Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Recent Progress on Mass Spectrum Based Approaches for Absorption, Distribution, Metabolism, and Excretion Characterization of Traditional Chinese Medicine

Author(s): Xue Bai, Chunyan Zhu, Jiayun Chen, Xiaojuan Jiang, Ying Jin, Rong Shen, Mingshe Zhu and Caisheng Wu*

Volume 23, Issue 2, 2022

Published on: 21 April, 2022

Page: [99 - 112] Pages: 14

DOI: 10.2174/1389200223666220211093548

Price: $65

Abstract

Background: The absorption, distribution, metabolism, and excretion (ADME) of traditional Chinese medicine (TCM) components are closely related to their therapeutic efficacy, toxic effects, and drug interactions. Based on the study of the whole process of ADME in TCM, it is important to screen out the key pharmacokinetic index components (pharmacokinetics PK/toxicokinetics TK makers), which can be beneficial for their clinical application or drug development. Although the detection of traditional small molecular drug’s in vivo ADME process can be achieved by radioisotope methods, this approach might not be useful for the case of TCM. In detail, it is very difficult to label and trace each component in complex Chinese medicine, while it is also difficult to accurately follow the position of tracer in the whole in vivo process. In short, it is a tough task to obtain the ADME information of Chinese medicine, especially in the case of a clinical study.

Methods: We searched several scientific databases, including Pubmed, ACS, ScienceDirect, Springer, Wiley, etc., by using “Chinese medicine” and “in vivo metabolism” as keywords. By summarizing the current reports as well as our recent progress in this field, this review aims to summarize current research methods and strategies for ADME study of TCM based on high-resolution mass spectrometry-based data acquisition and data mining technology which is an important approach but has not been systematically reviewed.

Results: With the development of various hybrid tandem high-resolution mass spectrometry (Q-TOF, LTQ FT, Q-Exactive), liquid chromatography-high resolution mass spectrometry (LC-HRMS) has become the mainstream method in studying ADME process of TCM. This review aims to comprehensively summarize current research technologies and strategies based on high-resolution mass spectrometry, with emphasis on the following three aspects: (1) comprehensive and automatic acquisition technologies for the analysis of in vivo TCM components (i.e., BEDDA); (2) quick and comprehensive identification techniques for analyzing in vivo chemical substances and metabolites of TCM (i.e., PATBS or metabolomic analysis); (3) efficient correlation determination between in vivo or in vitro compounds and their metabolic transformation (i.e., MTSF).

Conclusion: To the best of our knowledge, this is a pioneering review for systematically summarizing the analysis methods and strategies of ADME in TCM, which can help understand the whole ADME process, therapeutic molecular basis, or toxic substances of TCM. Furthermore, this review can also provide a feasible strategy to screen out PK/TK markers of TCM, while this information can be helpful to elucidate the pharmacodynamics or toxicity mechanisms of Chinese medicines and be useful in their future drug development. At the same time, we also hope that this review can provide ideas for further improvement of TCM analysis methods and help rational clinical use of TCM and the development of new drugs.

Keywords: Traditional Chinese medicine, ADME, PK makers, LC-HRMS, analytical methods of ADME, active components of TCM.

Graphical Abstract

[1]
Tang, X.M.; Guo, J.L.; Chen, L.; Ho, P.C. Application for proteomics analysis technology in studying animal-derived traditional Chinese medicine: A review. J. Pharm. Biomed. Anal., 2020, 191 ,113609.
[http://dx.doi.org/10.1016/j.jpba.2020.113609] [PMID: 32966940 ]
[2]
Wang, Y.; Chen, Y.J.; Xiang, C.; Jiang, G.W.; Xu, Y.D.; Yin, L.M.; Zhou, D.D.; Liu, Y.Y.; Yang, Y.Q. Discovery of potential asthma targets based on the clinical efficacy of Traditional Chinese Medicine formulas. J. Ethnopharmacol., 2020, 252 ,112635.
