Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Alamandine Induces Neuroprotection in Ischemic Stroke Models

Author(s): Sthéfanie C.A. Gonçalves, Beatriz L.T. Bassi, Lucas M. Kangussu, Daniele T. Alves, Lorena K.S. Ramos, Lorena F. Fernandes, Marco T.R. Alves, Ruben Sinisterra, Gisele E. Bruch, Robson A.S. Santos, André R. Massensini* and Maria J. Campagnole-Santos

Volume 29, Issue 19, 2022

Published on: 04 February, 2022

Page: [3483 - 3498] Pages: 16

DOI: 10.2174/0929867329666220204145730

Price: $65

Abstract

Background and Objective: Stroke, a leading cause of mortality and disability, characterized by neuronal death, can be induced by a reduction or interruption of blood flow. In this study, the role of Alamandine, a new peptide of the renin-angiotensin system, was evaluated in in-vitro and in-vivo brain ischemia models.

Methods: In the in-vitro model, hippocampal slices from male C57/Bl6 mice were placed in a glucose-free aCSF solution and bubbled with 95% N2 and 5% CO2 to mimic brain ischemia. An Alamandine concentration-response curve was generated to evaluate cell damage, glutamatergic excitotoxicity, and cell death. In the in-vivo model, cerebral ischemia/ reperfusion was induced by bilateral occlusion of common carotid arteries (BCCAo-untreated) in SD rats. An intracerebroventricular injection of Alamandine was given 20–30 min before BCCAo. Animals were subjected to neurological tests 24 h and 72 h after BCCAo. Cytokine levels, oxidative stress markers, and immunofluorescence were assessed in the brain 72 h after BCCAo.

Results: Alamandine was able to protect brain slices from cellular damage, excitotoxicity and cell death. When the Alamandine receptor was blocked, protective effects were lost. ICV injection of Alamandine attenuated neurological deficits of animals subjected to BCCAo and reduced the number of apoptotic neurons/cells. Furthermore, Alamandine induced anti-inflammatory effects in BCCAo animals as shown by reductions in TNFα, IL- 1β, IL-6, and antioxidant effects through attenuation of the decreased SOD, catalase, and GSH activities in the brain.

Conclusion: This study showed, for the first time, a neuroprotective role for Alamandine in different ischemic stroke models.

Keywords: Renin-angiotensin system, oxidative stress, brain ischemia, OGD, ICV, cytokines, neurological deficit.

