Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

Tyrosinase Inhibition by Novel Benzimidazole-thione Schiff Base Derivatives

Author(s): Wei Zhou, Junyuan Tang, Xinchong Zhou and Jinbing Liu*

Volume 19, Issue 9, 2022

Published on: 24 March, 2022

Page: [782 - 790] Pages: 9

DOI: 10.2174/1570180819666220210100037

Price: $65

Abstract

Background: Tyrosinase is the enzyme responsible for the conversion of tyrosine to dopaquinone, which is related to melanoma, neurodegenerative disorders, freckles, pigmented acne and age spots. Controlling the tyrosinase activity could be an important way for treating overproduction of melanin.

Objective: The development of safe and specific tyrosinase inhibitors could be used to treat hypermelanosis.

Methods: 5-nitro-1H-benzo[d]imidazole-2(3H)-thione was synthesized from 4-nitro-o-phenylenediamine and carbon disulfide. The nitro group of 5-nitro-1H- S-1 ESI-HRMS benzo[d]imidazole-2(3H)-thione was reduced with iron powder. The 5-amino-1H-benzo[d]imidazole- 2(3H)-thione Schiff base derivatives were obtained by the reaction of 5-amino-1H-benzo[d]imidazole-2(3H)-thione with substituted benzaldehyde. The tyrosinase inhibitory activities were investigated. The studies of kinetic analysis, metalchelating properties, docking and cytotoxicity were also performed.

Results: All of the compounds showed strong tyrosinase inhibitory activities with 5-((4-nitrobenzylidene) amino)-1H-benzo [d]imidazole-2(3H)-thione (S-4) as the best tyrosinase inhibitor with an IC50 value of 4.8 ± 1.4 nM. Compound S-4 exhibited mixed type inhibition of mushroom tyrosinase, with Ki 15 nM and Kis 42 nM. Copper binding to S-4 was detected spectrophotometrically and 1-100 μΜ S-4 displayed negligible cytotoxicity to murine B16 melanoma cells.

Conclusion: Our results demonstrated that these benzimidazolethione Schiff base derivatives might be promising candidates as tyrosinase inhibitors.

Keywords: Benzimidazolethione, schiff base, tyrosinase inhibition activity, mixed type inhibition, cytotoxicity, docking study.

