Abstract
Background: Effective global antiretroviral vaccines and therapeutic strategies depend on the diversity, evolution, and epidemiology of their various strains as well as their transmission and pathogenesis. Most viral disease-causing particles are clustered into a taxonomy of subtypes to suggest pointers toward nucleotide-specific vaccines or therapeutic applications of clinical significance sufficient for sequence-specific diagnosis and homologous viral studies. These are very useful to formulate predictors to induce cross-resistance to some retroviral control drugs being used across study areas.
Objective: This research proposed a collaborative framework of hybridized (Machine Learning and Natural Language Processing) techniques to discover hidden genome patterns and feature predictors for HIV-1 genome sequences mining.
Methods: 630 human HIV-1 genome sequences above 8500 bps were excavated from the National Center for Biotechnology Information (NCBI) database (https://www.ncbi.nlm.nih.gov) for 21 countries across different continents, except for Antarctica. These sequences were transformed and learned using a self-organizing map (SOM). To discriminate emerging/new sub-strain(s), the HIV-1 reference genome was included as part of the input isolates/samples during the training. After training the SOM, component planes defining pattern clusters of the input datasets were generated for cognitive knowledge mining and subsequent labeling of the datasets. Additional genome features, including dinucleotide transmission recurrences, codon recurrences, and mutation recurrences, were finally extracted from the raw genomes to construct output classification targets for supervised learning.
Results: SOM training explains the inherent pattern diversity of HIV-1 genomes as well as interand intra-country transmissions in which mobility might play an active role, as corroborated by the literature. Nine sub-strains were discovered after disassembling the SOM correlation hunting matrix space attributed to disparate clusters. Cognitive knowledge mining separated similar pattern clusters bounded by a certain degree of correlation range, as discovered by the SOM. Kruskal-Wallis ranksum test and Wilcoxon rank-sum test showed statistically significant variations in dinucleotide, codon, and mutation patterns.
Conclusion: Results of the discovered sub-strains and response clusters visualizations corroborate the existing literature, with significant haplotype variations. The proposed framework would assist in the development of decision support systems for easy contact tracing, infectious disease surveillance, and studying the progressive evolution of the reference HIV-1 genome.
Keywords: Cognitive knowledge, genome mining, pattern recognition, self-organizing map, sub-strain, infectious disease.
Graphical Abstract
[http://dx.doi.org/10.1186/s13104-017-2491-2] [PMID: 28454556]
[http://dx.doi.org/10.1089/aid.2012.0095] [PMID: 23458210]
[http://dx.doi.org/10.1097/QAD.0b013e328342ff93]
[http://dx.doi.org/10.1016/j.molmed.2011.12.001] [PMID: 22240486]
[http://dx.doi.org/10.1089/aid.2008.0095] [PMID: 18834324]
[http://dx.doi.org/10.1097/00002030-200312050-00002] [PMID: 14685049]
[http://dx.doi.org/10.1038/s41598-020-59944-x] [PMID: 32103028]
[http://dx.doi.org/10.1089/088922203771881220] [PMID: 14709249]
[http://dx.doi.org/10.1371/journal.pone.0003191] [PMID: 18784834]
[http://dx.doi.org/10.1089/aid.2016.0111] [PMID: 27841669]
[http://dx.doi.org/10.1097/QAD.0000000000001619] [PMID: 28832407]
[http://dx.doi.org/10.1186/1742-6405-9-5] [PMID: 22333070]
[http://dx.doi.org/10.1089/aid.2014.0212] [PMID: 25517728]
[http://dx.doi.org/10.1089/aid.2010.0333]
[http://dx.doi.org/10.1128/JVI.00454-11] [PMID: 21795343]
[http://dx.doi.org/10.2807/1560-7917.ES.2017.22.2.30436] [PMID: 28105988]
[http://dx.doi.org/10.1089/088922200309403]
[http://dx.doi.org/10.1128/JVI.73.1.152-160.1999] [PMID: 9847317]
[http://dx.doi.org/10.1097/COH.0b013e32832c3bb3] [PMID: 19532068]
[http://dx.doi.org/10.1371/journal.pmed.0040339] [PMID: 18052602]
[http://dx.doi.org/10.1089/088922203322588431] [PMID: 14686327]
[http://dx.doi.org/10.1128/JVI.02370-12] [PMID: 23365432]
[http://dx.doi.org/10.2174/157016211795569096] [PMID: 21361866]
[http://dx.doi.org/10.1186/s12985-019-1162-4] [PMID: 31023323]
[http://dx.doi.org/10.1089/aid.2015.0371] [PMID: 26892382]
[http://dx.doi.org/10.1371/journal.pone.0039819] [PMID: 22768132]
[http://dx.doi.org/10.1093/cid/ciq044] [PMID: 21342909]
[http://dx.doi.org/10.3201/eid1108.040877] [PMID: 16102312]
[http://dx.doi.org/10.3389/fmicb.2019.00749] [PMID: 31024510]
[http://dx.doi.org/10.1016/j.tig.2017.12.005] [PMID: 29331490]
[http://dx.doi.org/10.5897/AJB12.1860]
[http://dx.doi.org/10.4258/hir.2017.23.4.271] [PMID: 29181236]
[http://dx.doi.org/10.3390/v12050560] [PMID: 32438586]
[http://dx.doi.org/10.1093/bioinformatics/bty842] [PMID: 30295703]
[http://dx.doi.org/10.1186/s12977-016-0277-6] [PMID: 27377064]
[http://dx.doi.org/10.1093/nar/gkv1039] [PMID: 26476446]
[http://dx.doi.org/10.1038/s41598-018-20819-x] [PMID: 29402983]
[http://dx.doi.org/10.1371/journal.pcbi.1007345] [PMID: 31545786]
[http://dx.doi.org/10.1007/s13721-012-0017-3]
[http://dx.doi.org/10.1016/j.asoc.2018.06.045]
[http://dx.doi.org/10.1371/journal.pone.0206409]
[http://dx.doi.org/10.1021/ci034138n] [PMID: 14632420]
[http://dx.doi.org/10.3390/ijms21030748] [PMID: 31979356]
[http://dx.doi.org/10.1093/nar/gkg100] [PMID: 12520007]
[http://dx.doi.org/10.1186/s13637-016-0042-0] [PMID: 27257410]
[http://dx.doi.org/10.1093/nar/gkn708] [PMID: 18927109]
[http://dx.doi.org/10.1016/S0167-9473(01)00040-8]
[http://dx.doi.org/10.1128/mBio.02605-20] [PMID: 33051373]
[http://dx.doi.org/10.1186/s12981-016-0130-y] [PMID: 28086981]
[http://dx.doi.org/10.1186/1742-4690-9-34] [PMID: 22537596]
[http://dx.doi.org/10.1038/s41598-017-12619-6] [PMID: 28963504]
[http://dx.doi.org/10.1038/s41586-021-03511-5] [PMID: 34012080]
[http://dx.doi.org/10.1016/S0960-9822(02)00482-7] [PMID: 8805248]
[http://dx.doi.org/10.1073/pnas.97.7.3056] [PMID: 10737786]
[http://dx.doi.org/10.1186/s12879-015-1174-7] [PMID: 26511217]
[http://dx.doi.org/10.1128/AAC.45.8.2276-2279.2001] [PMID: 11451685]
[http://dx.doi.org/10.1371/journal.pbio.1002251] [PMID: 26375597]
[http://dx.doi.org/10.1084/jem.193.3.375] [PMID: 11157057]
[http://dx.doi.org/10.1038/s41598-021-93757-w]
[http://dx.doi.org/10.3389/fmicb.2013.00269] [PMID: 24046767]
[http://dx.doi.org/10.1007/s12041-013-0281-8] [PMID: 24371162]
[http://dx.doi.org/10.1093/genetics/161.4.1385] [PMID: 12196387]
[http://dx.doi.org/10.1016/0378-1119(93)90363-8] [PMID: 8482530]
[http://dx.doi.org/10.1089/088922203762688649] [PMID: 12639249]
[http://dx.doi.org/10.1038/ncomms9571] [PMID: 26450412]
[http://dx.doi.org/10.1186/s12977-015-0180-6] [PMID: 26160407]
[http://dx.doi.org/10.1371/journal.pone.0015135] [PMID: 21264288]
[http://dx.doi.org/10.1101/052274]
[http://dx.doi.org/10.1089/aid.2015.0320] [PMID: 27599904]
[http://dx.doi.org/10.1016/j.jmb.2019.04.021]
[http://dx.doi.org/10.1186/1742-4690-10-78] [PMID: 23885919]