« Previous
[1]
Castillo, J.; Loza, M.I.; Mirelman, D.; Brea, J.; Blanco, M.; Sobrino, T.; Campos, F. A novel mechanism of neuroprotection: Blood glutamate grabber. J. Cereb. Blood Flow Metab., 2016, 36(2), 292-301.
[http://dx.doi.org/10.1177/0271678X15606721] [PMID: 26661174]
[2]
Sieber, M.W.; Claus, R.A.; Witte, O.W.; Frahm, C. Attenuated inflammatory response in aged mice brains following stroke. PLoS One, 2011, 6(10), e26288.
[http://dx.doi.org/10.1371/journal.pone.0026288] [PMID: 22028848]
[3]
Zhang, R.; Xu, M.; Wang, Y.; Xie, F.; Zhang, G.; Qin, X. Nrf2-a promising therapeutic target for defensing against oxidative stress in stroke. Mol. Neurobiol., 2017, 54(8), 6006-6017.
[http://dx.doi.org/10.1007/s12035-016-0111-0] [PMID: 27696223]
[4]
Radak, D.; Katsiki, N.; Resanovic, I.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Mousad, S.A.; Isenovic, E.R. Apoptosis and acute brain ischemia in ischemic stroke. Curr. Vasc. Pharmacol., 2017, 15(2), 115-122.
[http://dx.doi.org/10.2174/1570161115666161104095522] [PMID: 27823556]
[5]
Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/Angiotensin-(1–7)/MAS axis of the renin-angiotensin system: Focus on angiotensin-(1–7). Physiol. Rev., 2018, 98(1), 505-553.
[http://dx.doi.org/10.1152/physrev.00023.2016] [PMID: 29351514]
[6]
Santos, R.A.S.; Oudit, G.Y.; Verano-Braga, T.; Canta, G.; Steckelings, U.M.; Bader, M. The renin-angiotensin system: Going beyond the classical paradigms. Am. J. Physiol. Heart Circ. Physiol., 2019, 316(5), H958-H970.
[http://dx.doi.org/10.1152/ajpheart.00723.2018] [PMID: 30707614]
[7]
Lautner, R.Q.; Villela, D.C.; Fraga-Silva, R.A.; Silva, N.; Verano-Braga, T.; Costa-Fraga, F.; Jankowski, J.; Jankowski, V.; Sousa, F.; Alzamora, A.; Soares, E.; Barbosa, C.; Kjeldsen, F.; Oliveira, A.; Braga, J.; Savergnini, S.; Maia, G.; Peluso, A.B.; Passos-Silva, D.; Ferreira, A.; Alves, F.; Martins, A.; Raizada, M.; Paula, R.; Motta-Santos, D.; Klempin, F.; Pimenta, A.; Alenina, N.; Sinisterra, R.; Bader, M.; Campagnole-Santos, M.J.; Santos, R.A.S. Discovery and characterization of alamandine: A novel component of the renin-angiotensin system. Circ. Res., 2013, 112(8), 1104-1111.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301077] [PMID: 23446738]
[8]
Herath, C.B.; Mak, K.; Burrell, L.M.; Angus, P.W. Angiotensin-(1-7) reduces the perfusion pressure response to angiotensin II and methoxamine via an endothelial nitric oxide-mediated pathway in cirrhotic rat liver. Am. J. Physiol. Gastrointest. Liver Physiol., 2013, 304(1), G99-G108.
[http://dx.doi.org/10.1152/ajpgi.00163.2012] [PMID: 23086915]
[9]
Lemos, V.S.; Silva, D.M.R.; Walther, T.; Alenina, N.; Bader, M.; Santos, R.A.S. The endothelium-dependent vasodilator effect of the nonpeptide Ang(1-7) mimic AVE 0991 is abolished in the aorta of mas-knockout mice. J. Cardiovasc. Pharmacol., 2005, 46(3), 274-279.
[http://dx.doi.org/10.1097/01.fjc.0000175237.41573.63] [PMID: 16116331]
[10]
Dong, X.; Han, S.; Zylka, M.J.; Simon, M.I.; Anderson, D.J. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell, 2001, 106(5), 619-632.
[http://dx.doi.org/10.1016/S0092-8674(01)00483-4] [PMID: 11551509]
[11]
Shinohara, T.; Harada, M.; Ogi, K.; Maruyama, M.; Fujii, R.; Tanaka, H.; Fukusumi, S.; Komatsu, H.; Hosoya, M.; Noguchi, Y.; Watanabe, T.; Moriya, T.; Itoh, Y.; Hinuma, S. Identification of a G protein-coupled receptor specifically responsive to beta-alanine. J. Biol. Chem., 2004, 279(22), 23559-23564.
[http://dx.doi.org/10.1074/jbc.M314240200] [PMID: 15037633]
[12]
Habiyakare, B.; Alsaadon, H.; Mathai, M.L.; Hayes, A.; Zulli, A. Reduction of angiotensin A and alamandine vasoactivity in the rabbit model of atherogenesis: differential effects of alamandine and Ang(1-7). Int. J. Exp. Pathol., 2014, 95(4), 290-295.
[http://dx.doi.org/10.1111/iep.12087] [PMID: 24953785]
[13]
Jesus, I.C.G.; Scalzo, S.; Alves, F.; Marques, K.; Rocha-Resende, C.; Bader, M.; Santos, R.A.S.; Guatimosim, S. Alamandine acts via MrgD to induce AMPK/NO activation against ANG II hypertrophy in cardiomyocytes. Am. J. Physiol. Cell Physiol., 2018, 314(6), C702-C711.
[http://dx.doi.org/10.1152/ajpcell.00153.2017] [PMID: 29443552]
[14]
Oliveira, A.C.; Peluso, A.A.; Qadri, F.; Alenina, N.; Bader, M.; Santos, R.A.S. Immunofluorescence detection of MrgD expression in rodents.Hypertension; , 2015, 66, p. AP110.
[http://dx.doi.org/10.1161/hyp.66.suppl_1.p110]
[15]
Marins, F.R.; Oliveira, A.C.; Qadri, F.; Motta-Santos, D.; Alenina, N.; Bader, M.; Fontes, M.A.P.; Santos, R.A.S. Alamandine but not angiotensin-(1-7) produces cardiovascular effects at the rostral insular cortex. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2021, 321(3), R513-R521.
[http://dx.doi.org/10.1152/ajpregu.00308.2020] [PMID: 34346721]
[16]
Da Silva, A.R.; Lenglet, S.; Carbone, F.; Burger, F.; Roth, A.; Liberale, L.; Bonaventura, A.; Dallegri, F.; Stergiopulos, N.; Santos, R.A.S.; Mach, F.; Fraga-Silva, R.A.; Montecucco, F. Alamandine abrogates neutrophil degranulation in atherosclerotic mice. Eur. J. Clin. Invest., 2017, 47(2), 117-128.
[http://dx.doi.org/10.1111/eci.12708] [PMID: 27930810]
[17]
Li, P.; Chen, X-R.; Xu, F.; Liu, C.; Li, C.; Liu, H.; Wang, H.; Sun, W.; Sheng, Y.H.; Kong, X.Q. Alamandine attenuates sepsis-associated cardiac dysfunction via inhibiting MAPKs signaling pathways. Life Sci., 2018, 206, 106-116.
[http://dx.doi.org/10.1016/j.lfs.2018.04.010] [PMID: 29679702]
[18]
de Souza-Neto, F.P.; Carvalho Santuchi, M.; de Morais, E. Silva, M.; Campagnole-Santos, M.J.; da Silva, R.F. Angiotensin-(1-7) and alamandine on experimental models of hypertension and atherosclerosis. Curr. Hypertens. Rep., 2018, 20(2), 17.
[http://dx.doi.org/10.1007/s11906-018-0798-6] [PMID: 29541937]
[19]
de Carvalho Santuchi, M.; Dutra, M.F.; Vago, J.P.; Lima, K.M.; Galvão, I.; de Souza-Neto, F.P.; Morais, E. Silva, M.; Oliveira, A.C.; de Oliveira, F.C.B.; Gonçalves, R.; Teixeira, M.M.; Sousa, L.P.; Dos Santos, R.A.S.; da Silva, R.F. Angiotensin-(1-7) and Alamandine promote anti-inflammatory response in macrophages in vitro and in vivo. Mediators Inflamm., 2019, 2019, 2401081.
[http://dx.doi.org/10.1155/2019/2401081] [PMID: 30918468]
[20]
Liu, C.; Yang, C.X.; Chen, X.R.; Liu, B.X.; Li, Y.; Wang, X.Z.; Sun, W.; Li, P.; Kong, X.Q. Alamandine attenuates hypertension and cardiac hypertrophy in hypertensive rats. Amino Acids, 2018, 50(8), 1071-1081.
[http://dx.doi.org/10.1007/s00726-018-2583-x] [PMID: 29752563]
[21]
Jesus, I.C.G.; Mesquita, T.R.R.; Monteiro, A.L.L.; Parreira, A.B.; Santos, A.K.; Coelho, E.L.X.; Silva, M.M.; Souza, L.A.C.; Campagnole-Santos, M.J.; Santos, R.S.; Guatimosim, S. Alamandine enhances cardiomyocyte contractility in hypertensive rats through a nitric oxide-dependent activation of CaMKII. Am. J. Physiol. Cell Physiol., 2020, 318(4), C740-C750.
[http://dx.doi.org/10.1152/ajpcell.00153.2019] [PMID: 31913703]
[22]
Oliveira, A.C.; Melo, M.B.; Motta-Santos, D.; Peluso, A.A.; Souza-Neto, F.; da Silva, R.F.; Almeida, J.F.Q.; Canta, G.; Reis, A.M.; Goncalves, G.; Cerri, G.; Coutinho, D.; Guedes de Jesus, I.C.; Guatimosim, S.; Linhares, N.D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J.; Santos, R.A.S. Genetic deletion of the alamandine receptor MRGD leads to dilated cardiomyopathy in mice. Am. J. Physiol. Heart Circ. Physiol., 2019, 316(1), H123-H133.
[http://dx.doi.org/10.1152/ajpheart.00075.2018] [PMID: 30339496]
[23]
Soares, E.R.; Barbosa, C.M.; Campagnole-Santos, M.J.; Santos, R.A.S.; Alzamora, A.C. Hypotensive effect induced by microinjection of Alamandine, a derivative of angiotensin-(1-7), into caudal ventrolateral medulla of 2K1C hypertensive rats. Peptides, 2017, 96, 67-75.
[http://dx.doi.org/10.1016/j.peptides.2017.09.005] [PMID: 28889964]
[24]
Shen, Y.H.; Chen, X.R.; Yang, C.X.; Liu, B.X.; Li, P. Alamandine injected into the paraventricular nucleus increases blood pressure and sympathetic activation in spontaneously hypertensive rats. Peptides, 2018, 103, 98-102.
[http://dx.doi.org/10.1016/j.peptides.2018.03.014] [PMID: 29580957]
[25]
Gong, J.; Shen, Y.; Li, P.; Zhao, K.; Chen, X.; Li, Y.; Sheng, Y.; Zhou, B.; Kong, X. Superoxide anions mediate the effects of angiotensin (1-7) analog, alamandine, on blood pressure and sympathetic activity in the paraventricular nucleus. Peptides, 2019, 118, 170101.
[http://dx.doi.org/10.1016/j.peptides.2019.170101] [PMID: 31199949]
[26]
Leite, H.R.; Mourão, F.A.G.; Drumond, L.E.; Ferreira-Vieira, T.H.; Bernardes, D.; Silva, J.F.; Lemos, V.S.; Moraes, M.F.D.; Pereira, G.S.; Carvalho-Tavares, J.; Massensini, A.R. Swim training attenuates oxidative damage and promotes neuroprotection in cerebral cortical slices submitted to oxygen glucose deprivation. J. Neurochem., 2012, 123(2), 317-324.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07898.x] [PMID: 22913494]
[27]
Monette, R.; Small, D.L.; Mealing, G.; Morley, P. A fluorescence confocal assay to assess neuronal viability in brain slices. Brain Res. Brain Res. Protoc., 1998, 2(2), 99-108.
[http://dx.doi.org/10.1016/S1385-299X(97)00020-2] [PMID: 9473610]
[28]
Markert, C.L. Lactate dehydrogenase. Biochemistry and function of lactate dehydrogenase. Cell Biochem. Funct., 1984, 2(3), 131-134.
[http://dx.doi.org/10.1002/cbf.290020302] [PMID: 6383647]
[29]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[30]
Nicholls, D.G.; Sihra, T.S.; Sanchez-Prieto, J. Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. J. Neurochem., 1987, 49(1), 50-57.
[http://dx.doi.org/10.1111/j.1471-4159.1987.tb03393.x] [PMID: 2884279]
[31]
Choy, M.; Ganesan, V.; Thomas, D.L.; Thornton, J.S.; Proctor, E.; King, M.D.; van der Weerd, L.; Gadian, D.G.; Lythgoe, M.F. The chronic vascular and haemodynamic response after permanent bilateral common carotid occlusion in newborn and adult rats. J. Cereb. Blood Flow Metab., 2006, 26(8), 1066-1075.
[http://dx.doi.org/10.1038/sj.jcbfm.9600259] [PMID: 16395291]
[32]
Chen, J.; Zhang, C.; Jiang, H.; Li, Y.; Zhang, L.; Robin, A.; Katakowski, M.; Lu, M.; Chopp, M. Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J. Cereb. Blood Flow Metab., 2005, 25(2), 281-290.
[http://dx.doi.org/10.1038/sj.jcbfm.9600034] [PMID: 15678129]
[33]
Nelson, D.P.; Kiesow, L.A. Enthalpy of decomposition of hydrogen peroxide by catalase at 25°C (with molar extinction coefficients of H2O2 solutions in the UV). Anal. Biochem., 1972, 49(2), 474-478.
[http://dx.doi.org/10.1016/0003-2697(72)90451-4] [PMID: 5082943]
[34]
Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem., 1968, 25(1), 192-205.
[http://dx.doi.org/10.1016/0003-2697(68)90092-4] [PMID: 4973948]
[35]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[36]
Canta, G.N.; Lautner, R.Q.; Santos, R.A. AT1R blockade increases the depressor effect of alamandine in normotensive SD rats. Hypertension, 2016, 68(Suppl. 1), AP192.
[http://dx.doi.org/10.1161/hyp.68.suppl_1.p192]
[37]
Soltani Hekmat, A.; Javanmardi, K.; Kouhpayeh, A.; Baharamali, E.; Farjam, M. Differences in cardiovascular responses to alamandine in two-kidney, one clip hypertensive and normotensive rats. Circ. J., 2017, 81(3), 405-412.
[http://dx.doi.org/10.1253/circj.CJ-16-0958] [PMID: 28070059]
[38]
Park, B.M.; Phuong, H.T.A.; Yu, L.; Kim, S.H. Alamandine protects the heart against reperfusion injury via the MrgD receptor. Circ. J., 2018, 82(10), 2584-2593.
[http://dx.doi.org/10.1253/circj.CJ-17-1381] [PMID: 29998915]
[39]
Ali, S.A.; Zaitone, S.A.; Dessouki, A.A.; Ali, A.A. Pregabalin affords retinal neuroprotection in diabetic rats: suppression of retinal glutamate, microglia cell expression and apoptotic cell death. Exp. Eye Res., 2019, 184, 78-90.
[http://dx.doi.org/10.1016/j.exer.2019.04.014] [PMID: 31002823]
[40]
Schaar, K.L.; Brenneman, M.M.; Savitz, S.I. Functional assessments in the rodent stroke model. Exp. Transl. Stroke Med., 2010, 2(1), 13.
[http://dx.doi.org/10.1186/2040-7378-2-13] [PMID: 20642841]
[41]
Jiang, T.; Gao, L.; Guo, J.; Lu, J.; Wang, Y.; Zhang, Y. Suppressing inflammation by inhibiting the NF-κB pathway contributes to the neuroprotective effect of angiotensin-(1-7) in rats with permanent cerebral ischaemia. Br. J. Pharmacol., 2012, 167(7), 1520-1532.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02105.x] [PMID: 22817481]
[42]
Florio, T.M.; Scarnati, E.; Rosa, I.; Di Censo, D.; Ranieri, B.; Cimini, A.; Galante, A.; Alecci, M. The Basal Ganglia: more than just a switching device. CNS Neurosci. Ther., 2018, 24(8), 677-684.
[http://dx.doi.org/10.1111/cns.12987] [PMID: 29879292]
[43]
Hu, W.; Gao, W.; Miao, J.; Xu, Z.; Sun, L. Alamandine, a derivative of angiotensin-(1-7), alleviates sepsis-associated renal inflammation and apoptosis by inhibiting the PI3K/Ak and MAPK pathways. Peptides, 2021, 146, 170627.
[http://dx.doi.org/10.1016/j.peptides.2021.170627] [PMID: 34400214]
[44]
Zhu, J.; Qiu, J.G.; Xu, W.T.; Ma, H.X.; Jiang, K. Alamandine protects against renal ischaemia-reperfusion injury in rats via inhibiting oxidative stress. J. Pharm. Pharmacol., 2021, 2021, rgab091.
[http://dx.doi.org/10.1093/jpp/rgab091]
[45]
Sampaio, W.O.; Souza dos Santos, R.A.; Faria-Silva, R.; da Mata Machado, L.T.; Schiffrin, E.L.; Touyz, R.M. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension, 2007, 49(1), 185-192.
[http://dx.doi.org/10.1161/01.HYP.0000251865.35728.2f] [PMID: 17116756]
[46]
Aqul, A.; Liu, B.; Ramirez, C.M.; Pieper, A.A.; Estill, S.J.; Burns, D.K.; Liu, B.; Repa, J.J.; Turley, S.D.; Dietschy, J.M. Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment. J. Neurosci., 2011, 31(25), 9404-9413.
[http://dx.doi.org/10.1523/JNEUROSCI.1317-11.2011] [PMID: 21697390]
[47]
Marques, F.D.; Ferreira, A.J.; Sinisterra, R.D.M.; Jacoby, B.A.; Sousa, F.B.; Caliari, M.V.; Silva, G.A.B.; Melo, M.B.; Nadu, A.P.; Souza, L.E.; Irigoyen, M.C.C.; Almeida, A.P.; Santos, R.A.S. An oral formulation of angiotensin-(1-7) produces cardioprotective effects in infarcted and isoproterenol-treated rats. Hypertension, 2011, 57(3), 477-483.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.167346] [PMID: 21282558]
[48]
Robinson, T.; Waddington, A.; Ward-Close, S.; Taub, N.; Potter, J. The predictive role of 24-hour compared to casual blood pressure levels on outcome following acute stroke. Cerebrovasc. Dis., 1997, 7(5), 264-272.
[http://dx.doi.org/10.1159/000108206]
[49]
Tikhonoff, V.; Zhang, H.; Richart, T.; Staessen, J.A. Blood pressure as a prognostic factor after acute stroke. Lancet Neurol., 2009, 8(10), 938-948.
[http://dx.doi.org/10.1016/S1474-4422(09)70184-X] [PMID: 19747655]
[50]
Lattanzi, S.; Silvestrini, M.; Provinciali, L. Elevated blood pressure in the acute phase of stroke and the role of Angiotensin receptor blockers. Int. J. Hypertens., 2013, 2013, 941783.
[http://dx.doi.org/10.1155/2013/941783] [PMID: 23431423]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy