[1]
Payne, S. Introduction to RNA Viruses.Viruses; Elsevier, 2017, pp. 97-105.
[http://dx.doi.org/10.1016/B978-0-12-803109-4.00010-6]
[http://dx.doi.org/10.1016/B978-0-12-803109-4.00010-6]
[2]
Yamauchi, Y.; Helenius, A. Virus Entry at a Glance. J. Cell Sci., 2013, 126(Pt 6), 1289-1295.
[http://dx.doi.org/10.1242/jcs.119685] [PMID: 23641066s]
[http://dx.doi.org/10.1242/jcs.119685] [PMID: 23641066s]
[3]
Hu, Z.; Rolt, A.; Hu, X.; Ma, C.D.; Le, D.J.; Park, S.B.; Houghton, M.; Southall, N.; Anderson, D.E.; Talley, D.C.; Lloyd, J.R.; Marugan, J.C.; Liang, T.J. Chlorcyclizine Inhibits Viral Fusion of Hepatitis C Virus Entry by Directly Targeting HCV Envelope Glycoprotein 1. Cell Chem. Biol., 2020, 27(7), 780-792.e5.
[http://dx.doi.org/10.1016/j.chembiol.2020.04.006] [PMID: 32386595]
[http://dx.doi.org/10.1016/j.chembiol.2020.04.006] [PMID: 32386595]
[4]
Hung, T.; Jassey, A.; Liu, C.; Lin, C-J.; Lin, C-C.; Wong, S.H.; Wang, J.Y.; Yen, M.; Lin, L. Berberine Inhibits Hepatitis C Virus Entry by Targeting the Viral E2 Glycoprotein. Phytomedicine, 2019, 53, 62-69.
[http://dx.doi.org/10.1016/j.phymed.2018.09.025] [PMID: 30668413]
[http://dx.doi.org/10.1016/j.phymed.2018.09.025] [PMID: 30668413]
[5]
Silva, L.R.; Rodrigues, É.E. da S.; Taniele-Silva, J.; Anderson, L.; Araújo-Júnior, J.X.; de Bassi, Ê.J.; Silva-Júnior, E.F. da Targeting Chikungunya Virus Entry: Alternatives for New Inhibitors in Drug Discovery. Curr. Med. Chem., 2022, 29(4), 612-634.
[http://dx.doi.org/10.2174/0929867328666210623165005] [PMID: 34165405]
[http://dx.doi.org/10.2174/0929867328666210623165005] [PMID: 34165405]
[6]
Müller, P.; Maus, H.; Hammerschmidt, S.J.; Knaff, P.; Mailänder, V.; Schirmeister, T.; Kersten, C. Interfering with Host Proteases in SARS-CoV-2 Entry as a Promising Therapeutic Strategy. Curr. Med. Chem., 2022, 29(4), 635-665.
[http://dx.doi.org/10.2174/0929867328666210526111318] [PMID: 34042026]
[http://dx.doi.org/10.2174/0929867328666210526111318] [PMID: 34042026]
[7]
Kushwaha, P.K.; Kumari, N.; Nayak, S.; Kishor, K.; Sharon, A. Structural Basis for the Understanding of Entry Inhibitors Against SARS Viruses. Curr. Med. Chem., 2022, 29(4), 666-681.
[http://dx.doi.org/10.2174/0929867328666210514122418] [PMID: 33992054]
[http://dx.doi.org/10.2174/0929867328666210514122418] [PMID: 33992054]
[8]
Lin, H.; Cherukupalli, S.; Feng, D.; Gao, S.; Kang, D.; Zhan, P.; Liu, X. SARS-CoV-2 Entry Inhibitors Targeting Virus-ACE2 or Virus-TMPRSS2 Interactions. Curr. Med. Chem., 2022, 29(4), 682-699.
[http://dx.doi.org/10.2174/0929867328666210420103021] [PMID: 33881969]
[http://dx.doi.org/10.2174/0929867328666210420103021] [PMID: 33881969]
[9]
Pu, J.; Zhou, J.T.; Liu, P.; Yu, F.; He, X.; Lu, L.; Jiang, S. Viral Entry Inhibitors Targeting Six-Helical Bundle Core against Highly Pathogenic Enveloped Viruses with Class I Fusion Proteins. Curr. Med. Chem., 2022, 29(4), 700-718.
[http://dx.doi.org/10.2174/0929867328666210511015808] [PMID: 33992055]
[http://dx.doi.org/10.2174/0929867328666210511015808] [PMID: 33992055]
[10]
Gallo, F.N.; Enderle, A.G.; Pardo, L.A.; Leal, E.S.; Bollini, M. Challenges and Perspectives in the Discovery of Dengue Virus Entry Inhibitors. Curr. Med. Chem., 2022, 29(4), 719-740.
[http://dx.doi.org/10.2174/0929867328666210521213118] [PMID: 34036904]
[http://dx.doi.org/10.2174/0929867328666210521213118] [PMID: 34036904]