Graphical Abstract

[1]
Mustafa, M.N.; Saeed, A.; Channar, P.A.; Larik, F.A.; Zain-Ul Abideen, M.; Shabir, G.; Abbas, Q.; Hassan, M.; Raza, H.; Seo, S.Y. Syn-thesis, molecular docking and kinetic studies of novel quinolinyl based acyl thioureas as mushroom tyrosinase inhibitors and free radical scavengers. Bioorg. Chem., 2019, 90, 103063-103071.
[http://dx.doi.org/10.1016/j.bioorg.2019.103063] [PMID: 31220666]
[2]
Dehghani, Z.; Khoshneviszadeh, M.; Khoshneviszadeh, M.; Ranjbar, S. Veratric acid derivatives containing benzylidene-hydrazine moie-ties as promising tyrosinase inhibitors and free radical scavengers. Bioorg. Med. Chem., 2019, 27(12), 2644-2651.
[http://dx.doi.org/10.1016/j.bmc.2019.04.016] [PMID: 31000406]
[3]
Ullah, S.; Park, Y.; Park, C.; Lee, S.; Kang, D.; Yang, J.; Akter, J.; Chun, P.; Moon, H.R. Antioxidant, anti-tyrosinase and anti-melanogenic effects of (E)-2,3-diphenylacrylic acid derivatives. Bioorg. Med. Chem., 2019, 27(11), 2192-2200.
[http://dx.doi.org/10.1016/j.bmc.2019.04.020] [PMID: 31027707]
[4]
Santi, M.D.; Peralta, M.A.; Puiatti, M.; Cabrera, J.L.; Ortega, M.G. Melanogenic inhibitory effects of Triangularin in B16F0 melanoma cells, in vitro and molecular docking studies. Bioorg. Med. Chem., 2019, 27(16), 3722-3728.
[http://dx.doi.org/10.1016/j.bmc.2019.06.041] [PMID: 31272835]
[5]
Ullah, S.; Park, C.; Ikram, M.; Kang, D.; Lee, S.; Yang, J.; Park, Y.; Yoon, S.; Chun, P.; Moon, H.R. Tyrosinase inhibition and anti-melanin generation effect of cinnamamide analogues. Bioorg. Chem., 2019, 87, 43-55.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.001] [PMID: 30856375]
[6]
Chortani, S.; Nimbarte, V.D.; Horchani, M.; Ben Jannet, H.; Romdhane, A. Synthesis, biological evaluation and molecular docking analysis of novel benzopyrimidinone derivatives as potential anti-tyrosinase agents. Bioorg. Chem., 2019, 92, 103270-103279.
[http://dx.doi.org/10.1016/j.bioorg.2019.103270] [PMID: 31539749]
[7]
Karakaya, G.; Türe, A.; Ercan, A.; Öncül, S.; Aytemir, M.D. Synthesis, computational molecular docking analysis and effectiveness on tyrosinase inhibition of kojic acid derivatives. Bioorg. Chem., 2019, 88, 102950-102960.
[http://dx.doi.org/10.1016/j.bioorg.2019.102950] [PMID: 31075740]
[8]
Xu, Y.; Stokes, A.H.; Freeman, W.M.; Kumer, S.C.; Vogt, B.A.; Vrana, K.E. Tyrosinase mRNA is expressed in human substantia nigra. Brain Res. Mol. Brain Res., 1997, 45(1), 159-162.
[http://dx.doi.org/10.1016/S0169-328X(96)00308-7] [PMID: 9105685]
[9]
Yu, Q.; Fan, L.; Duan, Z. Five individual polyphenols as tyrosinase inhibitors: Inhibitory activity, synergistic effect, action mechanism, and molecular docking. Food Chem., 2019, 297, 124910-124920.
[http://dx.doi.org/10.1016/j.foodchem.2019.05.184] [PMID: 31253292]
[10]
Ortiz-Urquiza, A.; Keyhani, N.O. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects, 2013, 4(3), 357-374.
[http://dx.doi.org/10.3390/insects4030357] [PMID: 26462424]
[11]
Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 403-425.
[http://dx.doi.org/10.1080/14756366.2016.1256882] [PMID: 28097901]
[12]
Ielo, L.; Deri, B.; Germanò, M.P.; Vittorio, S.; Mirabile, S.; Gitto, R.; Rapisarda, A.; Ronsisvalle, S.; Floris, S.; Pazy, Y.; Fais, A.; Fishman, A. Exploiting the 1-(4-fluorobenzyl)piperazine fragment for the -melanogenicagents: Design, synthesis, structural insights and biological profile. Eur. J. Med. Chem., 2019, 178, 380-389.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.019] [PMID: 31202126]
[13]
Tanaka, Y.; Suzuki, M.; Kodachi, Y.; Nihei, K.I. Molecular design of potent, hydrophilic tyrosinase inhibitors based on the natural dihy-drooxyresveratrol skeleton. Carbohydr. Res., 2019, 472, 42-49.
[http://dx.doi.org/10.1016/j.carres.2018.11.006] [PMID: 30471509]
[14]
Wang, D.; Zhu, J.; Xu, J-R.; Ji, D-D. Synthesis of N-hydroxycinnamoyl amide derivatives and evaluation of their anti-oxidative and anti-tyrosinase activities. Bioorg. Med. Chem., 2019, 27(20), 114918-114928.
[http://dx.doi.org/10.1016/j.bmc.2019.05.031] [PMID: 31178269]
[15]
Barros, M.R.; Menezes, T.M.; da Silva, L.P.; Pires, D.S.; Princival, J.L.; Seabra, G.; Neves, J.L. Furan inhibitory activity against tyrosinase and impact on B16F10 cell toxicity. Int. J. Biol. Macromol., 2019, 136, 1034-1041.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.120] [PMID: 31233796]
[16]
Chen, Y.M.; Su, W.C.; Li, C.; Shi, Y.; Chen, Q.X.; Zheng, J.; Tang, D.L.; Chen, S.M.; Wang, Q. Anti-melanogenesis of novel kojic acid derivatives in B16F10 cells and zebrafish. Int. J. Biol. Macromol., 2019, 123, 723-731.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.031] [PMID: 30414415]
[17]
Radhakrishnan, S.; Shimmon, R.; Conn, C.; Baker, A. Design, synthesis and biological evaluation of hydroxy substituted amino chalcone compounds for antityrosinase activity in B16 cells. Bioorg. Chem., 2015, 62, 117-123.
[http://dx.doi.org/10.1016/j.bioorg.2015.08.005] [PMID: 26333206]
[18]
Lee, S.; Ullah, S.; Park, C.; Won Lee, H.; Kang, D.; Yang, J.; Akter, J.; Park, Y.; Chun, P.; Moon, H.R. Inhibitory effects of N-(acryloyl)benzamide derivatives on tyrosinase and melanogenesis. Bioorg. Med. Chem., 2019, 27(17), 3929-3937.
[http://dx.doi.org/10.1016/j.bmc.2019.07.034] [PMID: 31345746]
[19]
Varun, B.V.; Prabhu, K.R. Regioselective thiolation of arenes and heteroarenes: C-H functionalization strategy for C-S bond formation. J. Org. Chem., 2014, 79(20), 9655-9668.
[http://dx.doi.org/10.1021/jo501793q] [PMID: 25296156]
[20]
Chang, L.; Lee, S-Y.; Leonczak, P.; Rozenski, J.; De Jonghe, S.; Hanck, T.; Müller, C.E.; Herdewijn, P. Imidazopyridine- and purine-thioacetamide derivatives: Potent inhibitors of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). J. Med. Chem., 2014, 57(23), 10080-10100.
[http://dx.doi.org/10.1021/jm501434y] [PMID: 25372276]
[21]
Santi, M.D.; Peralta, M.A.; Puiatti, M. Diversity-oriented one-pot synthesis of novel imidazo [4′,5′:4,5]benzo[e] [1,4] thiazepinones and benzo[d]imidazolyl thiazolidinones through Ptsa promoted cyclization and evaluation of antimicrobial and antiinflammatory activities. J. Heterocycl. Chem., 2018, 7, 1579-1588.
[http://dx.doi.org/10.1016/j.bmc.2019.06.041] [PMID: 31272835]
[22]
Samanta, S.; Lim, T.L.; Lam, Y. Synthesis and in vitro evaluation of west nile virus protease inhibitors based on the 2-{6-[2-(5-phenyl-4H-{1,2,4]triazol-3ylsulfanyl)acetylamino]benzothiazol-2-ylsulfanyl}acetamide scaffold. ChemMedChem, 2013, 8, 994-1001.
[http://dx.doi.org/10.1002/cmdc.201300114] [PMID: 23619931]
[23]
Garg, S.; Raghav, N. Synthesis of novel chalcones of Schiff’s bases and to study their effect on bovine serum albumin. Asian J. Pharm. Clin. Res., 2013, 6, 181-184.https://innovareacademics.in/journals/index.php/ajpcr/article/view/382
[24]
Salem, M.S.; Hussein, R.A.; El-Sayed, W.M. Substitution at phenyl rings of chalcone and schiff base moieties accounts for their antipro-liferative activity. Anti-Cancer Agent. Anticancer. Agents Med. Chem., 2019, 19(5), 620-626.
[http://dx.doi.org/10.2174/1871520619666190225122338] [PMID: 30799796]
[25]
Mary, C.P.V.; Shankar, R.; Vijayakumar, S. Theoretical insights into the metal chelating and antimicrobial properties of the chalcone based Schiff bases. Mol. Simul., 2019, 45, 636-645.
[http://dx.doi.org/10.1080/08927022.2019.1573370]
[26]
Liu, J.; Cao, R.; Yi, W.; Ma, C.; Wan, Y.; Zhou, B.; Ma, L.; Song, H. A class of potent tyrosinase inhibitors: Alkylidenethiosemicarbazide compounds. Eur. J. Med. Chem., 2009, 44(4), 1773-1778.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.002] [PMID: 18524420]
[27]
Liu, J.; Yi, W.; Wan, Y.; Ma, L.; Song, H. 1-(1-Arylethylidene)thiosemicarbazide derivatives: A new class of tyrosinase inhibitors. Bioorg. Med. Chem., 2008, 16(3), 1096-1102.
[http://dx.doi.org/10.1016/j.bmc.2007.10.102] [PMID: 18326070]
[28]
Tang, J.; Liu, J.; Wu, F. Molecular docking studies and biological evaluation of 1,3,4-thiadiazole derivatives bearing Schiff base moieties as tyrosinase inhibitors. Bioorg. Chem., 2016, 69, 29-36.
[http://dx.doi.org/10.1016/j.bioorg.2016.09.007] [PMID: 27669118]
[29]
Peng, Z.; Wang, G.; Zeng, Q.H.; Li, Y.; Wu, Y.; Liu, H.; Wang, J.J.; Zhao, Y. Synthesis, antioxidant and anti-tyrosinase activity of 1,2,4-triazole hydrazones as antibrowning agents. Food Chem., 2021, 341(Pt 2), 128265-128274.
[http://dx.doi.org/10.1016/j.foodchem.2020.128265] [PMID: 33031957]
[30]
Zhao, Z.; Liu, G.; Meng, Y.; Tian, J.; Chen, X.; Shen, M.; Li, Y.; Li, B.; Gao, C.; Wu, S.; Li, C.; He, X.; Jiang, R.; Qian, M.; Zheng, X. Syn-thesis and anti-tyrosinase mechanism of the substituted vanillyl cinnamate analogues. Bioorg. Chem., 2019, 93, 103316-103327.
[http://dx.doi.org/10.1016/j.bioorg.2019.103316] [PMID: 31585271]
[31]
Liu, C.; Yi, C.; Liu, J. Synthesis and biological activity of benzimidazolidone derivatives. Shandong Chem. Ind., 2020, 11, 11-13.
[32]
Kim, D.; Park, J.; Kim, J.; Han, C.; Yoon, J.; Kim, N.; Seo, J.; Lee, C. Flavonoids as mushroom tyrosinase inhibitors: a fluorescence quenching study. J. Agric. Food Chem., 2006, 54(3), 935-941.
[http://dx.doi.org/10.1021/jf0521855] [PMID: 16448205]

© 2024 Bentham Science Publishers | Privacy Policy