Abstract
Aim: The occurrence and development of tumor are accompanied by a change in pathogenic gene expression. Tumor cells avoid the damage of immune cells by regulating the expression of immune- related genes.
Background: Tracing the causes of gene expression variation is helpful to understand tumor evolution and metastasis.
Objective: Current explanation methods for gene expression variation are confronted with several main challenges, which include low explanation power, insufficient prediction accuracy, and lack of biological meaning.
Methods: In this study, we propose a novel method to analyze the mRNA expression variations of breast cancer risk genes. Firstly, we collected some high-confidence risk genes related to breast cancer and then designed a rank-based method to preprocess the breast cancers copy number variation (CNV) and mRNA data. Secondly, to elevate the biological meaning and narrow down the combinatorial space, we introduced a prior gene interaction network and applied a network clustering algorithm to generate high-density subnetworks. Lastly, to describe the interlinked structure within and between subnetworks and target genes mRNA expression, we proposed a group sparse learning model to identify CNVs for pathogenic genes expression variations.
Results: The performance of the proposed method is evaluated by both significantly improved predication accuracy and biological meaning of pathway enrichment analysis.
Conclusion: The experimental results show that our method has practical significance.
Keywords: Breast cancer, gene expression regulation analysis, regression model, regularization method, mRNA, NGS.
Graphical Abstract
[http://dx.doi.org/10.1038/s41591-019-0592-2] [PMID: 31591606]
[http://dx.doi.org/10.1016/j.humpath.2018.12.004] [PMID: 30594748]
[http://dx.doi.org/10.1016/j.immuni.2018.03.023] [PMID: 29628290]
[http://dx.doi.org/10.1038/nm.3915] [PMID: 26248267]
[http://dx.doi.org/10.1038/s41467-018-07767-w] [PMID: 30560866]
[http://dx.doi.org/10.1056/NEJMoa1113205] [PMID: 22397650]
[http://dx.doi.org/10.1016/j.cell.2013.01.019] [PMID: 23415222]
[http://dx.doi.org/10.1038/s41588-019-0351-9] [PMID: 30742112]
[http://dx.doi.org/10.1016/j.ajhg.2018.04.011] [PMID: 29805045]
[http://dx.doi.org/10.1016/j.ajhg.2018.07.004] [PMID: 30057032]
[http://dx.doi.org/10.1093/nar/gky271] [PMID: 29672706]
[http://dx.doi.org/10.1016/j.tig.2015.10.007] [PMID: 26704082]
[http://dx.doi.org/10.1186/s13073-019-0635-9] [PMID: 31014396]
[http://dx.doi.org/10.3390/antiox9111158] [PMID: 33233726]
[http://dx.doi.org/10.1371/journal.pgen.1007837] [PMID: 30557297]
[http://dx.doi.org/10.3390/antiox9111154] [PMID: 33233546]
[http://dx.doi.org/10.3390/ijms22010070] [PMID: 33374679]
[http://dx.doi.org/10.1093/bioinformatics/btp618] [PMID: 19864262]
[http://dx.doi.org/10.1038/s41436-018-0295-y] [PMID: 30293986]
[http://dx.doi.org/10.3389/fgene.2015.00138] [PMID: 25918519]
[http://dx.doi.org/10.1016/j.neucom.2018.07.062]
[http://dx.doi.org/10.1038/nmeth.2651] [PMID: 24037242]
[http://dx.doi.org/10.1007/s11063-019-10170-1]
[http://dx.doi.org/10.1093/bioinformatics/btr649] [PMID: 22155867]
[http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x]
[http://dx.doi.org/10.1186/s12881-019-0909-5] [PMID: 31706287]
[http://dx.doi.org/10.1093/nar/gkw377] [PMID: 27141961]
[http://dx.doi.org/10.1016/j.yexcr.2014.11.002] [PMID: 25445787]
[http://dx.doi.org/10.1038/onc.2010.212] [PMID: 20531309]
[http://dx.doi.org/10.1111/j.1742-4658.2012.08529.x] [PMID: 22333131]
[http://dx.doi.org/10.1002/ijc.24710] [PMID: 19569175]
[http://dx.doi.org/10.1007/s13402-017-0335-7] [PMID: 28741069]
[http://dx.doi.org/10.1038/sj.onc.1205136] [PMID: 11850804]
[http://dx.doi.org/10.3390/ijms20204986] [PMID: 31600974]
[http://dx.doi.org/10.1186/bcr426] [PMID: 11879567]
[http://dx.doi.org/10.1016/j.biotechadv.2019.04.007] [PMID: 31004736]
[http://dx.doi.org/10.1038/s41598-020-57495-9] [PMID: 31959833]