[http://dx.doi.org/10.1016/j.jep.2020.112635] [PMID: 32004629 ]
[3]
Wang, T.; Lin, S.; Li, H.; Liu, R.; Liu, Z.; Xu, H.; Li, Q.; Bi, K. A stepwise integrated multi-system to screen quality markers of Chinese classic prescription Qingzao Jiufei decoction on the treatment of acute lung injury by combining ‘network pharmacology-metabolomics- PK/PD modeling’. Phytomedicine, 2020, 78 ,153313.
[http://dx.doi.org/10.1016/j.phymed.2020.153313] [PMID: 32866904 ]
[4]
Hu, X.; Ding, L.; Cao, S.; Cheng, L.; Wang, K.; Guang, C.; Li, W.; Koike, K.; Qiu, F. Pharmacokinetics, tissue distribution and excretion of paeonol and its major metabolites in rats provide a further insight into paeonol effectiveness. Front. Pharmacol., 2020, 11, 190.
[http://dx.doi.org/10.3389/fphar.2020.00190] [PMID: 32180731 ]
[5]
Zhao, C.; Wang, M.; Jia, Z.; Li, E.; Zhao, X.; Li, F.; Lin, R. Similar hepatotoxicity response induced by Rhizoma Paridis in zebrafish larvae, cell and rat. J. Ethnopharmacol., 2020, 250 ,112440.
[http://dx.doi.org/10.1016/j.jep.2019.112440] [PMID: 31786445 ]
[6]
Wang, Y.; Wang, H.; Zhang, L.; Zhang, Y.; Sheng, Y.; Deng, G.; Li, S.; Cao, N.; Guan, H.; Cheng, X.; Wang, C. Subchronic toxicity and concomitant toxicokinetics of long-term oral administration of total alkaloid extracts from seeds of Peganum harmala Linn: A 28-day study in rats. J. Ethnopharmacol., 2019, 238 ,111866.
[http://dx.doi.org/10.1016/j.jep.2019.111866] [PMID: 30970283 ]
[7]
Lu, Y.Y.; Du, Z.Y.; Li, Y.; Wang, J.L.; Zhao, M.B.; Jiang, Y.; Guo, X.Y.; Tu, P.F. Effects of Baoyuan decoction, a traditional Chinese medicine formula, on the activities and mRNA expression of seven CYP isozymes in rats. J. Ethnopharmacol., 2018, 225, 327-335.
[http://dx.doi.org/10.1016/j.jep.2018.07.023] [PMID: 30048731 ]
[8]
Shen, Z.; Wang, Y.; Guo, W.; Yao, Y.; Wang, X. Potential herb-drug interaction of shexiang baoxin pill in vitro based on drug metabolism/transporter. Am. J. Transl. Res., 2016, 8(12), 5545-5556.
[PMID: 28078025 ]
[9]
Li, H.; Tan, Q.; Zhang, Y.; Zhang, J.; Zhao, C.; Lu, S.; Qiao, J.; Han, M. Pharmacokinetics and absolute oral bioavailability of stemazole by UPLC-MS/MS and its bio-distribution through tritium labeling. Drug Test. Anal., 2020, 12(1), 101-108.
[http://dx.doi.org/10.1002/dta.2694] [PMID: 31486294 ]
[10]
Wilkinson, D.J. Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism. Mass Spectrom. Rev., 2018, 37(1), 57-80.
[http://dx.doi.org/10.1002/mas.21507] [PMID: 27182900 ]
[11]
Zhu, C.; Cai, T.; Jin, Y.; Chen, J.; Liu, G.; Xu, N.; Shen, R.; Chen, Y.; Han, L.; Wang, S.; Wu, C.; Zhu, M. Artificial intelligence and network pharmacology based investigation of pharmacological mechanism and substance basis of Xiaokewan in treating diabetes. Pharmacol. Res., 2020, 159 ,104935.
[http://dx.doi.org/10.1016/j.phrs.2020.104935] [PMID: 32464328 ]
[12]
Chen, X.; Wu, Y.; Chen, C.; Gu, Y.; Zhu, C.; Wang, S.; Chen, J.; Zhang, L.; Lv, L.; Zhang, G.; Yuan, Y.; Chai, Y.; Zhu, M.; Wu, C. Identifying potential anti-COVID-19 pharmacological components of traditional Chinese medicine Lianhuaqingwen capsule based on human exposure and ACE2 biochromatography screening. Acta Pharm. Sin. B, 2021, 11(1), 222-236.
[http://dx.doi.org/10.1016/j.apsb.2020.10.002] [PMID: 33072499 ]
[13]
Wang, C.; Jia, Z.; Wang, Z.; Hu, T.; Qin, H.; Du, G.; Wu, C.; Zhang, J. Pharmacokinetics of 21 active components in focal cerebral ischemic rats after oral administration of the active fraction of Xiao-Xu-Ming decoction. J. Pharm. Biomed. Anal., 2016, 122, 110-117.
[http://dx.doi.org/10.1016/j.jpba.2016.01.052] [PMID: 26852160 ]
[14]
Wu, C.; Zhang, H.; Wang, C.; Qin, H.; Zhu, M.; Zhang, J. An integrated approach for studying exposure, metabolism, and disposition of multiple component herbal medicines using high-resolution mass spectrometry and multiple data processing tools. Drug Metab. Dispos., 2016, 44(6), 800-808.
[http://dx.doi.org/10.1124/dmd.115.068189] [PMID: 27013399 ]
[15]
Jin, Y.; Wu, C.S.; Zhang, J.L.; Li, Y.F. A new strategy for the discovery of epimedium metabolites using high-performance liquid chromatography with high resolution mass spectrometry. Anal. Chim. Acta, 2013, 768, 111-117.
[http://dx.doi.org/10.1016/j.aca.2013.01.012] [PMID: 23473257 ]
[16]
Ullberg, S. Studies on the distribution and fate of S35-labelled benzylpenicillin in the body. Acta Radiol. Suppl., 1954, 118, 1-110.
[PMID: 13228243 ]
[17]
Boernsen, K.O.; Floeckher, J.M.; Bruin, G.J. Use of a microplate scintillation counter as a radioactivity detector for miniaturized separation techniques in drug metabolism. Anal. Chem., 2000, 72(16), 3956-3959.
[http://dx.doi.org/10.1021/ac000432s] [PMID: 10959988 ]
[18]
Kemmenoe, B.H.; Malspeis, L. Distribution of [2-14C]merbarone in mice by autoradiography of whole-body cryosections. Cancer Res., 1987, 47(4), 1135-1142.
[PMID: 3802094 ]
[19]
Chay, S.H.; Pohland, R.C. Comparison of quantitative whole-body autoradiographic and tissue dissection techniques in the evaluation of the tissue distribution of [14C]daptomycin in rats. J. Pharm. Sci., 1994, 83(9), 1294-1299.
[http://dx.doi.org/10.1002/jps.2600830921] [PMID: 7830246 ]
[20]
Chen, C.H.; Kao, S.M.; Du, H.F.; Yu, W.H. Studies on Chinese Rhubarb. Iv. Absorption, Distribution and Excretion of Anthraquinone Derivatives Yao Xue Xue Bao, 1963, 10, 525-530.
[PMID: 14082591 ]
[21]
Hao, H.P.; Zheng, C.N.; Wang, G.J. Thoughts and experimental exploration on pharmacokinetic study of herbal medicines with multiplecomponents and targets Yao Xue Xue Bao, 2009, 44(3), 270-275.
[PMID: 19449523 ]
[22]
Liu, J.P. Evidence-based medicine and individualized health care J. Chin. Integr. Med., 2009, 7(6), 505-508.
[http://dx.doi.org/10.3736/jcim20090602]
[23]
Wang, X.J. Progress and future developing of the serum pharmacochemistry of traditional Chinese medicine Zhongguo Zhongyao Zazhi, 2006, 31(10), 789-792, 835.
[PMID: 17048655 ]
[24]
Raftery, R.M.; Tierney, E.G.; Curtin, C.M.; Cryan, S.A.; O’Brien, F.J. Development of a gene-activated scaffold platform for tissue engineering applications using chitosan-pDNA nanoparticles on collagen-based scaffolds. J. Control. Release, 2015, 210, 84-94.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.005] [PMID: 25982680 ]
[25]
Wahane, A.; Waghmode, A.; Kapphahn, A.; Dhuri, K.; Gupta, A.; Bahal, R. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules, 2020, 25(12), 2866.
[http://dx.doi.org/10.3390/molecules25122866] [PMID: 32580326 ]
[26]
Wang, Y.; Wang, R.; Shi, L.; Liu, S.; Liu, Z.; Song, F.; Liu, Z. Systematic studies on the in vivo substance basis and the pharmacological mechanism of Acanthopanax Senticosus Harms leaves by UPLC-QTOF- MS coupled with a target-network method. Food Funct., 2018, 9(12), 6555-6565.
[http://dx.doi.org/10.1039/C8FO01645C] [PMID: 30484473 ]
[27]
Ren, J.L.; Zhang, A.H.; Kong, L.; Han, Y.; Yan, G.L.; Sun, H.; Wang, X.J. Analytical strategies for the discovery and validation of qualitymarkers of traditional Chinese medicine. Phytomedicine, 2020, 67 ,153165.
[http://dx.doi.org/10.1016/j.phymed.2019.153165] [PMID: 31954259 ]
[28]
Feng, G.; Sun, Y.; Liu, S.; Song, F.; Pi, Z.; Liu, Z. Stepwise targeted matching strategy from in vitro to in vivo based on ultra-high performance liquid chromatography tandem mass spectrometry technology to quickly identify and screen pharmacodynamic constituents. Talanta, 2019, 194, 619-626.
[http://dx.doi.org/10.1016/j.talanta.2018.10.074] [PMID: 30609581 ]
[29]
Joye, T.; Sidibe, J.; Deglon, J.; Karmime, A.; Sporkert, F.; Widmer, C.; Favrat, B.; Lescuyer, P.; Augsburger, M.; Thomas, A. Liquid chromatography-high resolution mass spectrometry for broadspectrum drug screening of dried blood spot as microsampling procedure. Anal. Chim. Acta, 2019, 1063, 110-116.
[http://dx.doi.org/10.1016/j.aca.2019.02.011] [PMID: 30967174 ]
[30]
Barbier Saint Hilaire, P.; Rousseau, K.; Seyer, A.; Dechaumet, S.; Damont, A.; Junot, C.; Fenaille, F. Comparative evaluation of data dependent and data independent acquisition workflows implemented on an orbitrap fusion for untargeted metabolomics. Metabolites, 2020, 10(4), 158.
[http://dx.doi.org/10.3390/metabo10040158] [PMID: 32325648 ]
[31]
Zhang, C.; Zuo, T.; Wang, X.; Wang, H.; Hu, Y.; Li, Z. Integration of Data-Dependent Acquisition (DDA) and Data-Independent High- Definition MS(E) (HDMS(E)) for the comprehensive profiling and characterization of multicomponents from panax japonicus by UHPLC/IM-QTOF-MS. Molecules, 2019, 24(15), 2708.
[http://dx.doi.org/10.3390/molecules24152708 ]
[32]
Sun, F.; Tan, H.; Li, Y.; De Boevre, M.; Zhang, H.; Zhou, J.; Li, Y.; Yang, S. An integrated data-dependent and data-independent acquisition method for hazardous compounds screening in foods using a single UHPLC-Q-Orbitrap run. J. Hazard. Mater., 2021, 401 ,123266.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123266] [PMID: 32763673 ]
[33]
Geng, J.; Xiao, L.; Chen, C.; Wang, Z.; Xiao, W.; Wang, Q. An integrated analytical approach based on enhanced fragment ions interrogation and modified Kendrick mass defect filter data mining for in-depth chemical profiling of glucosinolates by ultra-high-pressure liquid chromatography coupled with Orbitrap high resolution mass spectrometry. J. Chromatogr. A, 2021, 1639 ,461903.
[http://dx.doi.org/10.1016/j.chroma.2021.461903] [PMID: 33486443 ]
[34]
Chindarkar, N.S.; Park, H.D.; Stone, J.A.; Fitzgerald, R.L. Comparison of different time of flight-mass spectrometry modes for small molecule quantitative analysis. J. Anal. Toxicol., 2015, 39(9), 675-685.
[http://dx.doi.org/10.1093/jat/bkv057] [PMID: 26239972 ]
[35]
Chen, C.; Wohlfarth, A.; Xu, H.; Su, D.; Wang, X.; Jiang, H.; Feng, Y.; Zhu, M. Untargeted screening of unknown xenobiotics and potential toxins in plasma of poisoned patients using high-resolution mass spectrometry: Generation of xenobiotic fingerprint using background subtraction. Anal. Chim. Acta, 2016, 944, 37-43.
[http://dx.doi.org/10.1016/j.aca.2016.09.034] [PMID: 27776637 ]
[36]
Wang, Y.; Feng, R.; Wang, R.; Yang, F.; Li, P.; Wan, J.B. Enhanced MS/MS coverage for metabolite identification in LC-MS-based untargeted metabolomics by target-directed data dependent acquisition with time-staggered precursor ion list. Anal. Chim. Acta, 2017, 992, 67-75.
[http://dx.doi.org/10.1016/j.aca.2017.08.044] [PMID: 29054151 ]
[37]
Lanekoff, I.; Burnum-Johnson, K.; Thomas, M.; Short, J.; Carson, J.P.; Cha, J.; Dey, S.K.; Yang, P.; Prieto Conaway, M.C.; Laskin, J. Highspeed tandem mass spectrometric in situ imaging by nanospray desorption electrospray ionization mass spectrometry. Anal. Chem., 2013, 85(20), 9596-9603.
[http://dx.doi.org/10.1021/ac401760s] [PMID: 24040919 ]
[38]
Dušek, M. Jandovska, V.; &ermak, P.; Mikyška, A.; Olšovska, J. A novel approach for identification of biologically active phenolic compounds in complex matrices using hybrid quadrupole-orbitrap mass spectrometer: A promising tool for testing antimicrobial activity of hops. Talanta, 2016, 156-157, 209-217.
[http://dx.doi.org/10.1016/j.talanta.2016.05.018] [PMID: 27260455 ]
[39]
Cerrato, A.; Aita, S.E.; Capriotti, A.L.; Cavaliere, C.; Montone, C.M.; Lagana, A.; Piovesana, S. A new opening for the tricky untargeted investigation of natural and modified short peptides. Talanta, 2020, 219 ,121262.
[http://dx.doi.org/10.1016/j.talanta.2020.121262] [PMID: 32887153 ]
[40]
Zhang, W.; Chang, J.; Lei, Z.; Huhman, D.; Sumner, L.W.; Zhao, P.X. MET-COFEA: a liquid chromatography/mass spectrometry data processing platform for metabolite compound feature extraction and annotation. Anal. Chem., 2014, 86(13), 6245-6253.
[http://dx.doi.org/10.1021/ac501162k] [PMID: 24856452 ]
[41]
Zhu, P.; Tong, W.; Alton, K.; Chowdhury, S. An accurate-mass-based spectral-averaging isotope-pattern-filtering algorithm for extraction of drug metabolites possessing a distinct isotope pattern from LC-MS data. Anal. Chem., 2009, 81(14), 5910-5917.
[http://dx.doi.org/10.1021/ac900626d] [PMID: 19518135 ]
[42]
Xing, J.; Zang, M.; Zhang, H.; Zhu, M. The application of highresolution mass spectrometry-based data-mining tools in tandem to metabolite profiling of a triple drug combination in humans. Anal. Chim. Acta, 2015, 897, 34-44.
[http://dx.doi.org/10.1016/j.aca.2015.09.034] [PMID: 26515003 ]
[43]
Xing, J.; Zang, M.; Liu, H. The application of a novel high-resolution mass spectrometry-based analytical strategy to rapid metabolite profiling of a dual drug combination in humans. Anal. Chim. Acta, 2017, 993, 38-46.
[http://dx.doi.org/10.1016/j.aca.2017.08.047] [PMID: 29078953 ]
[44]
Hsu, J.Y.; Hsu, J.F.; Chen, Y.R.; Shih, C.L.; Hsu, Y.S.; Chen, Y.J.; Tsai, S.H.; Liao, P.C. Urinary exposure marker discovery for toxicants using ultra-high pressure liquid chromatography coupled with Orbitrap high resolution mass spectrometry and three untargeted metabolomics approaches. Anal. Chim. Acta, 2016, 939, 73-83.
[http://dx.doi.org/10.1016/j.aca.2016.07.032] [PMID: 27639145 ]
[45]
Zhao, W.; Shang, Z.; Li, Q.; Huang, M.; He, W.; Wang, Z.; Zhang, J. Rapid screening and identification of daidzein metabolites in rats based on UHPLC-LTQ-Orbitrap mass spectrometry coupled with datamining technologies. Molecules, 2018, 23(1), 151.
[http://dx.doi.org/10.3390/molecules23010151] [PMID: 29329272 ]
[46]
Liu, M.; Zhao, S.; Wang, Z.; Wang, Y.; Liu, T.; Li, S.; Wang, C.; Wang, H.; Tu, P. Identification of metabolites of deoxyschizandrin in rats by UPLC-Q-TOF-MS/MS based on multiple mass defect filter data acquisition and multiple data processing techniques. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 949-950, 115-126.
[http://dx.doi.org/10.1016/j.jchromb.2013.12.022] [PMID: 24487041 ]
[47]
Liu, R.; Liu, Q.; Li, B.; Liu, L.; Cheng, D.; Cai, X.; Liu, W.; Wang, W. Pharmacokinetics, bioavailability, excretion, and metabolic analysis of Schisanlactone E, a bioactive ingredient from Kadsura heteroclita (Roxb) Craib, in rats by UHPLC-MS/MS and UHPLC-QOrbitrap HRMS. J. Pharm. Biomed. Anal., 2020, 177 ,112875.
[http://dx.doi.org/10.1016/j.jpba.2019.112875] [PMID: 31546138 ]
[48]
Li, Y.; Zhao, Y.; Li, X.; Liu, T.; Jiang, X.; Han, F. Characterization of global metabolic profile of Rhodiola crenulata after oral administration in rat plasma, urine, bile and feces based on UHPLC-FT-ICR MS. J. Pharm. Biomed. Anal., 2018, 149, 318-328.
[http://dx.doi.org/10.1016/j.jpba.2017.10.032] [PMID: 29132111 ]
[49]
Guo, J.Y.; Wang, D.M.; Wang, M.J.; Zhou, J.; Pan, Y.N.; Wang, Z.Z.; Xiao, W.; Liu, X.Q. Systematically characterize the substance basis of Jinzhen oral liquid and their pharmacological mechanism using UPLC-Q-TOF/MS combined with network pharmacology analysis. J. Food Drug Anal., 2019, 27(3), 793-804.
[http://dx.doi.org/10.1016/j.jfda.2019.05.007] [PMID: 31324295 ]
[50]
Luo, K.; Feng, F. Identification of absorbed components and metabolites of Zhi-Zi-Hou-Po decoction in rat plasma after oral administration by an untargeted metabolomics-driven strategy based on LC-MS. Anal. Bioanal. Chem., 2016, 408(21), 5723-5735.
[http://dx.doi.org/10.1007/s00216-016-9674-x] [PMID: 27342796 ]
[51]
Fang, Z.Z.; Krausz, K.W.; Nagaoka, K.; Tanaka, N.; Gowda, K.; Amin, S.G.; Perdew, G.H.; Gonzalez, F.J. In vivo effects of the pure aryl hydrocarbon receptor antagonist GNF-351 after oral administration are limited to the gastrointestinal tract. Br. J. Pharmacol., 2014, 171(7), 1735-1746.
[http://dx.doi.org/10.1111/bph.12576] [PMID: 24417285 ]
[52]
Wu, H.; Li, X.; Yan, X.; An, L.; Luo, K.; Shao, M.; Jiang, Y.; Xie, R.; Feng, F. An untargeted metabolomics-driven approach based on LCTOF/MS and LC-MS/MS for the screening of xenobiotics and metabolites of Zhi-Zi-Da-Huang decoction in rat plasma. J. Pharm. Biomed. Anal., 2015, 115, 315-322.
[http://dx.doi.org/10.1016/j.jpba.2015.07.026] [PMID: 26275719 ]
[53]
Zuo, L.; Liu, L.; Yang, Y.; Yang, J.; Chen, M.; Zhang, H.; Kang, J.; Zhang, X.; Wang, J.; Sun, Z. An entire process optimization strategy for comprehensive in vivo metabolite profiling of prucalopride in rats based on ultra-performance liquid chromatography with Q-exactivehybrid quadrupole-orbitrap high-resolution mass spectrometry. Front. Pharmacol., 2021, 12 ,610226.
[http://dx.doi.org/10.3389/fphar.2021.610226] [PMID: 34025397 ]
[54]
Zhu, M.; Zhang, H.; Humphreys, W.G. Drug metabolite profiling and identification by high-resolution mass spectrometry. J. Biol. Chem., 2011, 286(29), 25419-25425.
[http://dx.doi.org/10.1074/jbc.R110.200055] [PMID: 21632546 ]
[55]
Zhang, H.; Ma, L.; He, K.; Zhu, M. An algorithm for thorough background subtraction from high-resolution LC/MS data: application to the detection of troglitazone metabolites in rat plasma, bile, and urine. J. Mass Spectrom., 2008, 43(9), 1191-1200.
[http://dx.doi.org/10.1002/jms.1432] [PMID: 18521834 ]
[56]
Zhang, W.; Chen, Y.; Jiang, H.; Yang, J.; Wang, Q.; Du, Y.; Xu, H. Integrated strategy for accurately screening biomarkers based on metabolomics coupled with network pharmacology. Talanta, 2020, 211 ,120710.
[http://dx.doi.org/10.1016/j.talanta.2020.120710] [PMID: 32070601 ]
[57]
Wu, Y.; Zhang, F.; Yang, K.; Fang, S.; Bu, D.; Li, H.; Sun, L.; Hu, H.; Gao, K.; Wang, W.; Zhou, X.; Zhao, Y.; Chen, J. SymMap: An integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res., 2019, 47(D1), D1110-D1117.
[http://dx.doi.org/10.1093/nar/gky1021] [PMID: 30380087 ]
[58]
Wang, Y.; Kora, G.; Bowen, B.P.; Pan, C. MIDAS: A databasesearching algorithm for metabolite identification in metabolomics. Anal. Chem., 2014, 86(19), 9496-9503.
[http://dx.doi.org/10.1021/ac5014783] [PMID: 25157598 ]
[59]
Wang, Y.; Bryant, S.H.; Cheng, T.; Wang, J.; Gindulyte, A.; Shoemaker, B.A.; Thiessen, P.A.; He, S.; Zhang, J. PubChem BioAssay: 2017 update. Nucleic Acids Res., 2017, 45(D1), D955-D963.
[http://dx.doi.org/10.1093/nar/gkw1118] [PMID: 27899599 ]
[60]
Jeske, L.; Placzek, S.; Schomburg, I.; Chang, A.; Schomburg, D. BRENDA in 2019: A European ELIXIR core data resource. Nucleic Acids Res., 2019, 47(D1), D542-D549.
[http://dx.doi.org/10.1093/nar/gky1048] [PMID: 30395242 ]
[61]
Editorial: ChemSpider--a tool for Natural Products research. Nat. Prod. Rep., 2015, 32(8), 1163-1164.
[http://dx.doi.org/10.1039/C5NP90022K] [PMID: 26155872 ]
[62]
Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A.V.; Meehan, M.J.; Liu, W.T.; Crusemann, M.; Boudreau, P.D.; Esquenazi, E.; Sandoval-Calderon, M.; Kersten, R.D.; Pace, L.A.; Quinn, R.A.; Duncan, K.R.; Hsu, C.C.; Floros, D.J.; Gavilan, R.G.; Kleigrewe, K.; Northen, T.; Dutton, R.J.; Parrot, D.; Carlson, E.E.; Aigle, B.; Michelsen, C.F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B.T.; Gerwick, L.; Liaw, C.C.; Yang, Y.L.; Humpf, H.U.; Maansson, M.; Keyzers, R.A.; Sims, A.C.; Johnson, A.R.; Sidebottom, A.M.; Sedio, B.E.; Klitgaard, A.; Larson, C.B. P, C.A.B.; Torres-Mendoza, D.; Gonzalez, D.J.; Silva, D.B.; Marques, L.M.; Demarque, D.P.; Pociute, E.; O’Neill, E.C.; Briand, E.; Helfrich, E.J.N.; Granatosky, E.A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J.J.; Zeng, Y.; Vorholt, J.A.; Kurita, K.L.; Charusanti, P.; McPhail, K.L.; Nielsen, K.F.; Vuong, L.; Elfeki, M.; Traxler, M.F.; Engene, N.; Koyama, N.; Vining, O.B.; Baric, R.; Silva, R.R.; Mascuch, S.J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P.G.; Dai, J.; Neupane, R.; Gurr, J.; Rodriguez, A.M.C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B.M.; Almaliti, J.; Allard, P.M.; Phapale, P.; Nothias, L.F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.L.; Kyle, J.E.; Metz, T.O.; Peryea, T.; Nguyen, D.T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Muller, R.; Waters, K.M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P.R.; Palsson, B.O.; Pogliano, K.; Linington, R.G.; Gutierrez, M.; Lopes, N.P.; Gerwick, W.H.; Moore, B.S.; Dorrestein, P.C.; Bandeira, N. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol., 2016, 34(8), 828-837.
[http://dx.doi.org/10.1038/nbt.3597] [PMID: 27504778 ]
[63]
Lu, T.; Yang, J.; Gao, X.; Chen, P.; Du, F.; Sun, Y.; Wang, F.; Xu, F.; Shang, H.; Huang, Y.; Wang, Y.; Wan, R.; Liu, C.; Zhang, B.; Li, C. Plasma and urinary tanshinol from Salvia miltiorrhiza (Danshen) can be used as pharmacokinetic markers for cardiotonic pills, a cardiovascular herbal medicine. Drug Metab. Dispos., 2008, 36(8), 1578-1586.
[http://dx.doi.org/10.1124/dmd.108.021592] [PMID: 18474682 ]
[64]
Liu, H.; Yang, J.; Du, F.; Gao, X.; Ma, X.; Huang, Y.; Xu, F.; Niu, W.; Wang, F.; Mao, Y.; Sun, Y.; Lu, T.; Liu, C.; Zhang, B.; Li, C. Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats. Drug Metab. Dispos., 2009, 37(12), 2290-2298.
[http://dx.doi.org/10.1124/dmd.109.029819] [PMID: 19786509 ]
[65]
Wang, C.; Wu, C.; Zhang, J.; Jin, Y. Systematic considerations for a multicomponent pharmacokinetic study of Epimedii wushanensis herba: From method establishment to pharmacokinetic marker selection. Phytomedicine, 2015, 22(4), 487-497.
[http://dx.doi.org/10.1016/j.phymed.2015.02.004] [PMID: 25925971]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy