Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Theranostic Applications of Stimulus-Responsive Systems based on Fe2O3

Author(s): Mehrab Pourmadadi, Mohammad Javad Ahmadi, Homayoon Soleimani Dinani, Narges Ajalli and Farid Dorkoosh*

Volume 10, Issue 2, 2022

Published on: 21 April, 2022

Page: [90 - 112] Pages: 23

DOI: 10.2174/2211738510666220210105113

Price: $65

conference banner
Abstract

According to the interaction of nanoparticles with biological systems, enthusiasm for nanotechnology in biomedical applications has been developed in the past decades. Fe2O3 nanoparticles, as the most stable iron oxide, have special merits that make them useful widely for detecting diseases, therapy, drug delivery, and monitoring the therapeutic process. This review presents the fabrication methods of Fe2O3-based materials and their photocatalytic and magnetic properties. Then, we highlight the application of Fe2O3-based nanoparticles in diagnosis and imaging, different therapy methods, and finally, stimulus-responsive systems, such as pH-responsive, magneticresponsive, redox-responsive, and enzyme-responsive, with an emphasis on cancer treatment. In addition, the potential of Fe2O3 to combine diagnosis and therapy within a single particle called theranostic agent will be discussed.

Keywords: Fe2O3, nanoparticles, therapy, diagnosis, stimuli-responsive, theranostic.

Graphical Abstract

[1]
Iqbal MZ, Wu A. Magnetic nanohybrids for magnetic resonance imaging and phototherapy applications. Tissue Eng Nanother 2017; 10: 101-49.
[http://dx.doi.org/10.1142/9789813149199_0005]
[2]
Larson TA. Nanocomposite particles as theranostic agents for cancer PhD Dissertation. USA: University of Texas, Austin . 2012.
[3]
Kazemi S, Pourmadadi M, Yazdian F, Ghadami A. The synthesis and characterization of targeted delivery curcumin using chitosan-magnetite-reduced graphene oxide as nano-carrier. Int J Biol Macromol 2021; 186: 554-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.184] [PMID: 34216673]
[4]
Yuan H, Li X, Tang J, Zhou M, Liu F. Local application of doxorubicin- loaded Iron oxid nanoparticles and the vascular disrupting agent via the hepatic artery: Chemoembolization-photothermal ablation treatment of hepatocellular carcinoma in rats. Cancer Imaging 2019; 19(1): 71.
[http://dx.doi.org/10.1186/s40644-019-0257-x] [PMID: 31685015]
[5]
Coduri M, Masala P, Bianco LD, et al. Local structure and magnetism of Fe2O3 maghemite nanocrystals: The role of crystal dimension. Nanomaterials (Basel) 2020; 10(5): 867.
[http://dx.doi.org/10.3390/nano10050867] [PMID: 32365930]
[6]
Mishra M, Chun D-M. α-Fe2O3 as a photocatalytic material: A review. Appl Catal A Gen 2015; 498: 126-41.
[http://dx.doi.org/10.1016/j.apcata.2015.03.023]
[7]
Chen LX, Liu T, Thurnauer MC, Csencsits R, Rajh T. Fe2O3 nanoparticle structures investigated by X-ray absorption near-edge structure, surface modifications, and model calculations. J Phys Chem B 2002; 106(34): 8539-46.
[http://dx.doi.org/10.1021/jp025544x]
[8]
Cornell RM, Schwertmann U. The iron oxides: Structure, properties, reactions, occurrences and uses. John Wiley & Sons 2003.
[http://dx.doi.org/10.1002/3527602097]
[9]
Debnath N, Anderson A. Optical spectra of ferrous and ferric oxides and the passive film: A molecular orbital study. J Electrochem Soc 1982; 129(10): 2169-74.
[http://dx.doi.org/10.1149/1.2123469]
[10]
Wang B, Chen JS, Wu HB, Wang Z, Lou XW. Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium stor-age properties. J Am Chem Soc 2011; 133(43): 17146-8.
[http://dx.doi.org/10.1021/ja208346s] [PMID: 21977903]
[11]
Hu X, Yu JC, Gong J, Li Q, Li G. α‐Fe2O3 nanorings prepared by a microwave‐assisted hydrothermal process and their sensing properties. Adv Mater 2007; 19(17): 2324-9.
[http://dx.doi.org/10.1002/adma.200602176]
[12]
Liu G, Deng Q, Wang H, et al. Micro/nanostructured α-Fe2O3 spheres: Synthesis, characterization, and structurally enhanced visible-light photocatalytic activity. J Mater Chem 2012; 22(19): 9704-13.
[http://dx.doi.org/10.1039/c2jm31586f]
[13]
Cao C-Y, Qu J, Yan W-S, Zhu J-F, Wu Z-Y, Song W-G. Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: Adsorption property and mechanism. Langmuir 2012; 28(9): 4573-9.
[http://dx.doi.org/10.1021/la300097y] [PMID: 22316432]
[14]
Darbandi M, Stromberg F, Landers J, et al. Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J Phys D Appl Phys 2012; 45(19), 195001.
[http://dx.doi.org/10.1088/0022-3727/45/19/195001]
[15]
Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012; 2(1): 3-44.
[http://dx.doi.org/10.7150/thno.3463] [PMID: 22272217]
[16]
Jaque D, Maestro LM, Del Rosal B, Haro-Gonzalez P, Benayas A, Plaza J. Nanoparticles for photothermal therapies. Nanoscale 2014; 6(16): 9494-530.
[17]
Li R, Peng F, Cai J, Yang D, Zhang P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and re-ducing adverse side effects. Asian J Pharmac Sci 2020; 15(3): 311-25.
[http://dx.doi.org/10.1016/j.ajps.2019.06.003]
[18]
Irshad S, Siddiqui B. Recent trends and development in targeted delivery of therapeutics through enzyme responsive intelligent nanoplat-form. Inter J Polym Mater Polym Biomater 2020; 71(6): 1-11.
[19]
Shahriari M, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Enzyme responsive drug delivery systems in cancer treat-ment. J Control Release 2019; 308: 172-89.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.004] [PMID: 31295542]
[20]
Tadic M, Panjan M, Damnjanovic V, Milosevic I. Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal syn-thesis method. Appl Surf Sci 2014; 320: 183-7.
[http://dx.doi.org/10.1016/j.apsusc.2014.08.193]
[21]
Wang G-H, Li W-C, Jia K-M, Spliethoff B, Schüth F, Lu A-H. Shape and size controlled α-Fe2O3 nanoparticles as supports for gold-catalysts: Synthesis and influence of support shape and size on catalytic performance. Appl Catal A Gen 2009; 364(1-2): 42-7.
[http://dx.doi.org/10.1016/j.apcata.2009.05.030]
[22]
Ma J, Lian J, Duan X, Liu X, Zheng W. α-Fe2O3: Hydrothermal synthesis, magnetic and electrochemical properties. J Phys Chem C 2010; 114(24): 10671-6.
[http://dx.doi.org/10.1021/jp102243g]
[23]
Wei Z, Wei X, Wang S, He D. Preparation and visible-light photocatalytic activity of α-Fe2O3/γ-Fe2O3 magnetic heterophase photocatalyst. Mater Lett 2014; 118: 107-10.
[http://dx.doi.org/10.1016/j.matlet.2013.12.051]
[24]
Jin Y, Dang L, Zhang H, Song C, Lu Q, Gao F. Synthesis of unit-cell-thick α-Fe2O3 nanosheets and their transformation to γ-Fe2O3 nanosheets with enhanced LIB performances. Chem Eng J 2017; 326: 292-7.
[http://dx.doi.org/10.1016/j.cej.2017.05.155]
[25]
Tao Q, Bi J, Huang X, et al. Fabrication, application, optimization and working mechanism of Fe2O3 and its composites for contaminants elimination from wastewater. Chemosphere 2021; 263, 127889.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127889] [PMID: 32828053]
[26]
Li J, Li X, Gong S, et al. Dual-mode avocado-like all-iron nanoplatform for enhanced T1/T2 MRI-guided cancer theranostic therapy. Nano Lett 2020; 20(7): 4842-9.
[http://dx.doi.org/10.1021/acs.nanolett.0c00817] [PMID: 32578994]
[27]
Dong S, Dong Y, Jia T, et al. Sequential catalytic, magnetic targeting nanoplatform for synergistic photothermal and NIR-enhanced chemo-dynamic therapy. Chem Mater 2020; 32(23): 9868-81.
[http://dx.doi.org/10.1021/acs.chemmater.9b05170]
[28]
Wang M, Deng K, Lü W, et al. Rational design of multifunctional Fe@ γ-Fe2O3@ H-TiO2 nanocomposites with enhanced magnetic and photoconversion effects for wide applications: From photocatalysis to imaging-guided photothermal cancer therapy. Adv Mater 2018; 30(13), 1706747.
[http://dx.doi.org/10.1002/adma.201706747]
[29]
Akhavan O, Azimirad R. Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation. Appl Catal A Gen 2009; 369(1-2): 77-82.
[http://dx.doi.org/10.1016/j.apcata.2009.09.001]
[30]
Sivula K, Le Formal F, Grätzel M. Solar water splitting: progress using hematite (α-Fe(2) O(3)) photoelectrodes. ChemSusChem 2011; 4(4): 432-49.
[http://dx.doi.org/10.1002/cssc.201000416] [PMID: 21416621]
[31]
Kanwal A, Sajjad S, Leghari SAK, Yousaf Z. Cascade electron transfer in ternary CuO/α-Fe2O3/γ-Al2O3 nanocomposite as an effective visible photocatalyst. J Phys Chem Solids 2020; 151, 109899.
[32]
Chen Z, Jaramillo TF, Deutsch TG, et al. Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J Mater Res 2010; 25(1): 3-16.
[http://dx.doi.org/10.1557/JMR.2010.0020]
[33]
Brillet J, Cornuz M, Le Formal F, Yum J-H, Grätzel M, Sivula K. Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting. J Mater Res 2010; 25(1): 17-24.
[http://dx.doi.org/10.1557/JMR.2010.0009]
[34]
Ghasemifard M, Heidari G, Ghamari M, Fathi E, Izi M. Synthesis of porous network-like α-Fe2O3 and α/γ-Fe2O3 nanoparticles and inves-tigation of their photocatalytic properties. Nanotechnol Russ 2019; 14(7-8): 353-61.
[http://dx.doi.org/10.1134/S1995078019040062]
[35]
Xu Y, Zhang G, Du G, Sun Y, Gao D. α-Fe2O3 nanostructures with different morphologies: Additive-free synthesis, magnetic properties, and visible light photocatalytic properties. . Mater Lett 2013; 92: 321-4.
[http://dx.doi.org/10.1016/j.matlet.2012.10.101]
[36]
Tamirat AG, Rick J, Dubale AA, Su W-N, Hwang B-J. Using hematite for photoelectrochemical water splitting: A review of current pro-gress and challenges. Nanoscale Horiz 2016; 1(4): 243-67.
[http://dx.doi.org/10.1039/C5NH00098J] [PMID: 32260645]
[37]
Rita A, Sivakumar A, Jose M, Dhas SMB. Shock wave recovery studies on structural and magnetic properties of α—Fe2O3 NPs. Mater Res Express 2019; 6(9), 095035.
[http://dx.doi.org/10.1088/2053-1591/ab2eba]
[38]
Adinaveen T, Vijaya JJ, Kennedy LJ. Studies on the structural, morphological, optical, and magnetic properties of α-Fe2O3 nanostructures by a simple one-step low temperature reflux condensing method. J Supercond Nov Magn 2014; 27(7): 1721-7.
[http://dx.doi.org/10.1007/s10948-014-2497-0]
[39]
Jedrzejewska A, Kilanski L, Sibera D, et al. Structural and magnetic properties of graphene-based Fe2O3-decorated composites. J Magn Magn Mater 2019; 471: 321-8.
[http://dx.doi.org/10.1016/j.jmmm.2018.07.016]
[40]
Liu W, Cheng B, Miao T, et al. Room temperature electric field control of magnetic properties for the α-Fe2O3/Fe3O4 composite structure. J Magn Magn Mater 2019; 491, 165500.
[http://dx.doi.org/10.1016/j.jmmm.2019.165500]
[41]
Cheng Z, Fu Q, Duan H, Cui Z, Xue Y, Zhang W. Size-Dependent thermodynamics of structural transition and magnetic properties of Nano-Fe2O3. Ind Eng Chem Res 2019; 58(19): 8418-25.
[http://dx.doi.org/10.1021/acs.iecr.9b00599]
[42]
Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer. Drug Discov Today 2012; 17(17-18): 928-34.
[http://dx.doi.org/10.1016/j.drudis.2012.03.010] [PMID: 22484464]
[43]
Mirabelli P, Incoronato M. Usefulness of traditional serum biomarkers for management of breast cancer patients. BioMed Res Int 2013; 2013, 685641.
[http://dx.doi.org/10.1155/2013/685641]
[44]
Sharma S. Tumor markers in clinical practice: General principles and guidelines. Indian J Med Paediatr Oncol 2009; 30(1): 1-8.
[http://dx.doi.org/10.4103/0971-5851.56328] [PMID: 20668599]
[45]
Centi S, Tombelli S, Minunni M, Mascini M. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem 2007; 79(4): 1466-73.
[http://dx.doi.org/10.1021/ac061879p] [PMID: 17297945]
[46]
Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 2003; 84(6): 4023-32.
[http://dx.doi.org/10.1016/S0006-3495(03)75128-5] [PMID: 12770906]
[47]
Sell J. Photothermal investigations of solids and fluids. Elsevier Netherlands 2012.
[48]
Wáng YXJ, Idée J-M. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg 2017; 7(1): 88-122.
[http://dx.doi.org/10.21037/qims.2017.02.09] [PMID: 28275562]
[49]
Kanwar JR, Roy K, Kanwar RK. Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 2011; 46(6): 459-77.
[http://dx.doi.org/10.3109/10409238.2011.614592] [PMID: 21955150]
[50]
Cao GS, Wang P, Li X, Wang Y, Wang G, Li J. A sensitive nonenzymatic hydrogen peroxide sensor based on Fe3O4–Fe2O3 nanocompo-sites. Bull Mater Sci 2015; 38(1): 163-7.
[http://dx.doi.org/10.1007/s12034-014-0803-x]
[51]
Majumder S, Saha B, Dey S, Mondal R, Kumar S, Banerjee S. A highly sensitive non-enzymatic hydrogen peroxide and hydrazine electro-chemical sensor based on 3D micro-snowflake architectures of α-Fe2O3. RSC Advances 2016; 6(65): 59907-18.
[http://dx.doi.org/10.1039/C6RA10470C]
[52]
Li W, Jiang D, Yan P, et al. Graphitic carbon nitride/α-Fe2O3 heterostructures for sensitive photoelectrochemical non-enzymatic glucose sensor. Inorg Chem Commun 2019; 106: 211-6.
[http://dx.doi.org/10.1016/j.inoche.2019.06.015]
[53]
Abdollah MRA, Carter TJ, Jones C, et al. Fucoidan prolongs the circulation time of dextran-coated iron oxide nanoparticles. ACS Nano 2018; 12(2): 1156-69.
[http://dx.doi.org/10.1021/acsnano.7b06734] [PMID: 29341587]
[54]
Calcagno C, Fayad ZA. Intraplaque and cellular distribution of dextran-coated iron oxide fluorescently labeled nanoparticles: Insights into atherothrombosis and plaque rupture. Circ Cardiovasc Imaging 2017; 10(5), e006533.
[http://dx.doi.org/10.1161/CIRCIMAGING.117.006533]
[55]
Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: The need of the hour. Toxicol Appl Pharmacol 2012; 258(2): 151-65.
[http://dx.doi.org/10.1016/j.taap.2011.11.010] [PMID: 22178382]
[56]
Kiplagat A, Martin DR, Onani MO, Meyer M. Aptamer-conjugated magnetic nanoparticles for the efficient capture of cancer biomarker proteins. J Magn Magn Mater 2020; 497, 166063.
[http://dx.doi.org/10.1016/j.jmmm.2019.166063]
[57]
Balzerová A, Opletalová A, Ranc V. Zboril R. Multiplex competitive analysis of HER2 and EpCAM cancer markers in whole human blood using Fe2O3@Ag nanocomposite. Appl Mater Today 2018; 13: 166-73.
[http://dx.doi.org/10.1016/j.apmt.2018.08.016]
[58]
Zhang Y, Wang Y, Wang H, et al. Electrochemical DNA biosensor based on the proximity-dependent surface hybridization assay. Anal Chem 2009; 81(5): 1982-7.
[http://dx.doi.org/10.1021/ac802512d] [PMID: 19173619]
[59]
Gorodetsky AA, Ebrahim A, Barton JK. Electrical detection of TATA binding protein at DNA-modified microelectrodes. J Am Chem Soc 2008; 130(10): 2924-5.
[http://dx.doi.org/10.1021/ja7106756] [PMID: 18271589]
[60]
Kannan B, Williams DE, Booth MA, Travas-Sejdic J. High-sensitivity, label-free DNA sensors using electrochemically active conducting polymers. Anal Chem 2011; 83(9): 3415-21.
[http://dx.doi.org/10.1021/ac1033243] [PMID: 21466209]
[61]
Dong H, Yan F, Ji H, Wong DK, Ju H. Quantum-dot-functional-ized poly (styrene-co-acrylic acid) microbeads: Step-wise self-assembly, characterization, and applications for sub-femto-molar electrochemical detection of DNA hybridization. Adv Funct Mater 2010; 20(7): 1173-9.
[http://dx.doi.org/10.1002/adfm.200901721]
[62]
Dinani HS, Pourmadadi M, Rashedi H, Yazdian F. Fabrication of nanomaterial-based biosensor for measurement of a microRNA involved in cancer. 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME); 26-27 Nov 2020; Tehran, Iran: IEEE.
[63]
Li K, Lai Y, Zhang W, Jin L. Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia coli detection. Talanta 2011; 84(3): 607-13.
[http://dx.doi.org/10.1016/j.talanta.2010.12.042] [PMID: 21482257]
[64]
Liu J, Lu Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 2004; 126(39): 12298-305.
[http://dx.doi.org/10.1021/ja046628h] [PMID: 15453763]
[65]
Liao X, Luo J, Wu J, et al. A sensitive DNAzyme-based electrochemical sensor for Pb2+ detection with platinum nanoparticles decorated TiO2/α-Fe2O3 nanocomposite as signal labels. J Electroanal Chem (Lausanne) 2018; 829: 129-37.
[http://dx.doi.org/10.1016/j.jelechem.2018.10.009]
[66]
Wilson GS, Gifford R. Biosensors for real-time in vivo measurements. Biosens Bioelectron 2005; 20(12): 2388-403.
[http://dx.doi.org/10.1016/j.bios.2004.12.003] [PMID: 15854814]
[67]
Barsan MM, Brett CM. Recent advances in layer-by-layer strategies for biosensors incorporating metal nanoparticles. Trends Analyt Chem 2016; 79: 286-96.
[http://dx.doi.org/10.1016/j.trac.2015.11.019]
[68]
Maduraiveeran G, Jin W. Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ Anal Chem 2017; 13: 10-23.
[http://dx.doi.org/10.1016/j.teac.2017.02.001]
[69]
da Silva W, Brett CM. Novel biosensor for acetylcholine based on acetylcholinesterase/poly (neutral red)–Deep eutectic solvent/Fe2O3 nanoparticle modified electrode. J Electroanal Chem (Lausanne) 2020; 872, 114050.
[http://dx.doi.org/10.1016/j.jelechem.2020.114050]
[70]
Luo L, Cui J, Wang Y, et al. Synthesis of NiO/Fe2O3 nanocomposites as substrate for the construction of electrochemical biosensors. J Solid State Electrochem 2018; 22(6): 1763-70.
[http://dx.doi.org/10.1007/s10008-018-3882-6]
[71]
Ahmad R, Ahn M-S, Hahn Y-B. Fabrication of a non-enzymatic glucose sensor field-effect transistor based on vertically-oriented ZnO nanorods modified with Fe2O3. Electrochem Commun 2017; 77: 107-11.
[http://dx.doi.org/10.1016/j.elecom.2017.03.006]
[72]
Hu M, Li Z, Guo C, Wang M, He L, Zhang Z. Hollow core-shell nanostructured MnO2/Fe2O3 embedded within amorphous carbon nano-composite as sensitive bioplatform for detecting protein tyrosine kinase-7. Appl Surf Sci 2019; 489: 13-24.
[http://dx.doi.org/10.1016/j.apsusc.2019.05.146]
[73]
Merlos Rodrigo MA, Krejcova L, Kudr J, et al. Fully automated two-step assay for detection of metallothionein through magnetic isolation using functionalized γ-Fe2O3 particles. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1039: 17-27.
[http://dx.doi.org/10.1016/j.jchromb.2016.10.018] [PMID: 27825623]
[74]
Seyfoori A, Seyyed Ebrahimi SA, Yousefi A, Akbari M. Efficient targeted cancer cell detection, isolation and enumeration using immuno-nano/hybrid magnetic microgels. Biomater Sci 2019; 7(8): 3359-72.
[http://dx.doi.org/10.1039/C9BM00552H] [PMID: 31231724]
[75]
Zhang W, Yang T, Li X, Wang D, Jiao K. Conductive architecture of Fe2O3 microspheres/self-doped polyaniline nanofibers on carbon ionic liquid electrode for impedance sensing of DNA hybridization. Biosens Bioelectron 2009; 25(2): 428-34.
[http://dx.doi.org/10.1016/j.bios.2009.07.032] [PMID: 19713094]
[76]
Zhang W, Yang T, Jiao K. Ultrasensitive indicator-free and enhanced self-signal nanohybrid DNA sensing platform based on electrochem-ically grown poly-xanthurenic acid/Fe2O3 membranes. Biosens Bioelectron 2012; 31(1): 182-9.
[http://dx.doi.org/10.1016/j.bios.2011.10.015] [PMID: 22047973]
[77]
Lin Y, Xu G, Wei F, Zhang A, Yang J, Hu Q. Detection of CEA in human serum using surface-enhanced Raman spectroscopy coupled with antibody-modified Au and γ-Fe2O3@Au nanoparticles. J Pharm Biomed Anal 2016; 121: 135-40.
[http://dx.doi.org/10.1016/j.jpba.2016.01.027] [PMID: 26808062]
[78]
Cai J, Ding S, Chen G, Sun Y, Xie Q. In situ electrodeposition of mesoporous aligned α-Fe2O3 nanoflakes for highly sensitive nonenzy-matic H2O2 sensor. Appl Surf Sci 2018; 456: 302-6.
[http://dx.doi.org/10.1016/j.apsusc.2018.06.108]
[79]
Panda S, Paital B, Mohapatra S. CQD@ γ-Fe2O3 multifunctional nanoprobe for selective fluorescence sensing, detoxification and removal of Hg (II). Colloids Surf A Physicochem Eng Asp 2020; 589, 124445.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124445]
[80]
Horák D, Pustovyy VI, Babinskyi AV, et al. Enhanced antitumor activity of surface-modified iron oxide nanoparticles and an α-tocopherol derivative in a rat model of mammary gland carcinosarcoma. Int J Nanomedicine 2017; 12: 4257-68.
[http://dx.doi.org/10.2147/IJN.S137574] [PMID: 28652731]
[81]
Palanisamy S, Wang Y-M. Superparamagnetic iron oxide nanoparticulate system: Synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans 2019; 48(26): 9490-515.
[http://dx.doi.org/10.1039/C9DT00459A] [PMID: 31211303]
[82]
Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 2012; 7: 4391-408.
[PMID: 22927757]
[83]
Kettering M, Richter H, Wiekhorst F, et al. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumu-lation, allowing for repeated therapy sessions: An in vivo study in mice. Nanotechnology 2011; 22(50), 505102.
[http://dx.doi.org/10.1088/0957-4484/22/50/505102] [PMID: 22107782]
[84]
Hayashi K, Nakamura M, Miki H, et al. Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 2014; 4(8): 834-44.
[http://dx.doi.org/10.7150/thno.9199] [PMID: 24955144]
[85]
Jain TK, Foy SP, Erokwu B, Dimitrijevic S, Flask CA, Labhasetwar V. Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice. Biomaterials 2009; 30(35): 6748-56.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.042] [PMID: 19765817]
[86]
Özge ÖÖ, Mesut K. Cancer diagnostics, imaging and treatment by nanoscale structures targeting. Biotechnol Acta 2019; 12(6): 12-24.
[87]
Li Y-S, Church JS, Woodhead AL. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J Magn Magn Mater 2012; 324(8): 1543-50.
[http://dx.doi.org/10.1016/j.jmmm.2011.11.065]
[88]
Chen B, Wu W, Wang X. Magnetic iron oxide nanoparticles for tumor-targeted therapy. Curr Cancer Drug Targets 2011; 11(2): 184-9.
[http://dx.doi.org/10.2174/156800911794328475] [PMID: 21158723]
[89]
Liu G, Ma J, Li Y, et al. Core-interlayer-shell Fe3O4@mSiO2@ lipid-PEG-methotrexate nanoparticle for multimodal imaging and multistage targeted chemo-photodynamic therapy. Int J Pharm 2017; 521(1-2): 19-32.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.068] [PMID: 28163230]
[90]
He Y, Song W, Lei J, et al. Anti-CXCR4 monoclonal antibody conjugated to ultrasmall superparamagnetic iron oxide nanoparticles in an application of MR molecular imaging of pancreatic cancer cell lines. Acta Radiol 2012; 53(9): 1049-58.
[http://dx.doi.org/10.1258/ar.2012.120055] [PMID: 23012484]
[91]
He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanopar-ticles. Biomaterials 2010; 31(13): 3657-66.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.065] [PMID: 20138662]
[92]
Qiao Z, Shi X. Dendrimer-based molecular imaging contrast agents. Prog Polym Sci 2015; 44: 1-27.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.08.002]
[93]
Naserzadeh P, Ansari Esfeh F, Kaviani M, et al. Single-walled carbon nanotube, multi-walled carbon nanotube and Fe2O3 nanoparticles induced mitochondria mediated apoptosis in melanoma cells. Cutan Ocul Toxicol 2018; 37(2): 157-66.
[http://dx.doi.org/10.1080/15569527.2017.1363227] [PMID: 28768445]
[94]
Ramalingam V, Harshavardhan M, Kumar SD. Wet chemical mediated hematite α-Fe2O3 nanoparticles synthesis: Preparation, characteriza-tion and anticancer activity against human metastatic ovarian cancer. J Alloys Compd 2020; 834, 155118.
[http://dx.doi.org/10.1016/j.jallcom.2020.155118]
[95]
Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C. Duality of iron oxide nanoparticles in cancer therapy: Am-plification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 2016; 10(2): 2436-46.
[http://dx.doi.org/10.1021/acsnano.5b07249] [PMID: 26766814]
[96]
Shakeri-Zadeh A, Khoei S, Khoee S, Sharifi AM, Shiran M-B. Combination of ultrasound and newly synthesized magnetic nanocapsules affects the temperature profile of CT26 tumors in BALB/c mice. J Med Ultrason 2015; 42(1): 9-16.
[http://dx.doi.org/10.1007/s10396-014-0558-4] [PMID: 26578485]
[97]
Mitra S, Maitra A. Inorganic nanoparticles for therapeutics, drug and gene delivery.In: Yashwant VP, Hieu TT, Eds.Advances in Nano-technology and Applications. Louisville, Kentucky, USA: C.E.N.T.E.R.A. 2009.
[98]
Chu M. Magnetic Fe3O4 nanoparticles for cancer photothermal therapy.Bio-Inspired Nanomaterials And Applications: Nano Detection, Drug/Gene Delivery, Medical Diagnosis and Therapy. World Scientific 2015; pp. 67-89.
[http://dx.doi.org/10.1142/9789814616928_0004]
[99]
Tian X, Zhang L, Yang M, et al. Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10(1), e1476.
[http://dx.doi.org/10.1002/wnan.1476] [PMID: 28471067]
[100]
Mirrahimi M, Hosseini V, Kamrava SK, Attaran N, Beik J, Kooranifar S. S. Selective heat generation in cancer cells using a combination of 808 nm laser irradiation and the folate-conjugated Fe2O3@ Au nanocomplex. Artificial cells, nanomedicine, and biotechnology 2018; 46(sup1): 241-53.
[101]
Wu C, Yu C, Chu M. A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy. Int J Nanomedicine 2011; 6: 807-13.
[PMID: 21589648]
[102]
Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A. Application of gold nanoparticles in biomedical and drug deliv-ery. Artif Cells Nanomed Biotechnol 2016; 44(1): 410-22.
[http://dx.doi.org/10.3109/21691401.2014.955107] [PMID: 25229833]
[103]
Guo Q, Tang G, Zhu W, Luo Y, Gao X. In situ construction of Z-scheme FeS2/Fe2O3 photocatalyst via structural transformation of pyrite for photocatalytic degradation of carbamazepine and the synergistic reduction of Cr(VI). J Environ Sci (China) 2021; 101: 351-60.
[http://dx.doi.org/10.1016/j.jes.2020.08.029] [PMID: 33334529]
[104]
Jiang X, Zhang S, Ren F, et al. Ultrasmall magnetic CuFeSe2 ternary nanocrystals for multimodal imaging guided photothermal therapy of cancer. ACS Nano 2017; 11(6): 5633-45.
[http://dx.doi.org/10.1021/acsnano.7b01032] [PMID: 28525715]
[105]
Encina ER, Coronado EA. Size optimization of iron oxide@ noble metal core–shell nanohybrids for photothermal applications. J Phys Chem C 2016; 120(10): 5630-9.
[http://dx.doi.org/10.1021/acs.jpcc.5b11030]
[106]
Tuchina ES, Kozina KV, Shelest NA, Kochubey VI, Tuchin VV, Eds. Iron oxide nanoparticles in different modifications for antimicrobial phototherapy. ; Proceedings Volume 8955, Colloidal Nanoparticles for Biomedical Applications IX; 89551P (2014) In: SPIE BiOS. United States 2014.
[107]
Deng Y, Li E, Cheng X, et al. Facile preparation of hybrid core-shell nanorods for photothermal and radiation combined therapy. Nanoscale 2016; 8(7): 3895-9.
[http://dx.doi.org/10.1039/C5NR09102K] [PMID: 26818657]
[108]
Abed Z, Beik J, Laurent S, et al. Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnet-ic resonance imaging guidance. J Cancer Res Clin Oncol 2019; 145(5): 1213-9.
[http://dx.doi.org/10.1007/s00432-019-02870-x] [PMID: 30847551]
[109]
Stiegman AE, Park CD, Mileham M, Van de Burgt LJ, Kramer MP. Dynamics of Al/Fe2O3 MIC combustion from short single-pulse pho-tothermal initiation and time-resolved spectroscopy. Propellants Explos Pyrotech 2009; 34(4): 293-6.
[110]
Alavi AS, Meshkini A. Fabrication of poly(ethylene glycol)-coated mesoporous nanocomposite ZnO@Fe2O3 for methotrexate delivery: An integrated nanoplatform for dual-mode cancer therapy. Eur J Pharm Sci 2018; 115: 144-57.
[http://dx.doi.org/10.1016/j.ejps.2018.01.027] [PMID: 29353012]
[111]
Hosseini V, Mirrahimi M, Shakeri-Zadeh A, et al. Multimodal cancer cell therapy using Au@Fe2O3 core-shell nanoparticles in combina-tion with photo-thermo-radiotherapy. Photodiagn Photodyn Ther 2018; 24: 129-35.
[http://dx.doi.org/10.1016/j.pdpdt.2018.08.003] [PMID: 30077650]
[112]
Sahay G, Kim JO, Kabanov AV, Bronich TK. The exploitation of differential endocytic pathways in normal and tumor cells in the selec-tive targeting of nanoparticulate chemotherapeutic agents. Biomaterials 2010; 31(5): 923-33.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.101] [PMID: 19853293]
[113]
Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36(13): R167-81.
[http://dx.doi.org/10.1088/0022-3727/36/13/201]
[114]
Boutry S, Laurent S, Elst LV, Muller RN. Specific E-selectin targeting with a superparamagnetic MRI contrast agent. Contrast Media Mol Imaging 2006; 1(1): 15-22.
[http://dx.doi.org/10.1002/cmmi.87] [PMID: 17193596]
[115]
Sonvico F, Dubernet C, Colombo P, Couvreur P. Metallic colloid nanotechnology, applications in diagnosis and therapeutics. Curr Pharm Des 2005; 11(16): 2095-105.
[http://dx.doi.org/10.2174/1381612054065738] [PMID: 15974961]
[116]
Corot C, Robert P, Idée J-M, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006; 58(14): 1471-504.
[http://dx.doi.org/10.1016/j.addr.2006.09.013] [PMID: 17116343]
[117]
Cortajarena AL, Ortega D, Ocampo SM, Gonzalez-García A, Couleaud P, Miranda R. Engineering iron oxide nanoparticles for clinical settings. Nanobiomedicine 2014; 1(Godište): 1-2.
[http://dx.doi.org/10.5772/58841]
[118]
Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. Int J Nanomedicine 2015; 10: 1727-41.
[PMID: 25834422]
[119]
Long NV, Yang Y, Teranishi T, Thi CM, Cao Y, Nogami M. Biomedical applications of advanced multifunctional magnetic nanoparticles. J Nanosci Nanotechnol 2015; 15(12): 10091-107.
[http://dx.doi.org/10.1166/jnn.2015.11691] [PMID: 26682455]
[120]
Arbab AS, Bashaw LA, Miller BR, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 2003; 229(3): 838-46.
[http://dx.doi.org/10.1148/radiol.2293021215] [PMID: 14657318]
[121]
Venerando R, Miotto G, Magro M, et al. Magnetic nanoparticles with covalently bound self-assembled protein corona for advanced bio-medical applications. J Phys Chem C 2013; 117(39): 20320-31.
[http://dx.doi.org/10.1021/jp4068137]
[122]
Skopalik J, Polakova K, Havrdova M, et al. Mesenchymal stromal cell labeling by new uncoated superparamagnetic maghemite nanoparti-cles in comparison with commercial Resovist-an initial in vitro study. Int J Nanomedicine 2014; 9: 5355-72.
[http://dx.doi.org/10.2147/IJN.S66986] [PMID: 25484583]
[123]
Ma J, Li D, Zhong L, et al. Synthesis and characterization of biofunctional quaternized xylan-Fe2O3 core/shell nanocomposites and modi-fication with polylysine and folic acid. Carbohydr Polym 2018; 199: 382-9.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.003] [PMID: 30143142]
[124]
Pinho SL, Pereira GA, Voisin P, et al. Fine tuning of the relaxometry of γ-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thick-ness. ACS Nano 2010; 4(9): 5339-49.
[http://dx.doi.org/10.1021/nn101129r] [PMID: 20795638]
[125]
Pinho SL, Laurent S, Rocha J, et al. Relaxometric studies of γ-Fe2O3@ SiO2 core shell nanoparticles: When the coating matters. J Phys Chem C 2012; 116(3): 2285-91.
[http://dx.doi.org/10.1021/jp2086413]
[126]
Taboada E, Solanas R, Rodríguez E, Weissleder R, Roig A. Supercritical-fluid-assisted one-pot synthesis of biocompatible core (γ-Fe2O3)/shell (SiO2) nanoparticles as high relaxivity T2-contrast agents for magnetic resonance imaging. Adv Funct Mater 2009; 19(14): 2319-24.
[http://dx.doi.org/10.1002/adfm.200801681]
[127]
Daldrup-Link HE, Mohanty S, Ansari C, et al. Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors. JCI Insight 2016; 1(6), e85608.
[http://dx.doi.org/10.1172/jci.insight.85608] [PMID: 27182558]
[128]
Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003; 348(25): 2491-9.
[http://dx.doi.org/10.1056/NEJMoa022749] [PMID: 12815134]
[129]
Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res 2006; 67(1): 55-60.
[http://dx.doi.org/10.1002/ddr.20067]
[130]
Wang X, Li B, Li R, et al. Anti-CD133 monoclonal antibody conjugated immunomagnetic nanosensor for molecular imaging of targeted cancer stem cells. Sens Actuators B Chem 2018; 255: 3447-57.
[http://dx.doi.org/10.1016/j.snb.2017.09.175]
[131]
Choi JH, Nguyen FT, Barone PW, et al. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nano-particle complexes. Nano Lett 2007; 7(4): 861-7.
[http://dx.doi.org/10.1021/nl062306v] [PMID: 17335265]
[132]
Zhao G, Wang J, Peng X, Li Y, Yuan X, Ma Y. Facile solvothermal synthesis of mesostructured Fe3O4/chitosan nanoparticles as delivery vehicles for pH-responsive drug delivery and magnetic resonance imaging contrast agents. Chem Asian J 2014; 9(2): 546-53.
[http://dx.doi.org/10.1002/asia.201301072] [PMID: 24259489]
[133]
Gao W, Chan JM, Farokhzad OC. pH-Responsive nanoparticles for drug delivery. Mol Pharm 2010; 7(6): 1913-20.
[http://dx.doi.org/10.1021/mp100253e] [PMID: 20836539]
[134]
Ahmadi M, Pourmadadi M, Ghorbanian SA, Yazdian F, Rashedi H. Ultra pH-sensitive nanocarrier based on Fe2O3/chitosan/montmoril-lonite for quercetin delivery. Int J Biol Macromol 2021; 191: 738-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.023] [PMID: 34517028]
[135]
Colombo P, Sonvico F, Colombo G, Bettini R. Novel platforms for oral drug delivery. Pharm Res 2009; 26(3): 601-11.
[http://dx.doi.org/10.1007/s11095-008-9803-0] [PMID: 19132514]
[136]
Wang B, Xu C, Xie J, Yang Z, Sun S. pH controlled release of chromone from chromone-Fe3O4 nanoparticles. J Am Chem Soc 2008; 130(44): 14436-7.
[http://dx.doi.org/10.1021/ja806519m] [PMID: 18839952]
[137]
Xing R, Lin H, Jiang P, Qu F. Biofunctional mesoporous silica nanoparticles for magnetically oriented target and pH-responsive controlled release of ibuprofen. Colloids Surf A Physicochem Eng Asp 2012; 403: 7-14.
[http://dx.doi.org/10.1016/j.colsurfa.2012.03.017]
[138]
Murphy RF, Powers S, Cantor CR. Endosome pH measured in single cells by dual fluorescence flow cytometry: Rapid acidification of insulin to pH 6. J Cell Biol 1984; 98(5): 1757-62.
[http://dx.doi.org/10.1083/jcb.98.5.1757] [PMID: 6144684]
[139]
Majewski AP, Schallon A, Jérôme V, Freitag R, Müller AH, Schmalz H. Dual-responsive magnetic core-shell nanoparticles for nonviral gene delivery and cell separation. Biomacromolecules 2012; 13(3): 857-66.
[http://dx.doi.org/10.1021/bm2017756] [PMID: 22296556]
[140]
Shoaib M, Bahadur A, Saeed A, Rahman MS, Naseer MM. Biocompatible, pH-responsive, and biodegradable polyurethanes as smart anti-cancer drug delivery carriers. React Funct Polym 2018; 127: 153-60.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.04.010]
[141]
Medina-Reyes EI, Garcia-Viacobo D, Carrero-Martinez FA, Chirino YI. Applications and risks of nanomaterials used in regenerative med-icine, delivery systems, theranostics, and therapy. Crit Rev Ther Drug Carrier Syst 2017; 34(1): 35-61.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2017016983]
[142]
Nabid MR, Omrani I. Facile preparation of pH-responsive polyurethane nanocarrier for oral delivery. Mater Sci Eng C 2016; 69: 532-7.
[http://dx.doi.org/10.1016/j.msec.2016.07.017] [PMID: 27612744]
[143]
Wang H, Liu G, Gao H, Wang Y. A pH-responsive drug delivery system with an aggregation-induced emission feature for cell imaging and intracellular drug delivery. Polym Chem 2015; 6(26): 4715-8.
[http://dx.doi.org/10.1039/C5PY00584A]
[144]
Yan L, Chen X, Wang Z, et al. Size controllable and surface tunable zeolitic imidazolate framework-8-Poly(acrylic acid sodium salt) nano-composites for pH responsive drug release and enhanced in vivo cancer treatment. ACS Appl Mater Interfaces 2017; 9(38): 32990-3000.
[http://dx.doi.org/10.1021/acsami.7b10064] [PMID: 28876048]
[145]
Gürkan Polat T. Demiirel Topel S, Polat TG, Topel SD. pH-responsive carboxymethyl cellulose conjugated superparamagnetic iron oxide nanocarriers. J Sci Persp 2019; 3(2): 99-110.
[http://dx.doi.org/10.26900/jsp.3.011]
[146]
Maiti D, Mukhopadhyay S, Mohanta SC, Saha A, Devi PS. A multifunctional nanocomposite of magnetic γ-Fe2O3 and mesoporous fluo-rescent ZnO. J Alloys Compd 2015; 653: 187-94.
[http://dx.doi.org/10.1016/j.jallcom.2015.08.230]
[147]
Zhao C, Qiao X, Shao Q, Hassan M, Ma Z. Evolution of the lignin chemical structure during the bioethanol production process and its inhibition to enzymatic hydrolysis. Energy Fuels 2020; 34(5): 5938-47.
[http://dx.doi.org/10.1021/acs.energyfuels.0c00293]
[148]
Gerami SE, Pourmadadi M, Fatoorehchi H, Yazdian F, Rashedi H, Nigjeh MN. Preparation of pH-sensitive chi-tosan/polyvinylpyrrolidone/α-Fe2O3 nanocomposite for drug delivery application: Emphasis on ameliorating restrictions. Int J Biol Macromol 2021; 173: 409-20.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.067] [PMID: 33454326]
[149]
Li S, Zhang R, Wang D, Feng L, Cui K. Synthesis of hollow maghemite Fe2O3 particles for magnetic field and pH-responsive drug delivery and lung cancer treatment. Ceram Int 2020; 47(6): 7457-64.
[150]
Patil P, Parit S, Waifalkar P, et al. pH triggered curcumin release and antioxidant activity of curcumin loaded γ-Fe2O3 magnetic nanoparti-cles. Mater Lett 2018; 223: 178-81.
[http://dx.doi.org/10.1016/j.matlet.2018.04.008]
[151]
Li DQ, Wang SY, Meng YJ, Li JF, Li J. An injectable, self-healing hydrogel system from oxidized pectin/chitosan/γ-Fe2O3. Int J Biol Macromol 2020; 164: 4566-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.072] [PMID: 32941901]
[152]
Chichei A, Skowronek J, Kubaszewska M, Kanikowski M. Hyperthermia–description of a method and a review of clinical applications. Rep Pract Oncol Radiother 2007; 12(5): 267-75.
[http://dx.doi.org/10.1016/S1507-1367(10)60065-X]
[153]
Yang J, Park S-B, Yoon H-G, Huh Y-M, Haam S. Preparation of poly epsilon-caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int J Pharm 2006; 324(2): 185-90.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.029] [PMID: 16872766]
[154]
Islam MS. Development and Evaluation of Magnetic, Photocatalytic and Photothermal Nanoparticles and their Application to Cancer Therapy. PhD Dissertation Beijing: China Kagishima University 2012.
[155]
Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characteriza-tions, and biological applications. Chem Rev 2008; 108(6): 2064-110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[156]
Brazel CS. Magnetothermally-responsive nanomaterials: Combining magnetic nanostructures and thermally-sensitive polymers for trig-gered drug release. Pharm Res 2009; 26(3): 644-56.
[http://dx.doi.org/10.1007/s11095-008-9773-2] [PMID: 19005741]
[157]
Nagel S. Theoretische und experimentelle Untersuchungen zum Magnetischen Drug Targeting. Greifswald: Ernst-Moritz-Arndt-Universität 2004.
[158]
Batista S, Morales M, dos Santos W, Iglesias C, Baggio-Saitovitch E, Carriço A. Mechano-synthesis, structural and magnetic characteriza-tion, and heat release of α-Fe nanoparticles embedded in a wüstite matrix. J Magn Magn Mater 2015; 391: 83-8.
[http://dx.doi.org/10.1016/j.jmmm.2015.04.112]
[159]
Araújo-Neto R, Silva-Freitas E, Carvalho J, et al. Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hy-perthermia applications. J Magn Magn Mater 2014; 364: 72-9.
[http://dx.doi.org/10.1016/j.jmmm.2014.04.001]
[160]
Alomari M, Almohazey D, Almofty S, Alhibshi A, Almansour I, Kaewsaneha C. Magnetic-responsive polysaccharide-inorganic composite materials for cancer therapeutics.Polysaccharide Carriers for Drug Delivery. Maiti S, Jana S, Eds.Elsevier Netherlands 2019; pp. 179-216.
[http://dx.doi.org/10.1016/B978-0-08-102553-6.00008-8]
[161]
Ye Y, Chen H, Zou Y, Ye Y, Zhao H. Corrosion protective mechanism of smart graphene-based self-healing coating on carbon steel. Corros Sci 2020; 174, 108825.
[http://dx.doi.org/10.1016/j.corsci.2020.108825]
[162]
Viswanath B, Kim S, Lee K. Recent insights into nanotechnology development for detection and treatment of colorectal cancer. Int J Nanomedicine 2016; 11: 2491-504.
[PMID: 27330292]
[163]
Rosengart AJ, Kaminski MD, Chen H, Caviness PL, Ebner AD, Ritter JA. Magnetizable implants and functionalized magnetic carriers: A novel approach for noninvasive yet targeted drug delivery. J Magn Magn Mater 2005; 293(1): 633-8.
[http://dx.doi.org/10.1016/j.jmmm.2005.01.087]
[164]
Rahban D, Doostan M, Salimi A. Cancer therapy; prospects for application of nanoparticles for magnetic-based hyperthermia. Cancer Invest 2020; 38(8-9): 507-21.
[http://dx.doi.org/10.1080/07357907.2020.1817482] [PMID: 32870068]
[165]
Magro M, Vianello F. Bare iron oxide nanoparticles: Surface tunability for biomedical, sensing and environmental applications. Nanomaterials (Basel) 2019; 9(11): 1608.
[http://dx.doi.org/10.3390/nano9111608] [PMID: 31726776]
[166]
Yan S, Zhang D, Gu N, et al. Therapeutic effect of Fe2O3 nanoparticles combined with magnetic fluid hyperthermia on cultured liver can-cer cells and xenograft liver cancers. J Nanosci Nanotechnol 2005; 5(8): 1185-92.
[http://dx.doi.org/10.1166/jnn.2005.219] [PMID: 16193975]
[167]
Ramos-Guivar JA, Morales MA, Litterst FJ. γ-Fe2O3 nanoparticles embedded in nanohydroxyapatite matrix for magnetic hyperthermia and in vitro osteoblast cell studies. Ceram Int 2020; 46(8): 10658-66.
[http://dx.doi.org/10.1016/j.ceramint.2020.01.072]
[168]
Luo D, Saltzman WM. Enhancement of transfection by physical concentration of DNA at the cell surface. Nat Biotechnol 2000; 18(8): 893-5.
[http://dx.doi.org/10.1038/78523] [PMID: 10932162]
[169]
Curiel DT. Strategies to adapt adenoviral vectors for targeted delivery. Ann N Y Acad Sci 1999; 886(1): 158-71.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb09409.x] [PMID: 10667212]
[170]
Scherer F, Anton M, Schillinger U, et al. Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 2002; 9(2): 102-9.
[http://dx.doi.org/10.1038/sj.gt.3301624] [PMID: 11857068]
[171]
Lorente C, Cabeza L, Clares B, et al. Formulation and in vitro evaluation of magnetoliposomes as a potential nanotool in colorectal cancer therapy. Colloids Surf B Biointerfaces 2018; 171: 553-65.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.070] [PMID: 30096477]
[172]
Tadic M, Trpkov D, Kopanja L, Vojnovic S, Panjan M. Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis con-ditions, structure, particle shape analysis, cytotoxicity and magnetic properties. J Alloys Compd 2019; 792: 599-609.
[http://dx.doi.org/10.1016/j.jallcom.2019.03.414]
[173]
Wei W, Ding Y, Zhao A, et al. Monodisperse and mesoporous walnut kernel-like SiO2/γ-Fe2O3 nanocomposite: Synthesis, magnetic prop-erties, and application in drug delivery. J Alloys Compd 2017; 728: 585-91.
[http://dx.doi.org/10.1016/j.jallcom.2017.09.065]
[174]
Cao S-W, Zhu Y-J, Ma M-Y, Li L, Zhang L. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and γ-Fe2O3: Preparation and potential application in drug delivery. J Phys Chem C 2008; 112(6): 1851-6.
[http://dx.doi.org/10.1021/jp077468+]
[175]
Kumar A, Sahoo B, Montpetit A, Behera S, Lockey RF, Mohapatra SS. Development of hyaluronic acid-Fe2O3 hybrid magnetic nanoparti-cles for targeted delivery of peptides. Nanomedicine 2007; 3(2): 132-7.
[http://dx.doi.org/10.1016/j.nano.2007.03.001] [PMID: 17572355]
[176]
Korkut SE, Akyüz D. Özdogan K, Yerli Y, Koca A, Sener MK. TEMPO-functionalized zinc phthalocyanine: Synthesis, magnetic proper-ties, and its utility for electrochemical sensing of ascorbic acid. Dalton Trans 2016; 45(7): 3086-92.
[http://dx.doi.org/10.1039/C5DT04513D] [PMID: 26766137]
[177]
Li Y, Liu Y, Kim E, et al. Electrodeposition of a magnetic and redox-active chitosan film for capturing and sensing metabolic active bacte-ria. Carbohydr Polym 2018; 195: 505-14.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.096] [PMID: 29805005]
[178]
Arai R, Li M, Toyoda R, Maeda H, Nishihara H. Redox-active, luminescent coordination nanosheet capsules containing magnetite. Sci Rep 2020; 10(1): 13818.
[http://dx.doi.org/10.1038/s41598-020-70715-6] [PMID: 32796883]
[179]
Akhtar H, Yazdian F, Rashedi H. Kosmotropic and chaotropic effect of biocompatible Fe3O4 nanoparticles on egg white lysozyme; the key role of nanoparticle-protein corona formation. J Mol Struct 2021; 1253, 132016.
[180]
Gong T, Yang X, Fang J-J, Sui Q, Xi F-G, Gao E-Q. Distinct chromic and magnetic properties of metal-organic frameworks with a redox ligand. ACS Appl Mater Interfaces 2017; 9(6): 5503-12.
[http://dx.doi.org/10.1021/acsami.6b15540] [PMID: 28084723]
[181]
Mousavi S-D, Maghsoodi F, Panahandeh F, Yazdian-Robati R, Reisi-Vanani A, Tafaghodi M. Doxorubicin delivery via magnetic nanomi-celles comprising from reduction-responsive poly(ethylene glycol) b poly(ε- caprolactone) (PEG-SS-PCL) and loaded with superparamag-netic iron oxide (SPIO) nanoparticles: Preparation, characterization and simulation. Mater Sci Eng C 2018; 92: 631-43.
[http://dx.doi.org/10.1016/j.msec.2018.06.066] [PMID: 30184790]
[182]
Ren S, Yang J, Ma L, et al. Ternary-responsive drug delivery with activatable dual mode contrast-enhanced in vivo imaging. ACS Appl Mater Interfaces 2018; 10(38): 31947-58.
[http://dx.doi.org/10.1021/acsami.8b10564] [PMID: 30179443]
[183]
Stephen ZR, Kievit FM, Veiseh O, et al. Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O6-benzylguanine to brain tumors. ACS Nano 2014; 8(10): 10383-95.
[http://dx.doi.org/10.1021/nn503735w] [PMID: 25247850]
[184]
Ansari C, Tikhomirov GA, Hong SH, et al. Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small 2014; 10(3): 566-575-417.
[http://dx.doi.org/10.1002/smll.201301456] [PMID: 24038954]
[185]
Yang Y, Aw J, Chen K, et al. Enzyme-responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging. Chem Asian J 2011; 6(6): 1381-9.
[http://dx.doi.org/10.1002/asia.201000905] [PMID: 21548100]
[186]
Sawant PD. Nano-theranostics–innovative synergy of therapeutics, diagnostics, prognosis and continuous moni-toring using multifunc-tional nanomaterials. BAOJ Nanotech 2016; 22(1): 008.
[187]
Mahmoudi M, Serpooshan V, Laurent S. Engineered nanoparticles for biomolecular imaging. Nanoscale 2011; 3(8): 3007-26.
[http://dx.doi.org/10.1039/c1nr10326a] [PMID: 21717012]
[188]
Anwar A, Siddiqui R, Khan NA. Importance of theranostics in rare brain-eating amoebae infections. ACS Chem Neurosci 2019; 10(1): 6-12.
[http://dx.doi.org/10.1021/acschemneuro.8b00321] [PMID: 30149693]
[189]
Ravichandran M, Oza G, Velumani S, et al. Plasmonic/magnetic multifunctional nanoplatform for cancer theranostics. Sci Rep 2016; 6(1): 34874.
[http://dx.doi.org/10.1038/srep34874] [PMID: 27721391]
[190]
Zhu L, Zhou Z, Mao H, Yang L. Magnetic nanoparticles for precision oncology: Theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond) 2017; 12(1): 73-87.
[http://dx.doi.org/10.2217/nnm-2016-0316] [PMID: 27876448]
[191]
Li M, Li J, Chen J, et al. Platelet membrane biomimetic magnetic nanocarriers for targeted delivery and in situ generation of nitric oxide in early ischemic stroke. ACS Nano 2020; 14(2): 2024-35.
[http://dx.doi.org/10.1021/acsnano.9b08587] [PMID: 31927980]
[192]
Kuchma E, Kubrin S, Soldatov A. The local atomic structure of colloidal superparamagnetic iron oxide nanoparticles for theranostics in oncology. Biomedicines 2018; 6(3): 78.
[http://dx.doi.org/10.3390/biomedicines6030078] [PMID: 30021987]
[193]
Arnedos M, Vicier C, Loi S, et al. Precision medicine for metastatic breast cancer--limitations and solutions. Nat Rev Clin Oncol 2015; 12(12): 693-704.
[http://dx.doi.org/10.1038/nrclinonc.2015.123] [PMID: 26196250]
[194]
Zhang M, Chen X, Zhang L, Li L, Su Z-M, Wang C. Spadix-bract structured nanobowls for bimodal imaging-guided multidrug chemo-photothermal synergistic therapy. Chem Mater 2018; 30(11): 3722-33.
[http://dx.doi.org/10.1021/acs.chemmater.8b00655]
[195]
Ansari MO, Ahmad MF, Shadab G, Siddique HR. Superparamagnetic iron oxide nanoparticles based cancer theranostics: A double edge sword to fight against cancer. J Drug Deliv Sci Technol 2018; 45: 177-83.
[http://dx.doi.org/10.1016/j.jddst.2018.03.017]
[196]
Viņas B,, Antonia M,, Estelrich I,, Latrās J. Magnetic nanoparticles: From diagnosis to therapy in: Recent Advancess in pharmaceutical sciences Viii. Muñoz-Torrero D Cajal Y, and Maria JL, Eds. Kerala India: Research Post 2018.
[197]
Viseu T, Lopes CM, Fernandes E, Oliveira MECDR, Lúcio M. A systematic review and critical analysis of the role of graphene-based nanomaterials in cancer theranostics. Pharmaceutics 2018; 10(4): 282.
[http://dx.doi.org/10.3390/pharmaceutics10040282] [PMID: 30558378]
[198]
Benyettou F, Das G, Nair AR, et al. Covalent organic framework embedded with magnetic nanoparticles for MRI and chemo-thermotherapy. J Am Chem Soc 2020; 142(44): 18782-94.
[http://dx.doi.org/10.1021/jacs.0c05381] [PMID: 33090806]
[199]
Liu Y, Yang K, Cheng L, et al. PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: Potential theranostic applications and in vivo toxicity studies. Nanomedicine 2013; 9(7): 1077-88.
[http://dx.doi.org/10.1016/j.nano.2013.02.010] [PMID: 23499668]
[200]
Xuan SH, Lee S-F, Lau JT-F, et al. Photocytotoxicity and magnetic relaxivity responses of dual-porous γ-Fe2O3@meso-SiO2 micro-spheres. ACS Appl Mater Interfaces 2012; 4(4): 2033-40.
[http://dx.doi.org/10.1021/am300008x] [PMID: 22409402]
[201]
Zhang L, Dong W-F, Sun H-B. Multifunctional superparamagnetic iron oxide nanoparticles: Design, synthesis and biomedical photonic applications. Nanoscale 2013; 5(17): 7664-84.
[http://dx.doi.org/10.1039/c3nr01616a] [PMID: 23877222]
[202]
Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modifica-tion and applications in chemotherapy. Adv Drug Deliv Rev 2011; 63(1-2): 24-46.
[http://dx.doi.org/10.1016/j.addr.2010.05.006] [PMID: 20685224]
[203]
Sharma HS, Menon PK, Lafuente JV, et al. The role of functionalized magnetic iron oxide nanoparticles in the central nervous system injury and repair: New potentials for neuroprotection with Cerebrolysin therapy. J Nanosci Nanotechnol 2014; 14(1): 577-95.
[http://dx.doi.org/10.1166/jnn.2014.9213] [PMID: 24730284]
[204]
Sabale S, Kandesar P, Jadhav V, Komorek R, Motkuri RK, Yu X-Y. Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold. Biomater Sci 2017; 5(11): 2212-25.
[http://dx.doi.org/10.1039/C7BM00723J] [PMID: 28901350]
[205]
Piñeiro Y, Vargas Z, Rivas J. López-Quintela MA. Iron oxide based nanoparticles for magnetic hyperthermia strategies in biological ap-plications. Eur J Inorg Chem 2015; 2015(27): 4495-509.
[http://dx.doi.org/10.1002/ejic.201500598]
[206]
Park K, Liang G, Ji X, et al. Structural and magnetic properties of gold and silica doubly coated γ-Fe2O3 nanoparticles. J Phys Chem C 2007; 111(50): 18512-9.
[http://dx.doi.org/10.1021/jp0757457]
[207]
Dumitrache F, Morjan I, Fleaca C, et al. Highly magnetic Fe2O3 nanoparticles synthesized by laser pyrolysis used for biological and heat transfer applications. Appl Surf Sci 2015; 336: 297-303.
[http://dx.doi.org/10.1016/j.apsusc.2014.12.098]
[208]
Li P, He Z, Luo C, et al. α-Fe2O3@ dopamine core-shell nanocomposites and their highly enhanced photoacoustic performance. Appl Surf Sci 2019; 466: 185-92.
[http://dx.doi.org/10.1016/j.apsusc.2018.10.021]
[209]
Mekawy M, Saito A, Shimizu H, Tominaga T. Targeting of apoptotic cells using functionalized Fe2O3 nanoparticles. Nanomaterials (Basel) 2015; 5(2): 874-84.
[http://dx.doi.org/10.3390/nano5020874] [PMID: 28347041]
[210]
Li L, Li Q, Liao Z, et al. Magnetism-resolved separation and fluorescence quantification for near-simultaneous detection of multiple path-ogens. Anal Chem 2018; 90(15): 9621-8.
[http://dx.doi.org/10.1021/acs.analchem.8b02572] [PMID: 30001487]
[211]
Naz S, Islam M, Tabassum S, Fernandes NF, de Blanco EJC, Zia M. Green synthesis of hematite (α-Fe2O3) nanoparticles using Rhus pun-jabensis extract and their biomedical prospect in pathogenic diseases and cancer. J Mol Struct 2019; 1185: 1-7.
[http://dx.doi.org/10.1016/j.molstruc.2019.02.088]
[212]
Sun K, Xu C, Hu T, et al. γ-Fe2O3/La-MOFs@ SiO2 for magnetic resonance/fluorescence dual mode imaging and pH-drug delivery. Mater Lett 2018; 228: 216-9.
[http://dx.doi.org/10.1016/j.matlet.2018.06.018]
[213]
Zhang Q, Wang P, Li X, et al. Preparation of highly dispersed γ-Fe2O3 and GdPO4 co-functionalized mesoporous carbon spheres for dual-mode MR imaging and anti-cancer drug carrying. J Mater Chem B Mater Biol Med 2017; 5(20): 3765-70.
[http://dx.doi.org/10.1039/C7TB00614D] [PMID: 32264065]
[214]
Di Martino A, Guselnikova AO, Kurtukov VV, Postnikov PS. Sedlarík V, Eds. Development of theranostic agents based on iron oxide-gadolinium-chitosan for controlled release of doxorubicin. 8th International Conference on Nanomaterials-Research & Application (NANOCON 2016).
[215]
Shen Z, Chen T, Ma X, et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T 1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 2017; 11(11): 10992-1004.
[http://dx.doi.org/10.1021/acsnano.7b04924] [PMID: 29039917]
[216]
Zhou J, Li J, Ding X, et al. Multifunctional Fe2O3@PPy-PEG nanocomposite for combination cancer therapy with MR imaging. Nanotechnology 2015; 26(42), 425101.
[http://dx.doi.org/10.1088/0957-4484/26/42/425101] [PMID: 26422003]
[217]
Liu J, Chen H, Fu Y, et al. Fabrication of multifunctional ferric oxide nanoparticles for tumor-targeted magnetic resonance imaging and precise photothermal therapy with magnetic field enhancement. J Mater Chem B Mater Biol Med 2017; 5(43): 8554-62.
[http://dx.doi.org/10.1039/C7TB01959A] [PMID: 32264523]
[218]
Ling J, Gong S, Xia Y. Monodisperse Fe2O3 Supraparticles: Eco-Friendly Fabrication, Gallic Acid Modification, Size-Dependent Photo-thermal Conversion Efficiency, and Cellular Uptake. Adv Mater Interfaces 2020; 7(18), 2000804.
[http://dx.doi.org/10.1002/admi.202000804]
[219]
Zhong D, Zhao J, Li Y, et al. Laser-triggered aggregated cubic α-Fe2O3@Au nanocomposites for magnetic resonance imaging and photo-thermal/enhanced radiation synergistic therapy. Biomaterials 2019; 219, 119369.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119369] [PMID: 31351244]
[220]
Chen H, Liu F, Lei Z, Ma L, Wang Z. Fe2O3@ Au core@ shell nanoparticle–graphene nanocomposites as theranostic agents for bioimaging and chemo-photothermal synergistic therapy. RSC Advances 2015; 5(103): 84980-7.
[http://dx.doi.org/10.1039/C5RA17143A]
[221]
Sotiriou GA, Starsich F, Dasargyri A, et al. Photothermal killing of cancer cells by the controlled plasmonic coupling of silica-coated Au/Fe2O3 nanoaggregates. Adv Funct Mater 2014; 24(19): 2818-27.
[http://dx.doi.org/10.1002/adfm.201303416]
[222]
Nandi R, Mishra S, Maji TK, et al. A novel nanohybrid for cancer theranostics: Folate sensitized Fe2O3 nanoparticles for colorectal cancer diagnosis and photodynamic therapy. J Mater Chem B Mater Biol Med 2017; 5(21): 3927-39.
[http://dx.doi.org/10.1039/C6TB03292C] [PMID: 32264254]
[223]
Wang X, Zhang H, Jing H, Cui L. Highly efficient labeling of human lung cancer cells using cationic poly-l-lysine-assisted magnetic iron oxide nanoparticles. Nano-Micro Lett 2015; 7(4): 374-84.
[http://dx.doi.org/10.1007/s40820-015-0053-5] [PMID: 30464985]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy