1), 10-22.
[http://dx.doi.org/10.1007/s12012-014-9263-1] [PMID: 24853613]
[47]
Sui, Y.B.; Zhang, K.K.; Ren, Y.K.; Liu, L.; Liu, Y. The role of Nrf2 in astragaloside IV-mediated antioxidative protection on heart failure. Pharm. Biol., 2020, 58(1), 1192-1198.
[http://dx.doi.org/10.1080/13880209.2020.1849319] [PMID: 33253607]
[48]
Syed, A.M.; Ram, C.; Murty, U.S.; Sahu, B.D. A review on herbal Nrf2 activators with preclinical evidence in cardiovascular diseases. Phytother. Res., 2021, 35(9), 5068-5102.
[http://dx.doi.org/10.1002/ptr.7137] [PMID: 33894007]
[49]
Cuadrado, I.; Fernández-Velasco, M.; Boscá, L.; de Las Heras, B. Labdane diterpenes protect against anoxia/reperfusion injury in cardiomyocytes: Involvement of AKT activation. Cell Death Dis., 2011, 2(11), e229.
[http://dx.doi.org/10.1038/cddis.2011.113] [PMID: 22071634]
[50]
Kaczorowski, D.J.; Nakao, A.; McCurry, K.R.; Billiar, T.R. Toll-like receptors and myocardial ischemia/reperfusion, inflammation, and injury. Curr. Cardiol. Rev., 2009, 5(3), 196-202.
[http://dx.doi.org/10.2174/157340309788970405] [PMID: 20676278]
[51]
Li, X.; Jiang, S.; Tapping, R.I. Toll-like receptor signaling in cell proliferation and survival. Cytokine, 2010, 49(1), 1-9.
[http://dx.doi.org/10.1016/j.cyto.2009.08.010] [PMID: 19775907]
[52]
Fan, D.; Yang, Z.; Yuan, Y.; Wu, Q.Q.; Xu, M.; Jin, Y.G.; Tang, Q.Z. Sesamin prevents apoptosis and inflammation after experimental myocardial infarction by JNK and NF-κB pathways. Food Funct., 2017, 8(8), 2875-2885.
[http://dx.doi.org/10.1039/C7FO00204A] [PMID: 28726929]
[53]
Schneider, I.; Kressel, G.; Meyer, A.; Krings, U.; Berger, R.G.; Hahn, A. Lipid lowering effects of oyster mushroom (Pleurotus ostreatus) in humans. J. Funct. Foods, 2011, 3(1), 17-24.
[http://dx.doi.org/10.1016/j.jff.2010.11.004]
[54]
Meeran, M.F.N.; Azimullah, S.; Al Ahbabi, M.M.; Jha, N.K.; Lakshmanan, V.K.; Goyal, S.N.; Ojha, S. Nootkatone, a dietary fragrant bioactive compound, attenuates dyslipidemia and intramyocardial lipid accumulation and favorably alters lipid metabolism in a rat model of myocardial injury: Anin vivo andin vitro study. Molecules, 2020, 25(23), 5656.
[http://dx.doi.org/10.3390/molecules25235656] [PMID: 33266249]
[55]
Martinon, F.; Mayor, A.; Tschopp, J. The inflammasomes: Guardians of the body. Annu. Rev. Immunol., 2009, 27, 229-265.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132715] [PMID: 19302040]
[56]
Cho, J.S.; Kang, J.H.; Um, J.Y.; Han, I.H.; Park, I.H.; Lee, H.M. Lipopolysaccharide induces pro-inflammatory cytokines and MMP productionvia TLR4 in nasal polyp-derived fibroblast and organ culture. PLoS One, 2014, 9(11), e90683.
[http://dx.doi.org/10.1371/journal.pone.0090683] [PMID: 25390332]
[57]
Wang, Y.; Wang, M.; Xu, M.; Li, T.; Fan, K.; Yan, T.; Xiao, F.; Bi, K.; Jia, Y. Nootkatone, a neuroprotective agent from Alpiniae Oxyphyllae Fructus, improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer’s disease. Int. Immunopharmacol., 2018, 62, 77-85.
[http://dx.doi.org/10.1016/j.intimp.2018.06.042] [PMID: 29990697]
[58]
Park, J.E.; Park, J.S.; Leem, Y.H.; Kim, D.Y.; Kim, H.S. NQO1 mediates the anti-inflammatory effects of nootkatone in lipopolysaccharide-induced neuroinflammation by modulating the AMPK signaling pathway. Free Radic. Biol. Med., 2021, 164, 354-368.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.01.015] [PMID: 33460769]
[59]
Jellinger, K.A. Neuropathological assessment of the Alzheimer spectrum. J. Neural Transm. (Vienna), 2020, 127(9), 1229-1256.
[http://dx.doi.org/10.1007/s00702-020-02232-9] [PMID: 32740684]
[60]
Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol. Med. Rep., 2019, 20(2), 1479-1487.
[PMID: 31257471]
[61]
Lin, L.F.; Luo, H.M. Screening of treatment targets for Alzheimer’s disease from the molecular mechanisms of impairment by β-amyloid aggregation and tau hyperphosphorylation. Neurosci. Bull., 2011, 27(1), 53-60.
[http://dx.doi.org/10.1007/s12264-011-1040-6] [PMID: 21270904]
[62]
Tabet, N. Acetylcholinesterase inhibitors for Alzheimer’s disease: Anti-inflammatories in acetylcholine clothing! Age Ageing, 2006, 35(4), 336-338.
[http://dx.doi.org/10.1093/ageing/afl027] [PMID: 16788077]
[63]
Shi, S.H.; Zhao, X.; Liu, B.; Li, H.; Liu, A.J.; Wu, B.; Bi, K.S.; Jia, Y. The effects of sesquiterpenes-rich extract ofAlpinia oxyphylla Miq. on amyloid-β-induced cognitive impairment and neuronal abnormalities in the cortex and hippocampus of mice. Oxid. Med. Cell. Longev., 2014, 2014, 451802.
[http://dx.doi.org/10.1155/2014/451802] [PMID: 25180067]
[64]
Shi, S.H.; Zhao, X.; Liu, A.J.; Liu, B.; Li, H.; Wu, B.; Bi, K.S.; Jia, Y. Protective effect of n-butanol extract fromAlpinia oxyphylla on learning and memory impairments. Physiol. Behav., 2015, 139, 13-20.
[http://dx.doi.org/10.1016/j.physbeh.2014.11.016] [PMID: 25446210]
[65]
Facchinetti, R.; Bronzuoli, M.R.; Scuderi, C. An animal model of Alzheimer disease based on the intrahippocampal injection of amyloid β-peptide (1-42). Methods Mol. Biol., 2018, 1727, 343-352.
[http://dx.doi.org/10.1007/978-1-4939-7571-6_25] [PMID: 29222793]
[66]
Mao, X.; Liao, Z.; Guo, L.; Xu, X.; Wu, B.; Xu, M.; Zhao, X.; Bi, K.; Jia, Y.; Schisandrin, C. Schisandrin C ameliorates learning and memory deficits by Aβ1-42 -induced oxidative stress and neurotoxicity in mice. Phytother. Res., 2015, 29(9), 1373-1380.
[http://dx.doi.org/10.1002/ptr.5390] [PMID: 26074330]
[67]
He, B.; Xu, F.; Xiao, F.; Yan, T.; Wu, B.; Bi, K.; Jia, Y. Neuroprotective effects of nootkatone from Alpiniae oxyphyllae Fructus against amyloid-β-induced cognitive impairment. Metab. Brain Dis., 2018, 33(1), 251-259.
[http://dx.doi.org/10.1007/s11011-017-0154-6] [PMID: 29177693]
[68]
Malashenkova, I.K.; Khailov, N.A.; Krynskii, S.A.; Ogurtsov, D.P.; Kazanova, G.V.; Velichkovskii, B.B.; Selezneva, N.D.; Fedorova, Y.B.; Ponomareva, E.V.; Kolykhalov, I.V.; Gavrilova, S.I.; Didkovskii, N.A. Levels of proinflammatory cytokines and growth factor VEGF in patients with Alzheimer’s disease and mild cognitive impairment. Neurosci. Behav. Physiol., 2017, 47(6), 694-698.
[http://dx.doi.org/10.1007/s11055-017-0457-4]
[69]
Hafner-Bratkovič, I.; Benčina, M.; Fitzgerald, K.A.; Golenbock, D.; Jerala, R. NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1β and neuronal toxicity. Cell. Mol. Life Sci., 2012, 69(24), 4215-4228.
[http://dx.doi.org/10.1007/s00018-012-1140-0] [PMID: 22926439]
[70]
Tan, M.S.; Yu, J.T.; Jiang, T.; Zhu, X.C.; Tan, L. The NLRP3 inflammasome in Alzheimer’s disease. Mol. Neurobiol., 2013, 48(3), 875-882.
[http://dx.doi.org/10.1007/s12035-013-8475-x] [PMID: 23686772]
[71]
Liston, A.; Masters, S.L. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat. Rev. Immunol., 2017, 17(3), 208-214.
[http://dx.doi.org/10.1038/nri.2016.151] [PMID: 28163301]
[72]
Azam, S.; Jakaria, M.; Kim, I.S.; Kim, J.; Haque, M.E.; Choi, D.K. Regulation of Toll-Like Receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: Focus on TLR4 signaling. Front. Immunol., 2019, 10, 1000.
[http://dx.doi.org/10.3389/fimmu.2019.01000] [PMID: 31134076]
[73]
Qi, Y.; Jing, H.; Cheng, X.; Yan, T.; Xiao, F.; Wu, B.; Bi, K.; Jia, Y. Alpinia oxyphylla-Schisandra chinensis herb pair alleviates amyloid-β induced cognitive deficitsvia PI3K/Akt/Gsk-3β/CREB pathway. Neuromolecular Med., 2020, 22(3), 370-383.
[http://dx.doi.org/10.1007/s12017-020-08595-2] [PMID: 32140977]
[74]
Qi, Y.; Cheng, X.; Jing, H.; Yan, T.; Xiao, F.; Wu, B.; Bi, K.; Jia, Y. Effect ofAlpinia oxyphylla-Schisandra chinensis herb pair on inflammation and apoptosis in Alzheimer’s disease mice model. J. Ethnopharmacol., 2019, 237, 28-38.
[http://dx.doi.org/10.1016/j.jep.2019.03.029] [PMID: 30880259]
[75]
Yan, T.; Li, F.; Xiong, W.; Wu, B.; Xiao, F.; He, B.; Jia, Y. Nootkatone improves anxiety- and depression-like behavior by targeting hyperammonemia-induced oxidative stress in D-galactosamine model of liver injury. Environ. Toxicol., 2021, 36(4), 694-706.
[http://dx.doi.org/10.1002/tox.23073] [PMID: 33270352]
[76]
Bataller, R.; Brenner, D.A. Liver fibrosis. J. Clin. Invest., 2005, 115(2), 209-218.
[http://dx.doi.org/10.1172/JCI24282] [PMID: 15690074]
[77]
El-Serag, H.B.; Rudolph, K.L. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology, 2007, 132(7), 2557-2576.
[http://dx.doi.org/10.1053/j.gastro.2007.04.061] [PMID: 17570226]
[78]
Friedman, S.L. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008, 134(6), 1655-1669.
[http://dx.doi.org/10.1053/j.gastro.2008.03.003] [PMID: 18471545]
[79]
Després, J.P.; Lemieux, I.; Bergeron, J.; Pibarot, P.; Mathieu, P.; Larose, E.; Rodés-Cabau, J.; Bertrand, O.F.; Poirier, P. Abdominal obesity and the metabolic syndrome: Contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol., 2008, 28(6), 1039-1049.
[http://dx.doi.org/10.1161/ATVBAHA.107.159228] [PMID: 18356555]
[80]
Murase, T.; Misawa, K.; Haramizu, S.; Minegishi, Y.; Hase, T. Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK. Am. J. Physiol. Endocrinol. Metab., 2010, 299(2), E266-E275.
[http://dx.doi.org/10.1152/ajpendo.00774.2009] [PMID: 20501876]
[81]
Long, Y.C.; Zierath, J.R. AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Invest., 2006, 116(7), 1776-1783.
[http://dx.doi.org/10.1172/JCI29044] [PMID: 16823475]
[82]
Carling, D.; Sanders, M.J.; Woods, A. The regulation of AMP-activated protein kinase by upstream kinases. Int. J. Obes., 2008, 32(Suppl. 4), S55-S59.
[http://dx.doi.org/10.1038/ijo.2008.124] [PMID: 18719600]
[83]
Lizcano, J.M.; Göransson, O.; Toth, R.; Deak, M.; Morrice, N.A.; Boudeau, J.; Hawley, S.A.; Udd, L.; Mäkelä, T.P.; Hardie, D.G.; Alessi, D.R. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J., 2004, 23(4), 833-843.
[http://dx.doi.org/10.1038/sj.emboj.7600110] [PMID: 14976552]
[84]
Lee, S.W.; Lin, H.K. A new mechanism for LKB1 activation. Mol. Cell. Oncol., 2018, 5(3), e1035691.
[http://dx.doi.org/10.1080/23723556.2015.1035691] [PMID: 30250874]
[85]
Marcelo, K.L.; Ribar, T.; Means, C.R.; Tsimelzon, A.; Stevens, R.D.; Ilkayeva, O.; Bain, J.R.; Hilsenbeck, S.G.; Newgard, C.B.; Means, A.R.; York, B. Research resource: Roles for calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in systems metabolism. Mol. Endocrinol., 2016, 30(5), 557-572.
[http://dx.doi.org/10.1210/me.2016-1021] [PMID: 27003444]
[86]
Davis, M.S.; Solbiati, J.; Cronan, J.E., Jr. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis inEscherichia coli. J. Biol. Chem., 2000, 275(37), 28593-28598.
[http://dx.doi.org/10.1074/jbc.M004756200] [PMID: 10893421]
[87]
Tomas, E.; Tsao, T.S.; Saha, A.K.; Murrey, H.E.; Zhang Cc, Cc.; Itani, S.I.; Lodish, H.F.; Ruderman, N.B. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci. USA, 2002, 99(25), 16309-16313.
[http://dx.doi.org/10.1073/pnas.222657499] [PMID: 12456889]
[88]
Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; Musi, N.; Hirshman, M.F.; Goodyear, L.J.; Moller, D.E. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest., 2001, 108(8), 1167-1174.
[http://dx.doi.org/10.1172/JCI13505] [PMID: 11602624]
[89]
Zang, M.; Xu, S.; Maitland-Toolan, K.A.; Zuccollo, A.; Hou, X.; Jiang, B.; Wierzbicki, M.; Verbeuren, T.J.; Cohen, R.A. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes, 2006, 55(8), 2180-2191.
[http://dx.doi.org/10.2337/db05-1188] [PMID: 16873680]
[90]
Atkinson, R.W.; Kang, S.; Anderson, H.R.; Mills, I.C.; Walton, H.A. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: A systematic review and meta-analysis. Thorax, 2014, 69(7), 660-665.
[http://dx.doi.org/10.1136/thoraxjnl-2013-204492] [PMID: 24706041]
[91]
Steiner, S.; Bisig, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms. Arch. Toxicol., 2016, 90(7), 1541-1553.
[http://dx.doi.org/10.1007/s00204-016-1736-5] [PMID: 27165416]
[92]
Nemmar, A.; Al-Salam, S.; Beegam, S.; Yuvaraju, P.; Hamadi, N.; Ali, B.H. In vivo protective effects of nootkatone against particles-induced lung injury caused by diesel exhaust is mediatedvia the NF-κB pathway. Nutrients, 2018, 10(3), 263.
[http://dx.doi.org/10.3390/nu10030263] [PMID: 29495362]
[93]
Nemmar, A.; Holme, J.A.; Rosas, I.; Schwarze, P.E.; Alfaro-Moreno, E. Recent advances in particulate matter and nanoparticle toxicology: A review of thein vivo andin vitro studies. BioMed Res. Int., 2013, 2013, 279371.
[http://dx.doi.org/10.1155/2013/279371] [PMID: 23865044]
[94]
Traboulsi, H.; Guerrina, N.; Iu, M.; Maysinger, D.; Ariya, P.; Baglole, C.J. Inhaled pollutants: The molecular scene behind respiratory and systemic diseases associated with ultrafine particulate matter. Int. J. Mol. Sci., 2017, 18(2), 243.
[http://dx.doi.org/10.3390/ijms18020243] [PMID: 28125025]
[95]
Salvi, S.; Blomberg, A.; Rudell, B.; Kelly, F.; Sandström, T.; Holgate, S.T.; Frew, A. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am. J. Respir. Crit. Care Med., 1999, 159(3), 702-709.
[http://dx.doi.org/10.1164/ajrccm.159.3.9709083] [PMID: 10051240]
[96]
Xu, Y.; Barregard, L.; Nielsen, J.; Gudmundsson, A.; Wierzbicka, A.; Axmon, A.; Jönsson, B.A.G.; Kåredal, M.; Albin, M. Effects of diesel exposure on lung function and inflammation biomarkers from airway and peripheral blood of healthy volunteers in a chamber study. Part. Fibre Toxicol., 2013, 10(1), 60.
[http://dx.doi.org/10.1186/1743-8977-10-60] [PMID: 24321138]
[97]
Cai, Y.; Zhang, B.; Ke, W.; Feng, B.; Lin, H.; Xiao, J.; Zeng, W.; Li, X.; Tao, J.; Yang, Z.; Ma, W.; Liu, T. Associations of short-term and long-term exposure to ambient air pollutants with hypertension: A systematic review and meta-analysis. Hypertension, 2016, 68(1), 62-70.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07218] [PMID: 27245182]
[98]
Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; Feigin, V.; Freedman, G.; Hubbell, B.; Jobling, A.; Kan, H.; Knibbs, L.; Liu, Y.; Martin, R.; Morawska, L.; Pope, C.A., III; Shin, H.; Straif, K.; Shaddick, G.; Thomas, M.; van Dingenen, R.; van Donkelaar, A.; Vos, T.; Murray, C.J.L.; Forouzanfar, M.H. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet, 2017, 389(10082), 1907-1918.
[http://dx.doi.org/10.1016/S0140-6736(17)30505-6] [PMID: 28408086]
[99]
Franchini, M.; Mengoli, C.; Cruciani, M.; Bonfanti, C.; Mannucci, P.M. Association between particulate air pollution and venous thromboembolism: A systematic literature review. Eur. J. Int. Med., 2016, 27, 10-13.
[http://dx.doi.org/10.1016/j.ejim.2015.11.012] [PMID: 26639051]
[100]
Tabor, C.M.; Shaw, C.A.; Robertson, S.; Miller, M.R.; Duffin, R.; Donaldson, K.; Newby, D.E.; Hadoke, P.W.F. Platelet activation independent of pulmonary inflammation contributes to diesel exhaust particulate-induced promotion of arterial thrombosis. Part. Fibre Toxicol., 2016, 13(1), 6.
[http://dx.doi.org/10.1186/s12989-016-0116-x] [PMID: 26857113]
[101]
Cascio, W.E. Proposed pathophysiologic framework to explain some excess cardiovascular death associated with ambient air particle pollution: Insights for public health translation. Biochim. Biophys. Acta, 2016, 1860(12), 2869-2879.
[http://dx.doi.org/10.1016/j.bbagen.2016.07.016] [PMID: 27451957]
[102]
Wilson, S.J.; Miller, M.R.; Newby, D.E. Effects of diesel exhaust on cardiovascular function and oxidative stress. Antioxid. Redox Signal., 2018, 28(9), 819-836.
[http://dx.doi.org/10.1089/ars.2017.7174] [PMID: 28540736]
[103]
Nemmar, A.; Al-Salam, S.; Zia, S.; Marzouqi, F.; Al-Dhaheri, A.; Subramaniyan, D.; Dhanasekaran, S.; Yasin, J.; Ali, B.H.; Kazzam, E.E. Contrasting actions of diesel exhaust particles on the pulmonary and cardiovascular systems and the effects of thymoquinone. Br. J. Pharmacol., 2011, 164(7), 1871-1882.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01442.x] [PMID: 21501145]
[104]
Newby, D.E.; Mannucci, P.M.; Tell, G.S.; Baccarelli, A.A.; Brook, R.D.; Donaldson, K.; Forastiere, F.; Franchini, M.; Franco, O.H.; Graham, I.; Hoek, G.; Hoffmann, B.; Hoylaerts, M.F.; Künzli, N.; Mills, N.; Pekkanen, J.; Peters, A.; Piepoli, M.F.; Rajagopalan, S.; Storey, R.F. Expert position paper on air pollution and cardiovascular disease. Eur. Heart J., 2015, 36(2), 83-93b.
[http://dx.doi.org/10.1093/eurheartj/ehu458] [PMID: 25492627]
[105]
Nemmar, A.; Al-Salam, S.; Beegam, S.; Yuvaraju, P.; Ali, B.H. Thrombosis and systemic and cardiac oxidative stress and DNA damage induced by pulmonary exposure to diesel exhaust particles and the effect of nootkatone thereon. Am. J. Physiol. Heart Circ. Physiol., 2018, 314(5), H917-H927.
[http://dx.doi.org/10.1152/ajpheart.00313.2017] [PMID: 29351455]
[106]
Jackson, S.P. Arterial thrombosis--insidious, unpredictable and deadly. Nat. Med., 2011, 17(11), 1423-1436.
[http://dx.doi.org/10.1038/nm.2515] [PMID: 22064432]
[107]
Ruggeri, Z.M. Platelets in atherothrombosis. Nat. Med., 2002, 8(11), 1227-1234.
[http://dx.doi.org/10.1038/nm1102-1227] [PMID: 12411949]
[108]
Gross, P.L.; Weitz, J.I. New antithrombotic drugs. Clin. Pharmacol. Ther., 2009, 86(2), 139-146.
[http://dx.doi.org/10.1038/clpt.2009.98] [PMID: 19553932]
[109]
Gaglia, M.A., Jr; Manoukian, S.V.; Waksman, R. Novel antiplatelet therapy. Am. Heart J., 2010, 160(4), 595-604.
[http://dx.doi.org/10.1016/j.ahj.2010.06.007] [PMID: 20934552]
[110]
Bucki, R.; Pastore, J.J.; Giraud, F.; Sulpice, J.C.; Janmey, P.A. Flavonoid inhibition of platelet procoagulant activity and phosphoinositide synthesis. J. Thromb. Haemost., 2003, 1(8), 1820-1828.
[http://dx.doi.org/10.1046/j.1538-7836.2003.00294.x] [PMID: 12911599]
[111]
Fraatz, M.A.; Berger, R.G.; Zorn, H. Nootkatone-a biotechnological challenge. Appl. Microbiol. Biotechnol., 2009, 83(1), 35-41.
[http://dx.doi.org/10.1007/s00253-009-1968-x] [PMID: 19333595]
[112]
Miao, J.; Lin, S.; Soteyome, T.; Peters, B.M.; Li, Y.; Chen, H.; Su, J.; Li, L.; Li, B.; Xu, Z.; Shirtliff, M.E.; Harro, J.M. Biofilm formation ofStaphylococcus aureus under food heat processing conditions: First report on CML production within biofilm. Sci. Rep., 2019, 9(1), 1312.
[http://dx.doi.org/10.1038/s41598-018-35558-2] [PMID: 30718527]
[113]
Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol., 2015, 148, 63-106.
[http://dx.doi.org/10.1007/10_2014_295] [PMID: 25583224]
[114]
Bai, J.R.; Zhong, K.; Wu, Y.P.; Elena, G.; Gao, H. Antibiofilm activity of shikimic acid againstStaphylococcus aureus. Food Control, 2019, 95, 327-333.
[http://dx.doi.org/10.1016/j.foodcont.2018.08.020]
[115]
Kim, Y.G.; Lee, J.H.; Gwon, G.; Kim, S.I.; Park, J.G.; Lee, J. Essential oils and eugenols inhibit biofilm formation and the virulence ofEscherichia coli O157:H7. Sci. Rep., 2016, 6, 36377.
[http://dx.doi.org/10.1038/srep36377] [PMID: 27808174]
[116]
Lee, J.H.; Park, J.H.; Cho, H.S.; Joo, S.W.; Cho, M.H.; Lee, J. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling, 2013, 29(5), 491-499.
[http://dx.doi.org/10.1080/08927014.2013.788692] [PMID: 23668380]
[117]
Farha, A.K.; Yang, Q.Q.; Kim, G.; Zhang, D.; Mavumengwana, V.; Habimana, O.; Li, H. Bin; Corke, H.; Gan, R. Y. I Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)-nootkatone and related molecular mechanism. Food Control, 2020, 112, 107154.
[http://dx.doi.org/10.1016/j.foodcont.2020.107154]
[118]
Peden, D.B. Effect of pollution on allergy/immunology. J. Allergy Clin. Immunol., 2018, 141(3), 878-879.
[http://dx.doi.org/10.1016/j.jaci.2018.01.017] [PMID: 29410333]
[119]
Johansson, S.G.O. The discovery of IgE. J. Allergy Clin. Immunol., 2016, 137(6), 1671-1673.
[http://dx.doi.org/10.1016/j.jaci.2016.04.004] [PMID: 27264002]
[120]
Eckl-Dorna, J.; Fröschl, R.; Lupinek, C.; Kiss, R.; Gattinger, P.; Marth, K.; Campana, R.; Mittermann, I.; Blatt, K.; Valent, P.; Selb, R.; Mayer, A.; Gangl, K.; Steiner, I.; Gamper, J.; Perkmann, T.; Zieglmayer, P.; Gevaert, P.; Valenta, R.; Niederberger, V. Intranasal administration of allergen increases specific IgE whereas intranasal omalizumab does not increase serum IgE levels-A pilot study. Allergy, 2018, 73(5), 1003-1012.
[http://dx.doi.org/10.1111/all.13343] [PMID: 29083477]
[121]
Gowthaman, U.; Chen, J.S.; Eisenbarth, S.C. Regulation of IgE by T follicular helper cells. J. Leukoc. Biol., 2020, 107(3), 409-418.
[http://dx.doi.org/10.1002/JLB.3RI1219-425R] [PMID: 31965637]
[122]
Zhang, Y.; Hu, S.; Ge, S.; Wang, J.; He, L. Paeoniflorin inhibits IgE-mediated allergic reactions by suppressing the degranulation of mast cells though binding with FcϵRI alpha subunits. Eur. J. Pharmacol., 2020, 886, 173415.
[http://dx.doi.org/10.1016/j.ejphar.2020.173415] [PMID: 32771669]
[123]
Wang, G.; Cheng, N. Paeoniflorin inhibits mast cell-mediated allergic inflammation in allergic rhinitis. J. Cell. Biochem., 2018, 119(10), 8636-8642.
[http://dx.doi.org/10.1002/jcb.27135] [PMID: 30076630]
[124]
Carlos, D.; Sá-Nunes, A.; de Paula, L.; Matias-Peres, C.; Jamur, M.C.; Oliver, C.; Serra, M.F.; Martins, M.A.; Faccioli, L.H. Histamine modulates mast cell degranulation through an indirect mechanism in a model IgE-mediated reaction. Eur. J. Immunol., 2006, 36(6), 1494-1503.
[http://dx.doi.org/10.1002/eji.200535464] [PMID: 16703563]
[125]
Jin, J.H.; Lee, D.U.; Kim, Y.S.; Kim, H.P. Anti-allergic activity of sesquiterpenes from the rhizomes of Cyperus rotundus. Arch. Pharm. Res., 2011, 34(2), 223-228.
[http://dx.doi.org/10.1007/s12272-011-0207-z] [PMID: 21380805]
[126]
Rådmark, O.; Werz, O.; Steinhilber, D.; Samuelsson, B. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim. Biophys. Acta, 2015, 1851(4), 331-339.
[http://dx.doi.org/10.1016/j.bbalip.2014.08.012] [PMID: 25152163]
[127]
Rubin, P.; Mollison, K. W. Pharmacotherapy of diseases mediated by 5-lipoxygenase pathway Eicosanoids. Prostaglandins Other Lipid Mediat., 2007, 83(3 SPEC. ISS.), 188-197.
[128]
Sayed, H.M.; Mohamed, M.H.; Farag, S.F.; Mohamed, G.A.; Omobuwajo, O.R.M.; Proksch, P. Fructose-amino acid conjugate and other constituents fromCyperus rotundus L. Nat. Prod. Res., 2008, 22(17), 1487-1497.
[http://dx.doi.org/10.1080/14786410802038556] [PMID: 19023813]
[129]
Singh, N.; Pandey, B.R.; Verma, P.; Bhalla, M.; Gilca, M. Phytopharmacotherapeutics of Cyperus rotundus Linn. (Motha): An overview Indian J. Nat. Prod. Resour., 2012, 3(4), 467-476.
[130]
Alvarez-Errico, D.; Yamashita, Y.; Suzuki, R.; Odom, S.; Furumoto, Y.; Yamashita, T.; Rivera, J. Functional analysis of Lyn kinase A and B isoforms reveals redundant and distinct roles in Fc ε RI-dependent mast cell activation. J. Immunol., 2010, 184(9), 5000-5008.
[http://dx.doi.org/10.4049/jimmunol.0904064] [PMID: 20308635]
[131]
Knishkowy, B.; Amitai, Y. Water-pipe (narghile) smoking: An emerging health risk behavior. Pediatrics, 2005, 116(1), e113-e119.
[http://dx.doi.org/10.1542/peds.2004-2173] [PMID: 15995011]
[132]
Jawad, M.; Wilson, A.; Lee, J.T.; Jawad, S.; Hamilton, F.L.; Millett, C. Prevalence and predictors of water pipe and cigarette smoking among secondary school students in London. Nicotine Tob. Res., 2013, 15(12), 2069-2075.
[http://dx.doi.org/10.1093/ntr/ntt103] [PMID: 23884320]
[133]
Boskabady, M.H.; Farhang, L.; Mahmodinia, M.; Boskabady, M.; Heydari, G.R. Comparison of pulmonary function and respiratory symptoms in water pipe and cigarette smokers. Respirology, 2012, 17(6), 950-956.
[http://dx.doi.org/10.1111/j.1440-1843.2012.02194.x] [PMID: 22583352]
[134]
Khabour, O.F.; Alsatari, E.S.; Azab, M.; Alzoubi, K.H.; Sadiq, M.F. Assessment of genotoxicity of waterpipe and cigarette smoking in lymphocytes using the sister-chromatid exchange assay: A comparative study. Environ. Mol. Mutagen., 2011, 52(3), 224-228.
[http://dx.doi.org/10.1002/em.20601] [PMID: 20740646]
[135]
Ali, B.H.; Adham, S.A.; Al Balushi, K.A.; Shalaby, A.; Waly, M.I.; Manoj, P.; Beegam, S.; Yuvaraju, P.; Nemmar, A. Reproductive toxicity to male mice of nose only exposure to water- pipe smoke. Cell. Physiol. Biochem., 2015, 35(1), 29-37.
[http://dx.doi.org/10.1159/000369672] [PMID: 25547785]
[136]
Ali, B.H.; Al Balushi, K.A.; Ashique, M.; Shalaby, A.; Al Kindi, M.A.; Adham, S.A.; Karaca, T.; Beegam, S.; Yuvaraju, P.; Nemmar, A. Chronic water-pipe smoke exposure induces injurious effects to reproductive system in male mice. Front. Physiol., 2017, 8, 158.
[http://dx.doi.org/10.3389/fphys.2017.00158] [PMID: 28420996]
[137]
Aitken, R.J.; Smith, T.B.; Jobling, M.S.; Baker, M.A.; De Iuliis, G.N. Oxidative stress and male reproductive health. Asian J. Androl., 2014, 16(1), 31-38.
[http://dx.doi.org/10.4103/1008-682X.122203] [PMID: 24369131]
[138]
Ali, B.H.; Al-Salam, S.; Adham, S.A.; Al Balushi, K.; Al Za’abi, M.; Beegam, S.; Yuvaraju, P.; Manoj, P.; Nemmar, A. Testicular toxicity of water pipe smoke exposure in mice and the effect of treatment with nootkatone thereon. Oxid. Med. Cell. Longev., 2019, 2019, 2416935.
[http://dx.doi.org/10.1155/2019/2416935] [PMID: 31341528]
[139]
Reichel, A.; Lienau, P. Pharmacokinetics in drug discovery: An exposure-centred approach to optimising and predicting drug efficacy and safety. In: New Approaches to Drug Discovery. Handbook of Experimental Pharmacology; Nielsch, U.; Fuhrmann, U.; Jaroch, S., Eds.; Springer: Cham, 2016; 232, pp. 235-260.
[140]
Wen, Q.; Li, H.L.; Tan, Y.F.; Zhang, X.G.; Qin, Z.M.; Li, W.; Li, Y.H.; Zhang, J.Q.; Chen, F. LC-MS/MS-Based method for simultaneous quantification of known chemicals and metabolites ofAlpiniae oxyphyllae fructus extract in rat plasma and its application in a pharmacokinetic study. Anal. Methods, 2016, 8(9), 2069-2081.
[http://dx.doi.org/10.1039/C5AY03389F]
[141]
Kesharwani, S.S.; Jain, V.; Dey, S.; Sharma, S.; Mallya, P.; Kumar, V.A. An overview of advanced formulation and nanotechnology-based approaches for solubility and bioavailability enhancement of silymarin. J. Drug Deliv. Sci. Technol., 2020, 60, 102021.
[http://dx.doi.org/10.1016/j.jddst.2020.102021]
[142]
Di Costanzo, A.; Angelico, R. Formulation strategies for enhancing the bioavailability of silymarin: The state of the art. Molecules, 2019, 24(11), 2155.
[http://dx.doi.org/10.3390/molecules24112155] [PMID: 31181687]
[143]
Stevens, K.L.; Scherer, J.R. Photolysis of nootkatone. J. Agric. Food Chem., 1968, 16(4), 673-678.
[http://dx.doi.org/10.1021/jf60158a020]
[144]
Kfoury, M.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Promising applications of cyclodextrins in food: Improvement of essential oils retention, controlled release and antiradical activity. Carbohydr. Polym., 2015, 131, 264-272.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.014] [PMID: 26256184]
[145]
Panella, N.A.; Dolan, M.C.; Karchesy, J.J.; Xiong, Y.; Peralta-Cruz, J.; Khasawneh, M.; Montenieri, J.A.; Maupin, G.O. Use of novel compounds for pest control: Insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar. J. Med. Entomol., 2005, 42(3), 352-358.
[http://dx.doi.org/10.1093/jmedent/42.3.352] [PMID: 15962787]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy