Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Mini-Review Article

Orchestration of Obesolytic Activity of Microbiome: Metabiotics at Centre Stage

Author(s): Bhupinder Kapoor, Apoorva Singh, Monica Gulati*, Sachin Kumar Singh, Pooja Rani, Qushmua Alzahrani, Kamal Dua, Harish Dureja and Leander Corrie

Volume 23, Issue 2, 2022

Published on: 18 March, 2022

Page: [90 - 98] Pages: 9

DOI: 10.2174/1389200223666220211095024

Price: $65

Abstract

Metabiotics have emerged as the safer alternatives to probiotics in last decade. Unlike probiotics that are live microbes, metabiotics are the low molecular weight bioactive metabolites produced by the gut microbiota. While offering a similar profile of health benefits as that of probiotics, metabiotics are free from the risks and uncertain responses associated with administration of live bacteria into the body. Metabiotics have demonstrated substantial effectiveness across the ethnicities, age, gender and nutritional habits in a number of metabolic disorders, including obesity. Obesity is attributed to the offsetting of the energy homeostasis of the body due to a number of genetic, endocrinological, and environmental factors leading to obesity. The obesogenic mechanisms are quite complicated as they result from a complex interplay among a number of factors. Owing to a variety of constituents exerting their action through different pathways, metabiotics offer a pragmatic option for treatment as well as prevention of obesity by addressing heterogeneous aspects of its aetiology. In this review, we categorize various components of metabiotics and discuss their cross-talk with host cells at the molecular level. We also discuss the challenges in understanding these interactions and their potential effects on obesity treatment and prevention strategies. Considering the alarming rise in obesity all over the world, metabiotics offer an attractive non-pharmacological approach to spearhead the strategies being designed to combat the challenges posed by the obesity epidemic.

Keywords: Bacteriotherapeutics, obesity, adipose tissue, short chain fatty acids, bacteriocins, metabiotics.

« Previous
Graphical Abstract

[1]
Davis, C.D. The gut microbiome and its role in obesity. Nutr. Today, 2016, 51(4), 167-174.
[http://dx.doi.org/10.1097/NT.0000000000000167] [PMID: 27795585]
[2]
Lee, P.; Yacyshyn, B.R.; Yacyshyn, M.B. Gut microbiota and obesity: An opportunity to alter obesity through faecal microbiota transplant (FMT). Diabetes Obes. Metab., 2019, 21(3), 479-490.
[http://dx.doi.org/10.1111/dom.13561] [PMID: 30328245]
[3]
Nazir, Y.; Hussain, S.A.; Abdul Hamid, A.; Song, Y. Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. BioMed Res. Int., 2018, 2018 ,3428437.
[http://dx.doi.org/10.1155/2018/3428437] [PMID: 30246019]
[4]
Slavin, J. Fiber and prebiotics: mechanisms and health benefits. Nutrients, 2013, 5(4), 1417-1435.
[http://dx.doi.org/10.3390/nu5041417] [PMID: 23609775]
[5]
Kim, K.O.; Gluck, M. Fecal microbiota transplantation: an update on clinical practice. Clin. Endosc., 2019, 52(2), 137-143.
[http://dx.doi.org/10.5946/ce.2019.009] [PMID: 30909689]
[6]
Shenderov, B.A. Metabiotics: novel idea or natural development of probiotic conception. Microb. Ecol. Health Dis., 2013, 24, 24.
[PMID: 23990841]
[7]
Sharma, M.; Shukla, G. Metabiotics: one step ahead of probiotics; an insight into mechanisms involved in anticancerous effect in colorectal cancer. Front. Microbiol., 2016, 7, 1940.
[http://dx.doi.org/10.3389/fmicb.2016.01940] [PMID: 27994577]
[8]
Wegh, C.A.M.; Geerlings, S.Y.; Knol, J.; Roeselers, G.; Belzer, C. Postbiotics and their potential applications in early life nutrition and beyond. Int. J. Mol. Sci., 2019, 20(19), 4673.
[http://dx.doi.org/10.3390/ijms20194673] [PMID: 31547172]
[9]
Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; Salama, J.S.; Vos, T.; Abate, K.H.; Abbafati, C.; Ahmed, M.B. Al- Aly, Z.; Alkerwi, A.; Al-Raddadi, R.; Amare, A.T.; Amberbir, A.; Amegah, A.K.; Amini, E.; Amrock, S.M.; Anjana, R.M.; Arnlov, J.; Asayesh, H.; Banerjee, A.; Barac, A.; Baye, E.; Bennett, D.A.; Beyene, A.S.; Biadgilign, S.; Biryukov, S.; Bjertness, E.; Boneya, D.J.; Campos-Nonato, I.; Carrero, J.J.; Cecilio, P.; Cercy, K.; Ciobanu, L.G.; Cornaby, L.; Damtew, S.A.; Dandona, L.; Dandona, R.; Dharmaratne, S.D.; Duncan, B.B.; Eshrati, B.; Esteghamati, A.; Feigin, V.L.; Fernandes, J.C.; Furst, T.; Gebrehiwot, T.T.; Gold, A.; Gona, P.N.; Goto, A.; Habtewold, T.D.; Hadush, K.T.; Hafezi-Nejad, N.; Hay, S.I.; Horino, M.; Islami, F.; Kamal, R.; Kasaeian, A.; Katikireddi, S.V.; Kengne, A.P.; Kesavachandran, C.N.; Khader, Y.S.; Khang, Y.H.; Khubchandani, J.; Kim, D.; Kim, Y.J.; Kinfu, Y.; Kosen, S.; Ku, T.; Defo, B.K.; Kumar, G.A.; Larson, H.J.; Leinsalu, M.; Liang, X.; Lim, S.S.; Liu, P.; Lopez, A.D.; Lozano, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mazidi, M.; McAlinden, C.; McGarvey, S.T.; Mengistu, D.T.; Mensah, G.A.; Mensink, G.B.M.; Mezgebe, H.B.; Mirrakhimov, E.M.; Mueller, U.O.; Noubiap, J.J.; Obermeyer, C.M.; Ogbo, F.A.; Owolabi, M.O.; Patton, G.C.; Pourmalek, F.; Qorbani, M.; Rafay, A.; Rai, R.K.; Ranabhat, C.L.; Reinig, N.; Safiri, S.; Salomon, J.A.; Sanabria, J.R.; Santos, I.S.; Sartorius, B.; Sawhney, M.; Schmidhuber, J.; Schutte, A.E.; Schmidt, M.I.; Sepanlou, S.G.; Shamsizadeh, M.; Sheikhbahaei, S.; Shin, M.J.; Shiri, R.; Shiue, I.; Roba, H.S.; Silva, D.A.S.; Silverberg, J.I.; Singh, J.A.; Stranges, S.; Swaminathan, S.; Tabares-Seisdedos, R.; Tadese, F.; Tedla, B.A.; Tegegne, B.S.; Terkawi, A.S.; Thakur, J.S.; Tonelli, M.; Topor-Madry, R.; Tyrovolas, S.; Ukwaja, K.N.; Uthman, O.A.; Vaezghasemi, M.; Vasankari, T.; Vlassov, V.V.; Vollset, S.E.; Weiderpass, E.; Werdecker, A.; Wesana, J.; Westerman, R.; Yano, Y.; Yonemoto, N.; Yonga, G.; Zaidi, Z.; Zenebe, Z.M.; Zipkin, B.; Murray, C.J.L. GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med., 2017, 377(1), 13-27.
[http://dx.doi.org/10.1056/NEJMoa1614362] [PMID: 28604169]
[10]
WHO Obesity and overweight.Available from:. https://www.who.int/news-room/fact-sheets/detail/obesity-andoverweight(Accessed on June 14, 2021).
[11]
Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122), 1027-1031.
[http://dx.doi.org/10.1038/nature05414] [PMID: 17183312]
[12]
Backhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA, 2004, 101(44), 15718-15723.
[http://dx.doi.org/10.1073/pnas.0407076101] [PMID: 15505215]
[13]
Ley, R.E.; Backhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA, 2005, 102(31), 11070-11075.
[http://dx.doi.org/10.1073/pnas.0504978102] [PMID: 16033867]
[14]
Dreyer, J.L.; Liebl, A.L. Early colonization of the gut microbiome and its relationship with obesity. Hum. Microbiome J., 2018, 10, 1-5.
[http://dx.doi.org/10.1016/j.humic.2018.08.002]
[15]
Ulker, i Yildiran, H. The effects of bariatric surgery on gut microbiota in patients with obesity: A review of the literature. Biosci. Microbiota Food Health, 2019, 38(1), 3-9.
[http://dx.doi.org/10.12938/bmfh.18-018] [PMID: 30705797]
[16]
Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; de Vos, W.M.; Cani, P.D. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA, 2013, 110(22), 9066-9071.
[http://dx.doi.org/10.1073/pnas.1219451110] [PMID: 23671105]
[17]
Cani, P.D.; de Vos, W.M. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front. Microbiol., 2017, 8, 1765.
[http://dx.doi.org/10.3389/fmicb.2017.01765] [PMID: 29018410]
[18]
Davenport, E.R.; Cusanovich, D.A.; Michelini, K.; Barreiro, L.B.; Ober, C.; Gilad, Y. Genome-wide association studies of the human gut microbiota. PLoS One, 2015, 10(11) ,e0140301.
[http://dx.doi.org/10.1371/journal.pone.0140301] [PMID: 26528553]
[19]
Hjorth, M.F.; Bladel, T.; Bendtsen, L.Q.; Lorenzen, J.K.; Holm, J.B.; Kiilerich, P.; Roager, H.M.; Kristiansen, K.; Larsen, L.H.; Astrup, A. Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int. J. Obes., 2019, 43(1), 149-157.
[http://dx.doi.org/10.1038/s41366-018-0093-2] [PMID: 29777234]
[20]
Precup, G.; Vodnar, D-C. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review. Br. J. Nutr., 2019, 122(2), 131-140.
[http://dx.doi.org/10.1017/S0007114519000680] [PMID: 30924428]
[21]
Li, J.; Fu, R.; Yang, Y.; Horz, H.P.; Guan, Y.; Lu, Y.; Lou, H.; Tian, L.; Zheng, S.; Liu, H.; Shi, M.; Tang, K.; Wang, S.; Xu, S. A metagenomic approach to dissect the genetic composition of enterotypes in Han Chinese and two muslim groups. Syst. Appl. Microbiol., 2018, 41(1), 1-12.
[http://dx.doi.org/10.1016/j.syapm.2017.09.006] [PMID: 29129355]
[22]
Lim, M.Y.; You, H.J.; Yoon, H.S.; Kwon, B.; Lee, J.Y.; Lee, S.; Song, Y.M.; Lee, K.; Sung, J.; Ko, G. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut, 2017, 66(6), 1031-1038.
[http://dx.doi.org/10.1136/gutjnl-2015-311326] [PMID: 27053630]
[23]
Cani, P.D.; Possemiers, S.; Van de Wiele, T.; Guiot, Y.; Everard, A.; Rottier, O.; Geurts, L.; Naslain, D.; Neyrinck, A.; Lambert, D.M.; Muccioli, G.G.; Delzenne, N.M. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2- driven improvement of gut permeability. Gut, 2009, 58(8), 1091-1103.
[http://dx.doi.org/10.1136/gut.2008.165886] [PMID: 19240062]
[24]
Furet, J.P.; Kong, L.C.; Tap, J.; Poitou, C.; Basdevant, A.; Bouillot, J.L.; Mariat, D.; Corthier, G.; Dore, J.; Henegar, C.; Rizkalla, S.; Clement, K. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: Links with metabolic and low-grade inflammation markers. Diabetes, 2010, 59(12), 3049-3057.
[http://dx.doi.org/10.2337/db10-0253] [PMID: 20876719]
[25]
Balamurugan, R.; George, G.; Kabeerdoss, J.; Hepsiba, J.; Chandragunasekaran, A.M.; Ramakrishna, B.S. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br. J. Nutr., 2010, 103(3), 335-338.
[http://dx.doi.org/10.1017/S0007114509992182] [PMID: 19849869]
[26]
Sitkin, S.I.; Tkachenko, E.I.; Vakhitov, T.Y. Metabolic dysbiosis of the gut microbiota and its biomarkers. Eksp. Klin. Gastroenterol., 2016, 12(12), 6-29.
[PMID: 29889418]
[27]
Kasai, C.; Sugimoto, K.; Moritani, I.; Tanaka, J.; Oya, Y.; Inoue, H.; Tameda, M.; Shiraki, K.; Ito, M.; Takei, Y.; Takase, K. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol., 2015, 15, 100.
[http://dx.doi.org/10.1186/s12876-015-0330-2] [PMID: 26261039]
[28]
Muller, M.; Hernandez, M.A.G.; Goossens, G.H.; Reijnders, D.; Holst, J.J.; Jocken, J.W.E.; van Eijk, H.; Canfora, E.E.; Blaak, E.E. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Sci. Rep., 2019, 9(1), 12515.
[http://dx.doi.org/10.1038/s41598-019-48775-0] [PMID: 31467327]
[29]
Li, X.; Shimizu, Y.; Kimura, I. Gut microbial metabolite short-chain fatty acids and obesity. Biosci. Microbiota Food Health, 2017, 36(4), 135-140.
[http://dx.doi.org/10.12938/bmfh.17-010] [PMID: 29038768]
[30]
Jiao, N.; Baker, S.S.; Nugent, C.A.; Tsompana, M.; Guan, L.; Wang, Y.; Buck, M.J.; Genco, R.J.; Baker, R.D.; Zhu, R.; Zhu, L. High-fat diet increases Clostridium clusters XIVa in obese rodents.FASEB J, 2017, 31(S1)965.9.
[31]
Peters, B.A.; Shapiro, J.A.; Church, T.R.; Miller, G.; Trinh-Shevrin, C.; Yuen, E.; Friedlander, C.; Hayes, R.B.; Ahn, J. A taxonomic signature of obesity in a large study of American adults. Sci. Rep., 2018, 8(1), 9749.
[http://dx.doi.org/10.1038/s41598-018-28126-1] [PMID: 29950689]
[32]
den Besten, G.; Bleeker, A.; Gerding, A.; van Eunen, K.; Havinga, R.; van Dijk, T.H.; Oosterveer, M.H.; Jonker, J.W.; Groen, A.K.; Reijngoud, D.J.; Bakker, B.M. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes, 2015, 64(7), 2398-2408.
[http://dx.doi.org/10.2337/db14-1213] [PMID: 25695945]
[33]
Lin, H.V.; Frassetto, A.; Kowalik, E.J., Jr; Nawrocki, A.R.; Lu, M.M.; Kosinski, J.R.; Hubert, J.A.; Szeto, D.; Yao, X.; Forrest, G.; Marsh, D.J. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One, 2012, 7(4) ,e35240.
[http://dx.doi.org/10.1371/journal.pone.0035240] [PMID: 22506074]
[34]
Kasubuchi, M.; Hasegawa, S.; Hiramatsu, T.; Ichimura, A.; Kimura, I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients, 2015, 7(4), 2839-2849.
[http://dx.doi.org/10.3390/nu7042839] [PMID: 25875123]
[35]
Le Poul, E.; Loison, C.; Struyf, S.; Springael, J-Y.; Lannoy, V.; Decobecq, M-E.; Brezillon, S.; Dupriez, V.; Vassart, G.; Van Damme, J.; Parmentier, M.; Detheux, M. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem., 2003, 278(28), 25481-25489.
[http://dx.doi.org/10.1074/jbc.M301403200] [PMID: 12711604]
[36]
Ivan, J.; Major, E.; Sipos, A.; Kovacs, K.; Horvath, D.; Tamas, I.; Bay, P.; Dombradi, V.; Lontay, B. The short-chain fatty acid propionate inhibits adipogenic differentiation of human chorion-derived mesenchymal stem cells through the free fatty acid receptor 2. Stem Cells Dev., 2017, 26(23), 1724-1733.
[http://dx.doi.org/10.1089/scd.2017.0035] [PMID: 28992793]
[37]
Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu, M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir, M.; Zhang, S.; Carling, D.; Swann, J.R.; Gibson, G.; Viardot, A.; Morrison, D.; Louise Thomas, E.; Bell, J.D. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun., 2014, 5(1), 3611.
[http://dx.doi.org/10.1038/ncomms4611] [PMID: 24781306]
[38]
Torres-Fuentes, C.; Golubeva, A.V.; Zhdanov, A.V.; Wallace, S.; Arboleya, S.; Papkovsky, D.B.; El Aidy, S.; Ross, P.; Roy, B.L.; Stanton, C.; Dinan, T.G.; Cryan, J.F.; Schellekens, H. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB J., 2019, 33(12), 13546-13559.
[http://dx.doi.org/10.1096/fj.201901433R] [PMID: 31545915]
[39]
Gabriel, F.C.; Fantuzzi, G. The association of short-chain fatty acids and leptin metabolism: A systematic review. Nutr. Res., 2019, 72, 18-35.
[http://dx.doi.org/10.1016/j.nutres.2019.08.006] [PMID: 31669116]
[40]
Herder, C.; Schneitler, S.; Rathmann, W.; Haastert, B.; Schneitler, H.; Winkler, H.; Bredahl, R.; Hahnloser, E.; Martin, S. Low-grade inflammation, obesity, and insulin resistance in adolescents. J. Clin. Endocrinol. Metab., 2007, 92(12), 4569-4574.
[http://dx.doi.org/10.1210/jc.2007-0955] [PMID: 17911172]
[41]
Dijk, W.; Kersten, S. Regulation of lipoprotein lipase by Angptl4. Trends Endocrinol. Metab., 2014, 25(3), 146-155.
[http://dx.doi.org/10.1016/j.tem.2013.12.005] [PMID: 24397894]
[42]
Bassaganya-Riera, J.; Reynolds, K.; Martino-Catt, S.; Cui, Y.; Hennighausen, L.; Gonzalez, F.; Rohrer, J.; Benninghoff, A.U.; Hontecillas, R. Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology, 2004, 127(3), 777-791.
[http://dx.doi.org/10.1053/j.gastro.2004.06.049] [PMID: 15362034]
[43]
Wang, Y.W.; Jones, P.J.H. Conjugated linoleic acid and obesity control: Efficacy and mechanisms. Int. J. Obes., 2004, 28(8), 941-955.
[http://dx.doi.org/10.1038/sj.ijo.0802641] [PMID: 15254484]
[44]
Zhuang, P.; Lu, Y.; Shou, Q.; Mao, L.; He, L.; Wang, J.; Chen, J.; Zhang, Y.; Jiao, J. Differential anti-adipogenic effects of eicosapentaenoic and docosahexaenoic acids in obesity. Mol. Nutr. Food Res., 2019, 63(14) ,e1801135.
[http://dx.doi.org/10.1002/mnfr.201801135] [PMID: 31140724]
[45]
Shabbir, M.A.; Khan, M.R.; Saeed, M.; Pasha, I.; Khalil, A.A.; Siraj, N. Punicic acid: A striking health substance to combat metabolic syndromes in humans. Lipids Health Dis., 2017, 16(1), 99.
[http://dx.doi.org/10.1186/s12944-017-0489-3] [PMID: 28558700]
[46]
Kennedy, A.; Martinez, K.; Schmidt, S.; Mandrup, S.; LaPoint, K.; McIntosh, M. Antiobesity mechanisms of action of conjugated linoleic acid. J. Nutr. Biochem., 2010, 21(3), 171-179.
[http://dx.doi.org/10.1016/j.jnutbio.2009.08.003] [PMID: 19954947]
[47]
Gibert-Ramos, A.; Baselga-Escudero, L.; Crescenti, A. Modulation of the mitochondrial function with polyphenols and other natural bioactive compounds to treat obesity.In: Clinical Bioenergetics; Ostojic, S., Ed.; Academic Press, 2021, pp. 565-609.
[http://dx.doi.org/10.1016/B978-0-12-819621-2.00026-7]
[48]
Stokstad, E.L.R.; Jukes, T.H.; Pierce, J.; Page, A.C.; Franklin, A.L. The multiple nature of the animal protein factor. J. Biol. Chem., 1949, 180(2), 647-654.
[http://dx.doi.org/10.1016/S0021-9258(18)56683-7] [PMID: 18135798]
[49]
Tsai, Y-C.; Wang, H-T.; Hsu, J-T.; Li, Y-H.; Chen, C-Y. Yeast with bacteriocin from ruminal bacteria enhances glucose utilization, reduces ectopic fat accumulation, and alters cecal microbiota in dietaryinduced obese mice. Food Funct., 2015, 6(8), 2727-2735.
[http://dx.doi.org/10.1039/C5FO00367A] [PMID: 26147740]
[50]
Umu, O.C.O.; Bauerl, C.; Oostindjer, M.; Pope, P.B.; Hernandez, P.E.; Perez-Martinez, G.; Diep, D.B. The potential of class II bacteriocins to modify gut microbiota to improve host health. PLoS One, 2016, 11(10) ,e0164036.
[http://dx.doi.org/10.1371/journal.pone.0164036] [PMID: 27695121]
[51]
Heeney, D.D.; Zhai, Z.; Bendiks, Z.; Barouei, J.; Martinic, A.; Slupsky, C.; Marco, M.L. Lactobacillus plantarum bacteriocin is associated with intestinal and systemic improvements in diet-induced obese mice and maintains epithelial barrier integrity in vitro. Gut Microbes, 2019, 10(3), 382-397.
[http://dx.doi.org/10.1080/19490976.2018.1534513] [PMID: 30409105]
[52]
Bai, L.; Kumar, S.; Verma, S.; Seshadri, S. Bacteriocin PJ4 from probiotic lactobacillus reduced adipokine and inflammasome in high fat diet induced obesity. 3 Biotech., 2020, 10(8), 355.
[http://dx.doi.org/10.1007/s13205-020-02317-y] [PMID: 32766096]
[53]
Brusaferro, A.; Cozzali, R.; Orabona, C.; Biscarini, A.; Farinelli, E.; Cavalli, E.; Grohmann, U.; Principi, N.; Esposito, S. Is it time to use probiotics to prevent or treat obesity? Nutrients, 2018, 10(11), 1613.
[http://dx.doi.org/10.3390/nu10111613] [PMID: 30388851]
[54]
Sanalibaba, P.; Cakmak, G.A. Exopolysaccharides production by lactic acid bacteria. Appl. Microbiol. Open Access, 2016, 2 ,1000115.
[http://dx.doi.org/10.4172/2471-9315.1000115]
[55]
Salazar, N.; Neyrinck, A.M.; Bindels, L.B.; Druart, C.; Ruas-Madiedo, P.; Cani, P.D.; de Los Reyes-Gavilan, C.G.; Delzenne, N.M. Functional effects of EPS-producing Bifidobacterium administration on energy metabolic alterations of diet-induced obese mice. Front. Microbiol., 2019, 10, 1809.
[http://dx.doi.org/10.3389/fmicb.2019.01809] [PMID: 31440225]
[56]
Sabater, C.; Molinero-Garcia, N.; Castro-Bravo, N.; Diez-Echave, P.; Hidalgo-Garcia, L.; Delgado, S.; Sanchez, B.; Galvez, J.; Margolles, A.; Ruas-Madiedo, P. Exopolysaccharide producing Bifidobacterium animalis subsp. lactis strains modify the intestinal microbiota and the plasmatic cytokine levels of BALB/c mice according to the type of polymer synthesized. Front. Microbiol., 2020, 11 ,601233.
[http://dx.doi.org/10.3389/fmicb.2020.601233] [PMID: 33324384]
[57]
Maeda, H.; Zhu, X.; Omura, K.; Suzuki, S.; Kitamura, S. Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors, 2004, 22(1-4), 197-200.
[http://dx.doi.org/10.1002/biof.5520220141] [PMID: 15630283]
[58]
Lim, J.; Kale, M.; Kim, D.H.; Kim, H.S.; Chon, J.W.; Seo, K.H.; Lee, H.G.; Yokoyama, W.; Kim, H. Antiobesity effect of exopolysaccharides isolated from kefir grains. J. Agric. Food Chem., 2017, 65(46), 10011-10019.
[http://dx.doi.org/10.1021/acs.jafc.7b03764] [PMID: 29084388]
[59]
Bengoa, A.A.; Dardis, C.; Gagliarini, N.; Garrote, G.L.; Abraham, A.G. Exopolysaccharides from Lactobacillus paracasei isolated from kefir as potential bioactive compounds for microbiota modulation. Front. Microbiol., 2020, 11 ,583254.
[http://dx.doi.org/10.3389/fmicb.2020.583254] [PMID: 33178165]
[60]
Uchida, M.; Ishii, I.; Inoue, C.; Akisato, Y.; Watanabe, K.; Hosoyama, S.; Toida, T.; Ariyoshi, N.; Kitada, M. Kefiran reduces atherosclerosis in rabbits fed a high cholesterol diet. J. Atheroscler. Thromb., 2010, 17(9), 980-988.
[http://dx.doi.org/10.5551/jat.4812] [PMID: 20543518]
[61]
London, L.E.E.; Kumar, A.H.S.; Wall, R.; Casey, P.G.; O’Sullivan, O.; Shanahan, F.; Hill, C.; Cotter, P.D.; Fitzgerald, G.F.; Ross, R.P.; Caplice, N.M.; Stanton, C. Exopolysaccharide-producing probiotic Lactobacilli reduce serum cholesterol and modify enteric microbiota in ApoE-deficient mice. J. Nutr., 2014, 144(12), 1956-1962.
[http://dx.doi.org/10.3945/jn.114.191627] [PMID: 25320181]
[62]
Lee, J.; Park, S.; Oh, N.; Park, J.; Kwon, M.; Seo, J.; Roh, S. Oral intake of Lactobacillus plantarum L-14 extract alleviates TLR2- and AMPK-mediated obesity-associated disorders in high-fat-diet-induced obese C57BL/6J mice. Cell Prolif., 2021, 54(6) ,e13039.
[http://dx.doi.org/10.1111/cpr.13039] [PMID: 33830560]
[63]
Lim, Y.H.; Foo, H.L.; Loh, T.C.; Mohamad, R.; Abdullah, N. Comparative studies of versatile extracellular proteolytic activities of lactic acid bacteria and their potential for extracellular amino acid productions as feed supplements. J. Anim. Sci. Biotechnol., 2019, 10(1), 15.
[http://dx.doi.org/10.1186/s40104-019-0323-z] [PMID: 30886709]
[64]
Priyadarshani, W.M.D.; Rakshit, S.K. Screening selected strains of probiotic lactic acid bacteria for their ability to produce biogenic amines (histamine and tyramine). Int. J. Food Sci. Technol., 2011, 46(10), 2062-2069.
[http://dx.doi.org/10.1111/j.1365-2621.2011.02717.x]
[65]
Thomas, C.M.; Hong, T.; van Pijkeren, J.P.; Hemarajata, P.; Trinh, D.V.; Hu, W.; Britton, R.A.; Kalkum, M.; Versalovic, J. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One, 2012, 7(2) ,e31951.
[http://dx.doi.org/10.1371/journal.pone.0031951] [PMID: 22384111]
[66]
Jorgensen, E.A.; Knigge, U.; Warberg, J.; Kjaer, A. Histamine and the regulation of body weight. Neuroendocrinology, 2007, 86(3), 210-214.
[http://dx.doi.org/10.1159/000108341] [PMID: 17848791]
[67]
Matteuzzi, D.; Crociani, F.; Emaldi, O. Amino acids produced by bifidobacteria and some Clostridia. Ann. Microbiol. (Paris), 1978, 129B(2), 175-181.
[PMID: 718022]
[68]
Liu, Q.; Zhang, J.; Wei, X.X.; Ouyang, S.P.; Wu, Q.; Chen, G.Q. Microbial production of L -glutamate and L -glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb. Appl. Microbiol. Biotechnol., 2008, 77(6), 1297-1304.
[http://dx.doi.org/10.1007/s00253-007-1254-8] [PMID: 18040683]
[69]
Abboud, K.Y.; Reis, S.K.; Martelli, M.E.; Zordao, O.P.; Tannihao, F.; de Souza, A.Z.Z.; Assalin, H.B.; Guadagnini, D.; Rocha, G.Z.; Saad, M.J.A.; Prada, P.O.; Prada, P.O. Oral glutamine supplementation reduces obesity, pro-inflammatory markers, and improves insulin sensitivity in DIO Wistar rats and reduces waist circumference in overweight and obese humans. Nutrients, 2019, 11(3), 536.
[http://dx.doi.org/10.3390/nu11030536] [PMID: 30832230]
[70]
Xu, Y.; Wu, Z.; Sun, H.; Zhu, Y.; Kim, E.R.; Lowell, B.B.; Arenkiel, B.R.; Xu, Y.; Tong, Q. Glutamate mediates the function of melanocortin receptor 4 on Sim1 neurons in body weight regulation. Cell Metab., 2013, 18(6), 860-870.
[http://dx.doi.org/10.1016/j.cmet.2013.11.003] [PMID: 24315371]
[71]
Kepert, I.; Fonseca, J.; Muller, C.; Milger, K.; Hochwind, K.; Kostric, M.; Fedoseeva, M.; Ohnmacht, C.; Dehmel, S.; Nathan, P.; Bartel, S.; Eickelberg, O.; Schloter, M.; Hartmann, A.; Schmitt-Kopplin, P.; Krauss-Etschmann, S. D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J. Allergy Clin. Immunol., 2017, 139(5), 1525-1535.
[http://dx.doi.org/10.1016/j.jaci.2016.09.003] [PMID: 27670239]
[72]
Birdsall, T.C. 5-Hydroxytryptophan: A clinically-effective serotonin precursor. Altern. Med. Rev., 1998, 3(4), 271-280.
[PMID: 9727088]
[73]
Breum, L.; Rasmussen, M.H.; Hilsted, J.; Fernstrom, J.D. Twentyfour- hour plasma tryptophan concentrations and ratios are below normal in obese subjects and are not normalized by substantial weight reduction. Am. J. Clin. Nutr., 2003, 77(5), 1112-1118.
[http://dx.doi.org/10.1093/ajcn/77.5.1112] [PMID: 12716660]
[74]
Groer, M.; Fuchs, D.; Duffy, A.; Louis-Jacques, A.; D’Agata, A.; Postolache, T.T. Associations among obesity, inflammation, and tryptophan catabolism in pregnancy. Biol. Res. Nurs., 2018, 20(3), 284-291.
[http://dx.doi.org/10.1177/1099800417738363] [PMID: 29141444]
[75]
Pietilainen, K.H.; Sysi-Aho, M.; Rissanen, A.; Seppanen-Laakso, T.; Yki-Jarvinen, H.; Kaprio, J.; Oresic, M. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects-- a monozygotic twin study. PLoS One, 2007, 2(2) ,e218.
[http://dx.doi.org/10.1371/journal.pone.0000218] [PMID: 17299598]
[76]
Lankinen, M.; Schwab, U.; Kolehmainen, M.; Paananen, J.; Nygren, H.; Seppanen-Laakso, T.; Poutanen, K.; Hyotylainen, T.; Riserus, U.; Savolainen, M.J.; Hukkanen, J.; Brader, L.; Marklund, M.; Rosqvist, F.; Hermansen, K.; Cloetens, L.; Onning, G.; Thorsdottir, I.; Gunnarsdottir, I.; Akesson, B.; Dragsted, L.O.; Uusitupa, M. Orešič M. A healthy nordic diet alters the plasma lipidomic profile in adults with features of metabolic syndrome in a multicenter randomized dietary intervention. J. Nutr., 2015, 146(4), 662-672.
[http://dx.doi.org/10.3945/jn.115.220459] [PMID: 26962194]
[77]
Floegel, A.; Wientzek, A.; Bachlechner, U.; Jacobs, S.; Drogan, D.; Prehn, C.; Adamski, J.; Krumsiek, J.; Schulze, M.B.; Pischon, T.; Boeing, H. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: findings from a populationbased study. Int. J. Obes., 2014, 38(11), 1388-1396.
[http://dx.doi.org/10.1038/ijo.2014.39] [PMID: 24608922]
[78]
Felder, T.K.; Ring-Dimitriou, S.; Auer, S.; Soyal, S.M.; Kedenko, L.; Rinnerthaler, M.; Cadamuro, J.; Haschke-Becher, E.; Aigner, E.; Paulweber, B.; Patsch, W. Specific circulating phospholipids, acylcarnitines, amino acids and biogenic amines are aerobic exercise markers. J. Sci. Med. Sport, 2017, 20(7), 700-705.
[http://dx.doi.org/10.1016/j.jsams.2016.11.011] [PMID: 28185807]
[79]
Paul, S.; Lancaster, G.I.; Meikle, P.J. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog. Lipid Res., 2019, 74, 186-195.
[http://dx.doi.org/10.1016/j.plipres.2019.04.003] [PMID: 30974122]
[80]
Effects of plasmalogen on obese subjects. Available from: https://clinicaltrials.gov/ct2/show/NCT03295188 (Accessed on Nov. 8, 2021).
[81]
Oberg, T.S.; Ward, R.E.; Steele, J.L.; Broadbent, J.R. Identification of plasmalogens in the cytoplasmic membrane of Bifidobacterium animalis subsp. lactis. Appl. Environ. Microbiol., 2012, 78(3), 880-884.
[http://dx.doi.org/10.1128/AEM.06968-11] [PMID: 22138986]
[82]
Takahashi, M.; Taguchi, H.; Yamaguchi, H.; Osaki, T.; Komatsu, A.; Kamiya, S. The effect of probiotic treatment with Clostridium butyricum on enterohemorrhagic Escherichia coli O157:H7 infection in mice. FEMS Immunol. Med. Microbiol., 2004, 41(3), 219-226.
[http://dx.doi.org/10.1016/j.femsim.2004.03.010] [PMID: 15196571]
[83]
Pompei, A.; Cordisco, L.; Amaretti, A.; Zanoni, S.; Matteuzzi, D.; Rossi, M. Folate production by bifidobacteria as a potential probiotic property. Appl. Environ. Microbiol., 2007, 73(1), 179-185.
[http://dx.doi.org/10.1128/AEM.01763-06] [PMID: 17071792]
[84]
Daviddi, G.; Ricci, M.A.; De Vuono, S.; Gentili, A.; Boni, M.; Lupattelli, G. Folate and vitamin B12 in morbid obesity: The influence of folate on anti-atherogenic lipid profile. Int. J. Vitam. Nutr. Res., 2020, 90(3-4), 295-301.
[http://dx.doi.org/10.1024/0300-9831/a000538] [PMID: 30829139]
[85]
Finer, S.; Saravanan, P.; Hitman, G.; Yajnik, C. The role of the onecarbon cycle in the developmental origins of Type 2 diabetes and obesity. Diabet. Med., 2014, 31(3), 263-272.
[http://dx.doi.org/10.1111/dme.12390] [PMID: 24344881]
[86]
LeBlanc, J.G.; Laiño, J.E.; del Valle, M.J.; Vannini, V.; van Sinderen, D.; Taranto, M.P.; de Valdez, G.F.; de Giori, G.S.; Sesma, F. B-group vitamin production by lactic acid bacteria--current knowledge and potential applications. J. Appl. Microbiol., 2011, 111(6), 1297-1309.
[http://dx.doi.org/10.1111/j.1365-2672.2011.05157.x] [PMID: 21933312]
[87]
Hamzehlou, P.; Sepahy, A.A.; Mehrabian, S.; Hosseini, F. Production of vitamins B3, B6 and B9 by Lactobacillus isolated from traditional yogurt samples from 3 cities in Iran, winter 2016. Appl. Food Biotechnol, 2018, 5(2), 107-120.
[http://dx.doi.org/10.22037/afb.v5i2.18905]
[88]
Fabian, E.; Majchrzak, D.; Dieminger, B.; Meyer, E.; Elmadfa, I. Influence of probiotic and conventional yoghurt on the status of vitamins B1, B2 and B6 in young healthy women. Ann. Nutr. Metab., 2008, 52(1), 29-36.
[http://dx.doi.org/10.1159/000114408] [PMID: 18230968]
[89]
Strozzi, G.P.; Mogna, L. Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J. Clin. Gastroenterol., 2008, 42(Suppl. 3 Pt 2), S179-S184.
[http://dx.doi.org/10.1097/MCG.0b013e31818087d8] [PMID: 18685499]
[90]
Pereira-Santos, M.; Costa, P.R.; Assis, A.M.; Santos, C.A.; Santos, D.B. Obesity and vitamin D deficiency: a systematic review and metaanalysis. Obes. Rev., 2015, 16(4), 341-349.
[http://dx.doi.org/10.1111/obr.12239] [PMID: 25688659]
[91]
Zemel, M.B.; Shi, H.; Greer, B.; Dirienzo, D.; Zemel, P.C. Regulation of adiposity by dietary calcium. FASEB J., 2000, 14(9), 1132-1138.
[http://dx.doi.org/10.1096/fasebj.14.9.1132] [PMID: 10834935]
[92]
Gokhale, S.; Bhaduri, A. Provitamin D3 modulation through prebiotics supplementation: simulation based assessment. Sci. Rep., 2019, 9(1), 19267.
[http://dx.doi.org/10.1038/s41598-019-55699-2] [PMID: 31848400]
[93]
Jones, M.L.; Martoni, C.J.; Prakash, S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25- hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J. Clin. Endocrinol. Metab., 2013, 98(7), 2944-2951.
[http://dx.doi.org/10.1210/jc.2012-4262] [PMID: 23609838]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy