Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Drug Delivery Systems for Cancer Treatment: A Review of Marine-derived Polysaccharides

Author(s): Harika Atmaca*, Ferdi Oguz and Suleyman Ilhan

Volume 28, Issue 13, 2022

Published on: 17 March, 2022

Page: [1031 - 1045] Pages: 15

DOI: 10.2174/1381612828666220211153931

Price: $65

Abstract

Cancer is a disease characterized by uncontrolled cell proliferation and the spread of cells to other tissues and remains one of the worldwide problems waiting to be solved. There are various treatment strategies for cancer, such as chemotherapy, surgery, radiotherapy, and immunotherapy, although it varies according to its type and stage. Many chemotherapeutic agents have limited clinical use due to lack of efficacy, off-target toxicity, metabolic instability, or poor pharmacokinetics. One possible solution to this high rate of clinical failure is to design drug delivery systems that deliver drugs in a controlled and specific manner and are not toxic to normal cells. Marine systems contain biodiversity, including components and materials that can be used in biomedical applications and therapy. Biomaterials such as chitin, chitosan, alginate, carrageenan, fucoidan, hyaluronan, agarose, and ulvan obtained from marine organisms have found use in DDSs today. These polysaccharides are biocompatible, non-toxic, biodegradable, and cost-effective, making them ideal raw materials for increasingly complex DDSs with a potentially regulated release. In this review, the contributions of polysaccharides from the marine environment to the development of anticancer drugs in DDSs will be discussed.

Keywords: Anti-cancer, cancer drugs, drug delivery systems, marine biomaterials, marine biotechnology, polysaccharides.

Next »
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mor-tality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660 ] [PMID: 33538338]
[2]
Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin 2019; 69(5): 363-85.
[http://dx.doi.org/10.3322/caac.21565 ] [PMID: 31184787]
[3]
Huang Y, Cole SP, Cai T, Cai YU. Applica-tions of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer. Oncol Lett 2016; 12(1): 11-5.
[http://dx.doi.org/10.3892/ol.2016.4596 ] [PMID: 27347092]
[4]
Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol 2018; 9: 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300 ] [PMID: 30483135]
[5]
Baudino TA. Targeted cancer therapy: The next genera-tion of cancer treatment. Curr Drug Discov Technol 2015; 12(1): 3-20.
[http://dx.doi.org/10.2174/1570163812666150602144310 ] [PMID: 26033233]
[6]
Seebacher NA, Stacy AE, Porter GM, Mer-lot AM. Clinical development of targeted and immune based anti-cancer therapies. J Exp Clin Cancer Res 2019; 38(1): 156.
[http://dx.doi.org/10.1186/s13046-019-1094-2 ] [PMID: 30975211]
[7]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387 ] [PMID: 18654426]
[8]
Li C, Wang J, Wang Y, et al. Recent progress in drug delivery. Acta Pharm Sin B 2019; 9(6): 1145-62.
[http://dx.doi.org/10.1016/j.apsb.2019.08.003 ] [PMID: 31867161]
[9]
Munro MHG, Blunt JW, Dumdei EJ, et al. The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 1999; 70(1-3): 15-25.
[http://dx.doi.org/10.1016/S0168-1656(99)00052-8 ] [PMID: 10412202]
[10]
Xiong ZQ, Wang JF, Hao YY, Wang Y. Recent advances in the discovery and development of marine microbial natural products. Mar Drugs 2013; 11(3): 700-17.
[http://dx.doi.org/10.3390/md11030700 ] [PMID: 23528949]
[11]
Schwartsmann G, Da Rocha AB, Mattei J, Lopes R. Marine-derived anticancer agents in clinical tri-als. Expert Opin Investig Drugs 2003; 12(8): 1367-83.
[http://dx.doi.org/10.1517/13543784.12.8.1367 ] [PMID: 12882622]
[12]
Yun CW, Kim HJ, Lee SH. Therapeutic applica-tion of diverse marine-derived natural products in cancer therapy. Anticancer Res 2019; 39(10): 5261-84.
[http://dx.doi.org/10.21873/anticanres.13721 ] [PMID: 31570422]
[13]
Laurienzo P. Marine polysaccharides in pharmaceutical applications: An overview. Mar Drugs 2010; 8(9): 2435-65.
[http://dx.doi.org/10.3390/md8092435 ] [PMID: 20948899]
[14]
Oliveira C, Carvalho AC, Reis RL, et al. Marine-derived biomaterials for cancer treatment.In: Bi-omaterials for 3D Tumor Modeling Elsevier. 20203.
[15]
Nitta SK, Numata K. Biopolymer-based nanoparti-cles for drug/gene delivery and tissue engineering. Int J Mol Sci 2013; 14(1): 1629-54.
[http://dx.doi.org/10.3390/ijms14011629 ] [PMID: 23344060]
[16]
Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2012; 64: 206-12.
[http://dx.doi.org/10.1016/j.addr.2012.09.033 ] [PMID: 15350294]
[17]
d’Ayala GG, Malinconico M, Laurienzo P. Marine derived polysaccharides for biomedical applications: Chemical modification approaches. Molecules 2008; 13(9): 2069-106.
[http://dx.doi.org/10.3390/molecules13092069 ] [PMID: 18830142]
[18]
Karagozlu MZ, Kim SK. Anticancer effects of chitin and chitosan derivatives. Adv Food Nutr Res 2014; 72: 215-25.
[http://dx.doi.org/10.1016/B978-0-12-800269-8.00012-9 ] [PMID: 25081085]
[19]
Cardoso MJ, Costa RR, Mano JF. Marine origin polysaccharides in drug delivery systems. Mar Drugs 2016; 14(2): 1-27.
[http://dx.doi.org/10.3390/md14020034 ] [PMID: 26861358]
[20]
Wimardhani YS, Suniarti DF, Freisleben HJ, Wanandi SI, Siregar NC, Ikeda MA. Chitosan exerts anticancer activity through induction of apoptosis and cell cycle arrest in oral cancer cells. J Oral Sci 2014; 56(2): 119-26.
[http://dx.doi.org/10.2334/josnusd.56.119 ] [PMID: 24930748]
[21]
Park JK, Chung MJ, Choi HN, Park YI. Ef-fects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int J Mol Sci 2011; 12(1): 266-77.
[http://dx.doi.org/10.3390/ijms12010266 ] [PMID: 21339986]
[22]
Tokura S, Tamura H. Chitin and chitosan. Compr Glycosci From Chem to Syst Biol 2007; 2–4: 449-75.
[23]
Gupta KC, Jabrail FH. Glutaraldehyde cross-linked chitosan microspheres for controlled release of centchroman. Carbohydr Res 2007; 342(15): 2244-52.
[http://dx.doi.org/10.1016/j.carres.2007.06.009 ] [PMID: 17610856]
[24]
Zhang C, Ping Q, Zhang H, Shen J. Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solu-bilization of taxol. Carbohydr Polym 2003; 54(2): 137-41.
[http://dx.doi.org/10.1016/S0144-8617(03)00090-0]
[25]
Lee DW, Baney R. Detoxification of amitriptyline by oligochitosan derivatives. Biotechnol Lett 2004; 26(9): 713-6.
[http://dx.doi.org/10.1023/B:BILE.0000024094.16474.35 ] [PMID: 15195970]
[26]
Lee DW, Powers K, Baney R. Physicochemical properties and blood compatibility of acylated chitosan na-noparticles. Carbohydr Polym 2004; 58(4): 371-7.
[http://dx.doi.org/10.1016/j.carbpol.2004.06.033]
[27]
Underhill RS, Jovanovic AV, Carino SR, et al. Oil-filled silica nanocapsules for lipophilic drug uptake: Implications for drug detoxification therapy. Chem Mater 2002; 14(12): 4919-25.
[http://dx.doi.org/10.1021/cm0202299]
[28]
Wu Y, Zheng Y, Yang W, Wang C, Hu J, Fu S. Synthesis and characterization of a novel am-phiphilic chitosan-polylactide graft copolymer. Carbohydr Polym 2005; 59(2): 165-71.
[http://dx.doi.org/10.1016/j.carbpol.2004.09.006]
[29]
Han HD, Song CK, Park YS, et al. A chitosan hydrogel-based cancer drug delivery system exhibits syner-gistic antitumor effects by combining with a vaccinia viral vaccine. Int J Pharm 2008; 350(1-2): 27-34.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.014 ] [PMID: 17897800]
[30]
Obara K, Ishihara M, Ozeki Y, et al. Controlled release of paclitaxel from photocrosslinked chitosan hydro-gels and its subsequent effect on subcutaneous tumor growth in mice. J Control Release 2005; 110(1): 79-89.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.026 ] [PMID: 16289419]
[31]
Cho YI, Park S, Jeong SY, Yoo HS. In vivo and in vitro anti-cancer activity of thermo-sensitive and pho-to-crosslinkable doxorubicin hydrogels composed of chi-tosan-doxorubicin conjugates. Eur J Pharm Biopharm 2009; 73(1): 59-65.
[http://dx.doi.org/10.1016/j.ejpb.2009.04.010 ] [PMID: 19409990]
[32]
Mathew ME, Mohan JC, Manzoor K, Nair SV, Tamura H, Jayakumar R. Folate conjugated carboxymethyl chitosan-manganese doped zinc sulphide na-noparticles for targeted drug delivery and imaging of cancer cells. Carbohydr Polym 2010; 80(2): 442-8.
[http://dx.doi.org/10.1016/j.carbpol.2009.11.047]
[33]
Huang X, Huang X, Jiang XH, et al. In vitro antitumour activity of stearic acid-g-chitosan oligosaccharide polymeric micelles loading podophyllotoxin. J Microencapsul 2012; 29(1): 1-8.
[http://dx.doi.org/10.3109/02652048.2011.621551 ] [PMID: 22229874]
[34]
Termsarasab U, Cho HJ, Kim DH, et al. Chi-tosan oligosaccharide-arachidic acid-based nanoparticles for anti-cancer drug delivery. Int J Pharm 2013; 441(1-2): 373-80.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.018 ] [PMID: 23174411]
[35]
Li TSC, Yawata T, Honke K. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligo-saccharide lactate nanoparticles: For the potential targeted ovarian cancer gene therapy. Eur J Pharm Sci 2014; 52: 48-61.
[http://dx.doi.org/10.1016/j.ejps.2013.10.011 ] [PMID: 24178005]
[36]
Zhao X, Wan Q, Fu X, et al. Toxicity evaluation of one-dimensional nanoparticles using caenorhabditis ele-gans: A comparative study of halloysite nanotubes and chitin nanocrystals. ACS Sustain Chem& Eng 2019; 7(23): 18965-75.
[http://dx.doi.org/10.1021/acssuschemeng.9b04365]
[37]
Solairaj D, Rameshthangam P, Arunachalam G. Anticancer activity of silver and copper embedded chitin nanocomposites against human breast cancer (MCF-7) cells. Int J Biol Macromol 2017; 105(Pt 1): 608-19.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.078 ] [PMID: 28716752]
[38]
Khdair A, Hamad I, Alkhatib H, et al. Modi-fied-chitosan nanoparticles: Novel drug delivery systems improve oral bioavailability of doxorubicin. Eur J Pharm Sci 2016; 93: 38-44.
[http://dx.doi.org/10.1016/j.ejps.2016.07.012 ] [PMID: 27473308]
[39]
Soares PIP, Sousa AI, Silva JC, Ferreira IMM, Novo CMM, Borges JP. Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Op-timization and modelling. Carbohydr Polym 2016; 147: 304-12.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.028 ] [PMID: 27178936]
[40]
Wang T, Hou J, Su C, Zhao L, Shi Y. Hyalu-ronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor effi-ciency by targeted drug delivery via CD44. J Nanobiotechnology 2017; 15(1): 7.
[http://dx.doi.org/10.1186/s12951-016-0245-2 ] [PMID: 28068992]
[41]
Khan MM, Madni A, Torchilin V, et al. Lipid-chitosan hybrid nanoparticles for controlled delivery of cis-platin. Drug Deliv 2019; 26(1): 765-72.
[http://dx.doi.org/10.1080/10717544.2019.1642420 ] [PMID: 31357896]
[42]
Imran M, Rauf A, Khan IA, et al. Thymoqui-none: A novel strategy to combat cancer: A review. Biomed Pharmacother 2018; 106: 390-402.
[http://dx.doi.org/10.1016/j.biopha.2018.06.159 ] [PMID: 29966985]
[43]
Qian Q, Niu S, Williams GR, Wu J, Zhang X, Zhu L-M. Peptide functionalized dual-responsive chitosan nanoparticles for controlled drug delivery to breast cancer cells. Colloids Surf A Physicochem Eng Asp 2019; 564: 122-30.
[http://dx.doi.org/10.1016/j.colsurfa.2018.12.026]
[44]
Balan P, Indrakumar J, Murali P, Korrapati PS. Bi-faceted delivery of phytochemicals through chitosan nanoparticles impregnated nanofibers for cancer therapeu-tics. Int J Biol Macromol 2020; 142: 201-11.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.093 ] [PMID: 31604079]
[45]
Irani M, Mir Mohamad Sadeghi G, Haririan I. A novel biocompatible drug delivery system of chi-tosan/temozolomide nanoparticles loaded PCL-PU nano-fibers for sustained delivery of temozolomide. Int J Biol Macromol 2017; 97: 744-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.073 ] [PMID: 28109815]
[46]
Skorik YA, Golyshev AA, Kritchenkov AS, et al. Development of drug delivery systems for taxanes using ionic gelation of carboxyacyl derivatives of chitosan. Carbohydr Polym 2017; 162: 49-55.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.025 ] [PMID: 28224894]
[47]
Vijayakumar M, Priya K, Ilavenil S, et al. Shrimp shells extracted chitin in silver nanoparticle synthesis: Expanding its prophecy towards anticancer activity in human hepatocellular carcinoma HepG2 cells. Int J Biol Macromol 2020; 165(Pt A): 1402-9. .
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.032] [PMID: 33045301]
[48]
Peng N, Yang M, Tang Y, et al. Amphiphilic hexadecyl-quaternized chitin micelles for doxorubicin deliv-ery. Int J Biol Macromol 2019; 130: 615-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.170 ] [PMID: 30831169]
[49]
Tang P, Sun Q, Yang H, Tang B, Pu H, Li H. Honokiol nanoparticles based on epigallocatechin gallate functionalized chitin to enhance therapeutic effects against liver cancer. Int J Pharm 2018; 545(1-2): 74-83.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.060 ] [PMID: 29715531]
[50]
Ding X, Yu W, Wan Y, et al. A pH/ROS-responsive, tumor-targeted drug delivery system based on carboxymethyl chitin gated hollow mesoporous silica nano-particles for anti-tumor chemotherapy. Carbohydr Polym 2020; 245, 116493.
[http://dx.doi.org/10.1016/j.carbpol.2020.116493 ] [PMID: 32718608]
[51]
Smitha KT, Anitha A, Furuike T, Tamura H, Nair SV, Jayakumar R. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery. Colloids Surf B Biointerfaces 2013; 104: 245-53.
[http://dx.doi.org/10.1016/j.colsurfb.2012.11.031 ] [PMID: 23337120]
[52]
Ye B-L, Zheng R, Ruan X-J, Zheng Z-H, Cai H-J. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway. Biochem Biophys Res Commun 2018; 495(1): 414-20.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.156 ] [PMID: 29097204]
[53]
Al-Musawi S, Hadi AJ, Hadi SJ, et al. Prepa-ration and characterization of folated chitosan/magnetic nanocarrier for 5-fluorouracil drug delivery and studying its effect in bladder cancer therapy. J Glob Pharma Technol 2019; 11: 628-37.
[54]
Yang H, Tang C, Yin C. Estrone-modified pH-sensitive glycol chitosan nanoparticles for drug delivery in breast cancer. Acta Biomater 2018; 73: 400-11.
[http://dx.doi.org/10.1016/j.actbio.2018.04.020 ] [PMID: 29660508]
[55]
Grant JJ, Pillai SC, Perova TS, et al. Electro-spun fibres of chitosan/PVP for the effective chemotherapeu-tic drug delivery of 5-fluorouracil. Chemosensors (Basel) 2021; 9(4): 70.
[http://dx.doi.org/10.3390/chemosensors9040070]
[56]
Barkhordari S, Alizadeh A, Yadollahi M, Namazi H. One-pot synthesis of magnetic chitosan/iron oxide bio-nanocomposite hydrogel beads as drug delivery systems. Soft Mater 2021; 19(4): 373-81.
[http://dx.doi.org/10.1080/1539445X.2020.1829642]
[57]
Lee KY, Mooney DJ. Alginate: Properties and bio-medical applications. Prog Polym Sci 2012; 37(1): 106-26.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003 ] [PMID: 22125349]
[58]
He L, Shang Z, Liu H, Yuan Z-X. Alginate-based platforms for cancer-targeted drug delivery . Biomed Res Int 2020; 2020.
[http://dx.doi.org/10.1155/2020/1487259]
[59]
Borgogna M, Skjåk-Bræk G, Paoletti S, Donati I. On the initial binding of alginate by calcium ions. The tilted egg-box hypothesis. J Phys Chem B 2013; 117(24): 7277-82.
[http://dx.doi.org/10.1021/jp4030766 ] [PMID: 23713959]
[60]
Jain D, Bar-Shalom D. Alginate drug delivery sys-tems: Application in context of pharmaceutical and biomedi-cal research. Drug Dev Ind Pharm 2014; 40(12): 1576-84.
[http://dx.doi.org/10.3109/03639045.2014.917657 ] [PMID: 25109399]
[61]
Yang JS, Xie YJ, He W. Research progress on chemical modification of alginate: A review. Carbohydr Polym 2011; 84(1): 33-9.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.048]
[62]
Tsai FH, Chiang PY, Kitamura Y, Kokawa M, Islam MZ. Producing liquid-core hydrogel beads by reverse spherification: Effect of secondary gelation on phys-ical properties and release characteristics. Food Hydrocoll 2017; 62: 140-8.
[http://dx.doi.org/10.1016/j.foodhyd.2016.07.002]
[63]
Chen H, Yang W, Chen H, et al. Surface modi-fication of mitoxantrone-loaded PLGA nanospheres with chi-tosan. Colloids Surf B Biointerfaces 2009; 73(2): 212-8.
[http://dx.doi.org/10.1016/j.colsurfb.2009.05.020 ] [PMID: 19545985]
[64]
George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chi-tosan-a review. J Control Release 2006; 114(1): 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.017 ] [PMID: 16828914]
[65]
Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 2004; 96(2): 285-300.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.002 ] [PMID: 15081219]
[66]
Hosseinifar T, Sheybani S, Abdouss M, Hassani Najafabadi SA, Shafiee Ardestani M. Pressure responsive nanogel base on Alginate-Cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery. J Biomed Mater Res A 2018; 106(2): 349-59.
[http://dx.doi.org/10.1002/jbm.a.36242 ] [PMID: 28940736]
[67]
Bi Y, Lin Z, Deng S. Bi Y guang, Lin Z ting, Deng S ting. Fabrication and characterization of hydroxyap-atite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering. Mater Sci Eng C 2019; 100: 576-83.
[http://dx.doi.org/10.1016/j.msec.2019.03.040]
[68]
Sorasitthiyanukarn FN, Muangnoi C, Ratnatilaka Na Bhuket P, Rojsitthisak P, Rojsitthisak P. Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Mater Sci Eng C 2018; 93: 178-90.
[http://dx.doi.org/10.1016/j.msec.2018.07.069 ] [PMID: 30274050]
[69]
Yu N, Li G, Gao Y, Jiang H, Tao Q. Thermo-sensitive complex micelles from sodium alginate-graft-poly(N-isopropylacrylamide) for drug release. Int J Biol Macromol 2016; 86: 296-301.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.066 ] [PMID: 26806647]
[70]
Alipour S, Montaseri H, Tafaghodi M. Prepa-ration and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery. Colloids Surf B Biointerfaces 2010; 81(2): 521-9.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.050 ] [PMID: 20732796]
[71]
Huang C-H, Chuang T-J, Ke C-J, Yao C-H. Doxorubicin–Gelatin/Fe3O4–Alginate dual-layer magnetic na-noparticles as targeted anticancer drug delivery vehicles. Polymers (Basel) 2020; 12(8): 1747.
[http://dx.doi.org/10.3390/polym12081747 ] [PMID: 32764339]
[72]
Chiu HI, Lim V. Wheat germ agglutinin-conjugated disulfide cross-linked alginate nanoparticles as a docetaxel carrier for colon cancer therapy. Int J Nanomedicine 2021; 16: 2995-3020.
[http://dx.doi.org/10.2147/IJN.S302238 ] [PMID: 33911862]
[73]
Ragab D, Sabra S, Xia Y, Goodale D, Allan AL, Rohani S. On-Chip preparation of amphiphilic na-nomicelles-in-sodium alginate spheroids as a novel platform against triple-negative human breast cancer cells: Fabrication, study of microfluidics flow hydrodynamics and proof of concept for anticancer and drug delivery applications. J Pharm Sci 2019; 108(11): 3528-39.
[http://dx.doi.org/10.1016/j.xphs.2019.07.015 ] [PMID: 31351864]
[74]
Elbialy NS, Mohamed N. Alginate-coated caseinate nanoparticles for doxorubicin delivery: Preparation, charac-terisation, and in vivo assessment. Int J Biol Macromol 2020; 154: 114-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.027 ] [PMID: 32147345]
[75]
Zhang B, Yan Y, Shen Q, et al. A colon targeted drug delivery system based on alginate modificated graphene oxide for colorectal liver metastasis. Mater Sci Eng C 2017; 79: 185-90.
[http://dx.doi.org/10.1016/j.msec.2017.05.054 ] [PMID: 28629006]
[76]
Shtenberg Y, Goldfeder M, Prinz H, et al. Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery. Int J Biol Macromol 2018; 111: 62-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.137 ] [PMID: 29292143]
[77]
Ferreira NN. , M B Ferreira L, Miranda-Gonçalves V, et al. Alginate hydrogel improves anti-angiogenic bevacizumab activity in cancer therapy. Eur J Pharm Biopharm 2017; 119: 271-82.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.028 ] [PMID: 28669796]
[78]
Wang QS, Gao LN, Zhu XN, et al. Co-delivery of glycyrrhizin and doxorubicin by alginate nanogel particles attenuates the activation of macrophage and enhances the therapeutic efficacy for hepatocellular carcinoma. Theranostics 2019; 9(21): 6239-55.
[http://dx.doi.org/10.7150/thno.35972 ] [PMID: 31534548]
[79]
Baghbani F, Moztarzadeh F. Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxo-rubicin/curcumin co-deliver alginate nanodroplets. Colloids Surf B Biointerfaces 2017; 153: 132-40.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.051 ] [PMID: 28235723]
[80]
Shen Y, Hu M, Qiu L. Sequentially dual-targeting vector with nano-in-micro structure for improved docetaxel oral delivery in vivo. Nanomedicine (Lond) 2016; 11(23): 3071-86.
[http://dx.doi.org/10.2217/nnm-2016-0259 ] [PMID: 27728994]
[81]
Sheng Y, Gao J, Yin ZZ, Kang J, Kong Y. Dual-drug delivery system based on the hydrogels of alginate and sodium carboxymethyl cellulose for colorectal cancer treatment. Carbohydr Polym 2021; 269, 118325.
[http://dx.doi.org/10.1016/j.carbpol.2021.118325 ] [PMID: 34294337]
[82]
Omtvedt LA, Kristiansen KA, Strand WI, Aachmann FL, Strand BL, Zaytseva-Zotova DS. Alginate hydrogels functionalized with β-cyclodextrin as a local paclitaxel delivery system. J Biomed Mater Res A 2021; 109(12): 2625-39.
[http://dx.doi.org/10.1002/jbm.a.37255 ] [PMID: 34190416]
[83]
Pacheco-Quito EM, Ruiz-Caro R, Veiga MD. Carrageenan: Drug delivery systems and other bio-medical applications. Mar Drugs 2020; 18(11): 583.
[http://dx.doi.org/10.3390/md18110583 ] [PMID: 33238488]
[84]
Campo VL, Kawano DF, da Silva DB, et al. Carrageenans: Biological properties, chemical modifications and structural analysis - A review. Carbohydr Polym 2009; 77(2): 167-80.
[http://dx.doi.org/10.1016/j.carbpol.2009.01.020]
[85]
Hosseinzadeh H, Pourjavadi A, Mahdavinia GR, Zohuriaan-Mehr MJ. Modified carrageenan. 1. H-CarragPAM, a novel biopolymer-based superabsorbent hydrogel. J Bioact Compat Polym 2005; 20(5): 475-90.
[http://dx.doi.org/10.1177/0883911505055164]
[86]
Pourjavadi A, Harzandi AM, Hosseinzadeh H. Modified carrageenan 3. Synthesis of a novel polysac-charide-based superabsorbent hydrogel via graft copolymeri-zation of acrylic acid onto kappa-carrageenan in air. Eur Polym J 2004; 40(7): 1363-70.
[http://dx.doi.org/10.1016/j.eurpolymj.2004.02.016]
[87]
Rezanejade Bardajee G, Pourjavadi A, Sheikh N, Sadegh Amini-Fazl M. Grafting of acrylamide onto kappa-carrageenan via γ-irradiation: Optimi-zation and swelling behavior. Radiat Phys Chem 2008; 77(2): 131-7.
[http://dx.doi.org/10.1016/j.radphyschem.2007.04.004]
[88]
Vinothini K, Rajendran NK, Munusamy MA, Alarfaj AA, Rajan M. Development of biotin molecule targeted cancer cell drug delivery of doxorubicin loaded κ-carrageenan grafted graphene oxide nanocarrier. Mater Sci Eng C 2019; 100: 676-87.
[http://dx.doi.org/10.1016/j.msec.2019.03.011 ] [PMID: 30948104]
[89]
Chen X, Han W, Zhao X, Tang W, Wang F. Epirubicin-loaded marine carrageenan oligosaccharide capped gold nanoparticle system for pH-triggered anticancer drug release. Sci Rep 2019; 9(1): 6754.
[http://dx.doi.org/10.1038/s41598-019-43106-9 ] [PMID: 31043709]
[90]
Raman M, Devi V, Doble M. Biocompatible ι-carrageenan-γ-maghemite nanocomposite for biomedical ap-plications - synthesis, characterization and in vitro anticancer efficacy. J Nanobiotechnology 2015; 13(1): 18.
[http://dx.doi.org/10.1186/s12951-015-0079-3 ] [PMID: 25890231]
[91]
Ling G, Zhang T, Zhang P, Sun J, He Z. Nanostructured lipid-carrageenan hybrid carriers (NLCCs) for controlled delivery of mitoxantrone hydrochloride to en-hance anticancer activity bypassing the BCRP-mediated ef-flux. Drug Dev Ind Pharm 2016; 42(8): 1351-9.
[http://dx.doi.org/10.3109/03639045.2015.1135937 ] [PMID: 26754913]
[92]
Karimi MH, Mahdavinia GR, Massoumi B. pH-controlled sunitinib anticancer release from magnetic chi-tosan nanoparticles crosslinked with κ-carrageenan. Mater Sci Eng C 2018; 91: 705-14.
[http://dx.doi.org/10.1016/j.msec.2018.06.019 ] [PMID: 30033305]
[93]
Bosio VE, Cacicedo ML, Calvignac B, et al. Synthesis and characterization of CaCO3-biopolymer hybrid nanoporous microparticles for controlled release of doxoru-bicin. Colloids Surf B Biointerfaces 2014; 123: 158-69.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.011 ] [PMID: 25260219]
[94]
Sun X, Liu C, Omer AM, Yang LY, Ouyang XK. Dual-layered pH-sensitive algi-nate/chitosan/kappa-carrageenan microbeads for colon-targeted release of 5-fluorouracil. Int J Biol Macromol 2019; 132: 487-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.225 ] [PMID: 30940590]
[95]
Nogueira J, Soares SF, Amorim CO, et al. Magnetic driven nanocarriers for pH-responsive doxorubicin release in cancer therapy. Molecules 2020; 25(2): 1-21.
[http://dx.doi.org/10.3390/molecules25020333 ] [PMID: 31947577]
[96]
El-deeb N. Mushroom polysaccharides-alginate/κ - carrageenan microcapsules trigger NK cells- cytotoxic activity against colon cancer: Induction of Kappa B- alpha inflammatory pathway. Res Sq.
[97]
Li B, Lu F, Wei X, Zhao R. Fucoidan: Structure and bioactivity. Molecules 2008; 13(8): 1671-95.
[http://dx.doi.org/10.3390/molecules13081671 ] [PMID: 18794778]
[98]
Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Adv Mater 2015; 27(7): 1143-69.
[http://dx.doi.org/10.1002/adma.201403354 ] [PMID: 25580589]
[99]
Isnansetyo A, Laili Lutfia FN, Nursid M. T T, Susidarti RA. Cytotoxicity of fucoidan from three tropical brown algae against breast and colon cancer cell lines. Pharmacogn J 2016; 9(1): 14-20.
[http://dx.doi.org/10.5530/pj.2017.1.3]
[100]
Anastyuk SD, Shevchenko NM, Usoltseva Menshova RV, et al. Structural features and anti-cancer activity in vitro of fucoidan derivatives from brown alga Saccharina cichorioides. Carbohydr Polym 2017; 157: 1503-10.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.031 ] [PMID: 27987862]
[101]
Sarangi MK, Rao MEB, Parcha V, et al. Ma-rine polysaccharides for drug delivery in tissue engineering.In: Natural Polysaccharides in Drug Delivery and Biomedical Applications. 2019.
[http://dx.doi.org/10.1016/B978-0-12-817055-7.00022-4]
[102]
Suprunchuk VE. Low-molecular-weight fucoidan: Chemical modification, synthesis of its oligomeric fragments and mimetics. Carbohydr Res 2019; 485, 107806.
[http://dx.doi.org/10.1016/j.carres.2019.107806 ] [PMID: 31526929]
[103]
Wang J, Zhang Q. Chemical modification of fucoidan and their application.In: Seaweed Polysaccha-rides. Elsevier 2017; pp. 157-73.
[http://dx.doi.org/10.1016/B978-0-12-809816-5.00009-8]
[104]
Pielesz A. Biniaś W, Paluch J. Mild acid hydroly-sis of fucoidan: Characterization by electrophoresis and FT-Raman spectroscopy. Carbohydr Res 2011; 346(13): 1937-44.
[http://dx.doi.org/10.1016/j.carres.2011.05.016 ] [PMID: 21703598]
[105]
Brandi J, Oliveira ÉC, Monteiro NK, et al. Chemical modification of botryosphaeran: Structural charac-terization and anticoagulant activity of a water-soluble sul-fonated (1→3)(1→6)-β-d-glucan. J Microbiol Biotechnol 2011; 21(10): 1036-42.
[http://dx.doi.org/10.4014/jmb.1105.05020 ] [PMID: 22031027]
[106]
Sezer AD. Akbuğa J. Fucosphere--new microsphere carriers for peptide and protein delivery: Preparation and in vitro characterization. J Microencapsul 2006; 23(5): 513-22.
[http://dx.doi.org/10.1080/02652040600687563 ] [PMID: 16980273]
[107]
Wang P, Kankala RK, Fan J, Long R, Liu Y, Wang S. Poly-L-ornithine/fucoidan-coated calcium carbonate microparticles by layer-by-layer self-assembly technique for cancer theranostics. J Mater Sci Mater Med 2018; 29(5): 68.
[http://dx.doi.org/10.1007/s10856-018-6075-z ] [PMID: 29748879]
[108]
Pawar VK, Singh Y, Sharma K, et al. Im-proved chemotherapy against breast cancer through immuno-therapeutic activity of fucoidan decorated electrostatically as-sembled nanoparticles bearing doxorubicin. Int J Biol Macromol 2019; 122: 1100-14.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.059 ] [PMID: 30219515]
[109]
Kim H, Nguyen VP, Manivasagan P, et al. Doxorubicin-fucoidan-gold nanoparticles composite for du-al-chemo-photothermal treatment on eye tumors. Oncotarget 2017; 8(69): 113719-33.
[http://dx.doi.org/10.18632/oncotarget.23092 ] [PMID: 29371941]
[110]
Oliveira C, Neves NM, Reis RL, Martins A, Silva TH. Gemcitabine delivered by fucoidan/chitosan nanoparticles presents increased toxicity over human breast cancer cells. Nanomedicine (Lond) 2018; 13(16): 2037-50.
[http://dx.doi.org/10.2217/nnm-2018-0004 ] [PMID: 30189774]
[111]
Hwang P-A, Lin X-Z, Kuo K-L, Hsu F-Y. Fabrication and cytotoxicity of fucoidan-cisplatin nanoparti-cles for macrophage and tumor cells. Materials (Basel) 2017; 10(3): 291.
[http://dx.doi.org/10.3390/ma10030291 ] [PMID: 28772650]
[112]
Jang B, Moorthy MS, Manivasagan P, et al. Fucoidan-coated CuS nanoparticles for chemo-and photo-thermal therapy against cancer. Oncotarget 2018; 9(16): 12649-61.
[http://dx.doi.org/10.18632/oncotarget.23898 ] [PMID: 29560098]
[113]
Deepika MS, Thangam R, Sheena TS, et al. A novel rutin-fucoidan complex based phytotherapy for cer-vical cancer through achieving enhanced bioavailability and cancer cell apoptosis. Biomed Pharmacother 2019; 109: 1181-95.
[http://dx.doi.org/10.1016/j.biopha.2018.10.178 ] [PMID: 30551368]
[114]
Passi A, Vigetti D. Hyaluronan as tunable drug deliv-ery system. Adv Drug Deliv Rev 2019; 146: 83-96.
[http://dx.doi.org/10.1016/j.addr.2019.08.006 ] [PMID: 31421148]
[115]
Schanté CE, Zuber G, Herlin C, Vandamme TF. Chemical modifications of hyaluronic acid for the syn-thesis of derivatives for a broad range of biomedical applica-tions. Carbohydr Polym 2011; 85(3): 469-89.
[http://dx.doi.org/10.1016/j.carbpol.2011.03.019]
[116]
Ibrahim S, Kang QK, Ramamurthi A. The impact of hyaluronic acid oligomer content on physical, me-chanical, and biologic properties of divinyl sulfone-crosslinked hyaluronic acid hydrogels. J Biomed Mater Res A 2010; 94(2): 355-70.
[http://dx.doi.org/10.1002/jbm.a.32704 ] [PMID: 20186732]
[117]
Liu L, Du G, Chen J, Wang M, Sun J. En-hanced hyaluronic acid production by a two-stage culture strategy based on the modeling of batch and fed-batch culti-vation of Streptococcus zooepidemicus. Bioresour Technol 2008; 99(17): 8532-6.
[http://dx.doi.org/10.1016/j.biortech.2008.02.035 ] [PMID: 18397825]
[118]
Saravanakumar G, Deepagan VG, Jaya-kumar R, et al. Hyaluronic acid-based conjugates for tumor-targeted drug delivery and imaging. J Biomed Nanotechnol 2013; 9: 1-14.
[PMID: 24724496]
[119]
Huang G, Huang H. Application of hyaluronic acid as carriers in drug delivery. Drug Deliv 2018; 25(1): 766-72.
[http://dx.doi.org/10.1080/10717544.2018.1450910 ] [PMID: 29536778]
[120]
Xu K, Lee F, Gao S, Tan MH, Kurisawa M. Hyaluronidase-incorporated hyaluronic acid-tyramine hy-drogels for the sustained release of trastuzumab. J Control Release 2015; 216: 47-55.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.015 ] [PMID: 26260452]
[121]
Lee Y, Lee H, Kim YB, et al. Bioinspired surface immobilization of hyaluronic acid on monodisperse magnet-ite nanocrystals for targeted cancer imaging. Adv Mater 2008; 20(21): 4154-7.
[http://dx.doi.org/10.1002/adma.200800756 ] [PMID: 19606262]
[122]
El-Dakdouki MH, Zhu DC, El-Boubbou K, et al. Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules 2012; 13(4): 1144-51.
[http://dx.doi.org/10.1021/bm300046h ] [PMID: 22372739]
[123]
Ueda K, Akiba J, Ogasawara S, et al. Growth inhibitory effect of an injectable hyaluronic acid-tyramine hydrogels incorporating human natural interferon-α and so-rafenib on renal cell carcinoma cells. Acta Biomater 2016; 29: 103-11.
[http://dx.doi.org/10.1016/j.actbio.2015.10.024 ] [PMID: 26481041]
[124]
Galer CE, Sano D, Ghosh SC, et al. Hyaluronic acid-paclitaxel conjugate inhibits growth of human squamous cell carcinomas of the head and neck via a hyaluronic acid-mediated mechanism. Oral Oncol 2011; 47(11): 1039-47.
[http://dx.doi.org/10.1016/j.oraloncology.2011.07.029 ] [PMID: 21903450]
[125]
Fan Y, Yao J, Du R, et al. Ternary complexes with core-shell bilayer for double level targeted gene delivery: In vitro and in vivo evaluation. Pharm Res 2013; 30(5): 1215-27.
[http://dx.doi.org/10.1007/s11095-012-0960-9 ] [PMID: 23269504]
[126]
Lee DE, Kim AY, Yoon HY, et al. Am-phiphilic hyaluronic acid-based nanoparticles for tumor-specific optical/MR dual imaging. J Mater Chem 2012; 22(21): 10444-7.
[http://dx.doi.org/10.1039/c2jm31406a]
[127]
Eliaz RE, Szoka FC Jr. Liposome-encapsulated doxorubicin targeted to CD44: A strategy to kill CD44-overexpressing tumor cells. Cancer Res 2001; 61(6): 2592-601.
[PMID: 11289136]
[128]
Salati MA, Khazai J, Tahmuri AM, et al. Agarose-based biomaterials: Opportunities and challenges in cartilage tissue engineering. Polymers (Basel) 2020; 12(5): 1150.
[http://dx.doi.org/10.3390/polym12051150 ] [PMID: 32443422]
[129]
Khodadadi Yazdi M, Taghizadeh A, Taghi-zadeh M, et al. Agarose-based biomaterials for ad-vanced drug delivery. J Control Release 2020; 326: 523-43.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.028 ] [PMID: 32702391]
[130]
Kim C, Jeong D, Kim S, Kim Y, Jung S. Cyclodextrin functionalized agarose gel with low gelling tem-perature for controlled drug delivery systems. Carbohydr Polym 2019; 222, 115011.
[http://dx.doi.org/10.1016/j.carbpol.2019.115011 ] [PMID: 31320040]
[131]
Guastaferro M, Reverchon E, Baldino L. Agarose, alginate and chitosan nanostructured aerogels for pharmaceutical applications: A short review. Front Bioeng Biotechnol 2021; 9, 688477.
[http://dx.doi.org/10.3389/fbioe.2021.688477 ] [PMID: 34055766]
[132]
Gericke M, Heinze T. Homogeneous tosylation of agarose as an approach toward novel functional polysaccha-ride materials. Carbohydr Polym 2015; 127: 236-45.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.025 ] [PMID: 25965480]
[133]
Zucca P, Fernandez-Lafuente R, Sanjust E. Agarose and its derivatives as supports for enzyme immobi-lization. Molecules 2016; 21(11): 1577.
[http://dx.doi.org/10.3390/molecules21111577 ] [PMID: 27869778]
[134]
Wang YJ, Lin PY, Hsieh SL, et al. Utilizing edible agar as a carrier for dual functional doxorubicin-Fe3O4 nanotherapy drugs. Materials 2021; 14(8): 1824.
[http://dx.doi.org/10.3390/ma14081824]
[135]
Hou M, Yang R, Zhang L, et al. Injectable and natural humic acid/agarose hybrid hydrogel for localized light-driven photothermal ablation and chemotherapy of can-cer. ACS Biomater Sci Eng 2018; 4(12): 4266-77.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01147 ] [PMID: 33418824]
[136]
Niu X, Zhang Z, Zhong Y. Hydrogel loaded with self-assembled dextran sulfate-doxorubicin complexes as a delivery system for chemotherapy. Mater Sci Eng C 2017; 77: 888-94.
[http://dx.doi.org/10.1016/j.msec.2017.04.013 ] [PMID: 28532106]
[137]
Sakai S, Hashimoto I, Tanaka S, Salmons B, Kawakami K. Small agarose microcapsules with cell-enclosing hollow core for cell therapy: Transplantation of Ifosfamide-activating cells to the mice with preestablished subcutaneous tumor. Cell Transplant 2009; 18(8): 933-9.
[http://dx.doi.org/10.3727/096368909X471143 ] [PMID: 19500478]
[138]
Dumpala PR, Martis PC, Bemrose MA, et al. .Abstract 2731: Checkpoint inhibitor therapy in combination with the implantation of agarose encapsulated cancer cells inhibits tumor growth in a mouse model of osteosarcoma. 2018; 78(13): 2731..
[http://dx.doi.org/10.1158/1538-7445.AM2018-2731]
[139]
Samadi A, Haseli S, Pourmadadi M, et al. Curcumin-loaded chitosan- agarose-montmorillonite hydrogel nanocomposite for the treatment of breast cancer. 27th National and 5th International Iranian Conference of Biomedical Engineering, ICBME. 148-53..
[http://dx.doi.org/10.1109/ICBME51989.2020.9319425]
[140]
Lahaye M, Robic A. Structure and functional proper-ties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007; 8(6): 1765-74.
[http://dx.doi.org/10.1021/bm061185q ] [PMID: 17458931]
[141]
Alves A, Sousa RA, Reis RL. In vitro cytotoxici-ty assessment of ulvan, a polysaccharide extracted from green algae. Phytother Res 2013; 27(8): 1143-8.
[http://dx.doi.org/10.1002/ptr.4843 ] [PMID: 22972627]
[142]
Robic A, Gaillard C, Sassi JF, Lerat Y, Lahaye M. Ultrastructure of ulvan: A polysaccharide from green seaweeds. Biopolymers 2009; 91(8): 652-64.
[http://dx.doi.org/10.1002/bip.21195 ] [PMID: 19353644]
[143]
Chiellini F, Morelli A. Ulvan: A versatile platform of biomaterials from renewable resources Biomaterials - Physics and Chemistry. 2011; 75-98.
[http://dx.doi.org/10.5772/24901]
[144]
Tziveleka LA, Ioannou E, Roussis V. Ulvan, a bioactive marine sulphated polysaccharide as a key constitu-ent of hybrid biomaterials: A review. Carbohydr Polym 2019; 218: 355-70.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.074 ] [PMID: 31221340]
[145]
Kesavan S, Meena K, Sharmili SA, et al. Ulvan loaded graphene oxide nanoparticle fabricated with chitosan and d-mannose for targeted anticancer drug deliv-ery. J Drug Deliv Sci Technol 2021; 65, 102760.
[http://dx.doi.org/10.1016/j.jddst.2021.102760]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy