Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Proteomic Profile Analysis of Pulmonary Artery in a Rat Model Under Hypoxic Pulmonary Hypertension

Author(s): Ma Shuang, Liu Jie, Zhang Ruixia, Liu Chuanchuan and Ma Yan*

Volume 19, Issue 3, 2022

Published on: 08 April, 2022

Page: [262 - 273] Pages: 12

DOI: 10.2174/1570164619666220204123709

Price: $65

conference banner
Abstract

Aim: Proteomic profile analysis of pulmonary artery in a rat model under hypoxic pulmonary hypertension. Background: Hypoxic pulmonary hypertension (HPH) is a pathological condition exemplified by a constant rise in pulmonary artery pressure in high-altitudes.

Objective: To investigated the proteome profile and response mechanisms of SD rats under hypoxia over a period of four-weeks.

Methods: Proteomic profile analysis of pulmonary artery in a rat model under hypoxic pulmonary hypertension.

Results: With 3, 204 proteins identified, 49 were up-regulated while 46 were down-regulated. Upregulated genes included Prolargin, Protein S100-A6 and Transgelin-2, whereas Nascent polypeptide- associated complex and Elongator complex protein 1 were down-regulated. KEGG enriched pathways had purine metabolism, cancer and lipolysis regulation as significantly enriched in the hypoxic group.

Conclusion: In conclusion, our findings submit a basis for downstream studies on tissue hypoxia mechanisms alongside the associated physiological conditions. Hypoxic pulmonary hypertension (HPH) is a pathological condition exemplified by a constant rise in pulmonary artery pressure in high altitudes. Herein, we investigated the proteome profile and response mechanisms of Sprague-Dawley (SD) rats under hypoxia over a period of four weeks. Unbiased iTRAQ-based quantitative proteomics was utilized in proteome profile analysis of a rat model exposed to HPH. With 3, 204 proteins identified, 49 were upregulated while 46 were downregulated. Upregulated genes included Prolargin, Protein, S100-A6 and Transgelin-2, whereas Nascent polypeptide-associated complex and Elongator complex protein 1 were downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched pathways had purine metabolism, cancer, and lipolysis regulation as significantly enriched in the hypoxic group. In conclusion, the findings from this study submit a basis for downstream studies on tissue hypoxia mechanisms alongside the associated physiological conditions.

Keywords: Chronic pulmonary disorders, hypobaric hypoxia model, hypoxic pulmonary hypertension, proteomics, SD rat, physiological processes.

Graphical Abstract

[1]
Pratali, L. Right heart-pulmonary circulation at high altitude and the development of subclinical pulmonary interstitial edema. Heart Fail. Clin., 2018, 14(3), 333-337.
[http://dx.doi.org/10.1016/j.hfc.2018.02.008] [PMID: 29966631]
[2]
Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol., 2012, 298, 229-317.
[http://dx.doi.org/10.1016/B978-0-12-394309-5.00006-7] [PMID: 22878108]
[3]
Zhang, S.; Yin, Z.; Qin, W.; Ma, X.; Zhang, Y.; Liu, E.; Chu, Y. Pirfenidone inhibits hypoxic pulmonary hypertension through the NADPH/ROS/p38 pathway in adventitial fibroblasts in the pulmonary artery. Mediators Inflamm., 2020, 2020, 2604967.
[http://dx.doi.org/10.1155/2020/2604967] [PMID: 32587469]
[4]
Zarndt, R.; Walls, S.M.; Ocorr, K.; Bodmer, R. Reduced cardiac Calcineurin expression mimics long-term hypoxia-induced heart defects in Drosophila. Circ. Cardiovasc. Genet., 2017, 10(5)
[http://dx.doi.org/10.1161/CIRCGENETICS.117.001706] [PMID: 28986453]
[5]
Savale, L.; Tu, L.; Rideau, D.; Izziki, M.; Maitre, B.; Adnot, S.; Eddahibi, S. Impact of interleukin-6 on hypoxia-induced pulmonary hy-pertension and lung inflammation in mice. Respir. Res., 2009, 10, 6.
[http://dx.doi.org/10.1186/1465-9921-10-6] [PMID: 19173740]
[6]
Rassler, B.; Marx, G.; Reissig, C.; Rohling, M.A.; Tannapfel, A.; Wenger, R.H.; Zimmer, H.G. Time course of hypoxia-induced lung injury in rats. Respir. Physiol. Neurobiol., 2007, 159(1), 45-54.
[http://dx.doi.org/10.1016/j.resp.2007.05.008] [PMID: 17597012]
[7]
MacIntyre, N.R. Tissue hypoxia: Implications for the respiratory clinician. Respir. Care, 2014, 59(10), 1590-1596.
[http://dx.doi.org/10.4187/respcare.03357] [PMID: 25161296]
[8]
Carlet, J. Tissue hypoxia: How to detect, how to correct, how to prevent? J. Crit. Care, 1997, 12(1), 39-47.
[PMID: 9075063]
[9]
Ohashi, H.; Hasegawa, M.; Wakimoto, K.; Miyamoto-Sato, E. Next-generation technologies for multiomics approaches including interac-tome sequencing. BioMed Res. Int., 2015, 2015, 104209.
[http://dx.doi.org/10.1155/2015/104209] [PMID: 25649523]
[10]
Zhao, P.; Li, J.; Yang, L.; Li, Y.; Tian, Y.; Li, S. Integration of transcriptomics, proteomics, metabolomics and systems pharmacology data to reveal the therapeutic mechanism underlying Chinese herbal Bufei Yishen formula for the treatment of chronic obstructive pulmonary disease. Mol. Med. Rep., 2018, 17(4), 5247-5257.
[http://dx.doi.org/10.3892/mmr.2018.8480] [PMID: 29393428]
[11]
Song, Y.N.; Dong, S.; Wei, B.; Liu, P.; Zhang, Y.Y.; Su, S.B. Metabolomic mechanisms of gypenoside against liver fibrosis in rats: An integrative analysis of proteomics and metabolomics data. PLoS One, 2017, 12(3), e0173598.
[http://dx.doi.org/10.1371/journal.pone.0173598] [PMID: 28291813]
[12]
Lin, W.; Zhang, J.; Liu, Y.; Wu, R.; Yang, H.; Hu, X.; Ling, X. Studies on diagnostic biomarkers and therapeutic mechanism of Alz-heimer’s disease through metabolomics and hippocampal proteomics. Eur. J. Pharm. Sci., 2017, 105, 119-126.
[http://dx.doi.org/10.1016/j.ejps.2017.05.003] [PMID: 28495476]
[13]
Del Boccio, P.; Rossi, C.; di Ioia, M.; Cicalini, I.; Sacchetta, P.; Pieragostino, D. Integration of metabolomics and proteomics in multiple sclerosis: From biomarkers discovery to personalized medicine. Proteomics Clin. Appl., 2016, 10(4), 470-484.
[http://dx.doi.org/10.1002/prca.201500083] [PMID: 27061322]
[14]
Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; Pesseat, S.; Quinn, A.F.; Sangrador-Vegas, A.; Scheremetjew, M.; Yong, S.Y.; Lopez, R.; Hunter, S. InterProScan 5: Genome-scale protein function classifica-tion. Bioinformatics, 2014, 30(9), 1236-1240.
[http://dx.doi.org/10.1093/bioinformatics/btu031] [PMID: 24451626]
[15]
Huang, W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 2009, 37(1), 1-13.
[http://dx.doi.org/10.1093/nar/gkn923] [PMID: 19033363]
[16]
Franceschini, A.; Szklarczyk, D.; Frankild, S.; Kuhn, M.; Simonovic, M.; Roth, A.; Lin, J.; Minguez, P.; Bork, P.; von Mering, C.; Jensen, L.J. STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res., 2013, 41(Database issue), D808-D815.
[http://dx.doi.org/10.1093/nar/gks1094] [PMID: 23203871]
[17]
Ahmad, Y.; Shukla, D.; Garg, I.; Sharma, N.K.; Saxena, S.; Malhotra, V.K.; Bhargava, K. Identification of haptoglobin and apolipoprotein A-I as biomarkers for high altitude pulmonary edema. Funct. Integr. Genomics, 2011, 11(3), 407-417.
[http://dx.doi.org/10.1007/s10142-011-0234-3] [PMID: 21755356]
[18]
Ahmad, Y.; Sharma, N.K.; Garg, I.; Ahmad, M.F.; Sharma, M.; Bhargava, K. An insight into the changes in human plasma proteome on adaptation to hypobaric hypoxia. PLoS One, 2013, 8(7), e67548.
[http://dx.doi.org/10.1371/journal.pone.0067548] [PMID: 23844025]
[19]
Ahmad, Y.; Sharma, N.K.; Ahmad, M.F.; Sharma, M.; Garg, I.; Bhargava, K. Proteomic identification of novel differentiation plasma pro-tein markers in hypobaric hypoxia-induced rat model. PLoS One, 2014, 9(5), e98027.
[http://dx.doi.org/10.1371/journal.pone.0098027] [PMID: 24842778]
[20]
Padhy, G.; Sethy, N.K.; Ganju, L.; Bhargava, K. Abundance of plasma antioxidant proteins confers tolerance to acute hypobaric hypoxia exposure. High Alt. Med. Biol., 2013, 14(3), 289-297.
[http://dx.doi.org/10.1089/ham.2012.1095] [PMID: 24067188]
[21]
Sharma, N.K.; Sethy, N.K.; Bhargava, K. Comparative proteome analysis reveals differential regulation of glycolytic and antioxidant en-zymes in cortex and hippocampus exposed to short-term hypobaric hypoxia. J. Proteomics, 2013, 79, 277-298.
[http://dx.doi.org/10.1016/j.jprot.2012.12.020] [PMID: 23313218]
[22]
Gaur, P.; Saini, S.; Vats, P.; Kumar, B. Regulation, signalling and functions of hormonal peptides in pulmonary vascular remodelling dur-ing hypoxia. Endocrine, 2018, 59(3), 466-480.
[http://dx.doi.org/10.1007/s12020-018-1529-0] [PMID: 29383676]
[23]
Jain, S.; Ahmad, Y.; Bhargava, K. Salivary proteome patterns of individuals exposed to high altitude. Arch. Oral Biol., 2018, 96, 104-112.
[http://dx.doi.org/10.1016/j.archoralbio.2018.09.002] [PMID: 30219637]
[24]
Jain, S.; Paul, S.; Meena, R.N.; Gangwar, A.; Panjwani, U.; Ahmad, Y.; Bhargava, K. Saliva panel of protein candidates: A comprehensive study for assessing high altitude acclimatization. Nitric Oxide, 2020, 95, 1-11.
[http://dx.doi.org/10.1016/j.niox.2019.11.007] [PMID: 31778801]
[25]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[26]
Charolidi, N.; Carroll, V.A. Hypoxia and Pulmonary Hypertension. In:Hypoxia and Human Diseases; InTech, 2017.
[http://dx.doi.org/10.5772/67151]
[27]
Dunham-Snary, K.J.; Wu, D.; Sykes, E.A.; Thakrar, A.; Parlow, L.R.G.; Mewburn, J.D.; Parlow, J.L.; Archer, S.L. Hypoxic pulmonary vasoconstriction: From molecular mechanisms to medicine. Chest, 2017, 151(1), 181-192.
[http://dx.doi.org/10.1016/j.chest.2016.09.001] [PMID: 27645688]
[28]
Liu, R.; Jin, J.P. Calponin isoforms CNN1, CNN2 and CNN3: Regulators for actin cytoskeleton functions in smooth muscle and non-muscle cells. Gene, 2016, 585(1), 143-153.
[http://dx.doi.org/10.1016/j.gene.2016.02.040] [PMID: 26970176]
[29]
Feng, H.Z.; Wang, H.; Takahashi, K.; Jin, J.P. Double deletion of calponin 1 and calponin 2 in mice decreases systemic blood pressure with blunted length-tension response of aortic smooth muscle. J. Mol. Cell. Cardiol., 2019, 129, 49-57.
[http://dx.doi.org/10.1016/j.yjmcc.2019.01.026] [PMID: 30707993]
[30]
Ciuba, K.; Hawkes, W.; Tojkander, S.; Kogan, K.; Engel, U.; Iskratsch, T.; Lappalainen, P. Calponin-3 is critical for coordinated contractil-ity of actin stress fibers. Sci. Rep., 2018, 8(1), 17670.
[http://dx.doi.org/10.1038/s41598-018-35948-6] [PMID: 30518778]
[31]
Daimon, E.; Shibukawa, Y.; Wada, Y. Calponin 3 regulates stress fiber formation in dermal fibroblasts during wound healing. Arch. Dermatol. Res., 2013, 305(7), 571-584.
[http://dx.doi.org/10.1007/s00403-013-1343-8] [PMID: 23545751]
[32]
Appel, S.; Ankerne, J.; Appel, J.; Oberthuer, A.; Mallmann, P.; Dötsch, J. CNN3 regulates trophoblast invasion and is upregulated by hy-poxia in BeWo cells. PLoS One, 2014, 9(7), e103216.
[http://dx.doi.org/10.1371/journal.pone.0103216] [PMID: 25050546]
[33]
Wise, D.R.; Ward, P.S.; Shay, J.E.; Cross, J.R.; Gruber, J.J.; Sachdeva, U.M.; Platt, J.M.; DeMatteo, R.G.; Simon, M.C.; Thompson, C.B. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. USA, 2011, 108(49), 19611-19616.
[http://dx.doi.org/10.1073/pnas.1117773108] [PMID: 22106302]
[34]
Xia, C.; Braunstein, Z.; Toomey, A.C.; Zhong, J.; Rao, X. S100 proteins as an important regulator of macrophage inflammation. Front. Immunol., 2018, 8, 1908.
[http://dx.doi.org/10.3389/fimmu.2017.01908] [PMID: 29379499]
[35]
Mofid, A.; Newman, N.S.; Lee, P.J.; Abbasi, C.; Matkar, P.N.; Rudenko, D.; Kuliszewski, M.A.; Chen, H.H.; Afrasiabi, K.; Tsoporis, J.N.; Gramolini, A.O.; Connelly, K.A.; Parker, T.G.; Leong-Poi, H. Cardiac overexpression of S100A6 attenuates cardiomyocyte apoptosis and reduces infarct size after myocardial ischemia-reperfusion. J. Am. Heart Assoc., 2017, 6(2)
[http://dx.doi.org/10.1161/JAHA.116.004738] [PMID: 28174168]
[36]
Segrest, J.P.; Garber, D.W.; Brouillette, C.G.; Harvey, S.C.; Anantharamaiah, G.M. The amphipathic α helix: A multifunctional structural motif in plasma apolipoproteins. Adv. Protein Chem., 1994, 45, 303-369.
[http://dx.doi.org/10.1016/S0065-3233(08)60643-9] [PMID: 8154372]
[37]
Gillombardo, C.B.; Darrah, R.; Dick, T.E.; Moore, M.; Kong, N.; Decker, M.J.; Han, F.; Yamauchi, M.; Dutschmann, M.; Azzam, S.; Strohl, K.P. C57BL/6J mouse apolipoprotein A2 gene is deterministic for apnea. Respir. Physiol. Neurobiol., 2017, 235, 88-94.
[http://dx.doi.org/10.1016/j.resp.2016.10.006] [PMID: 27756649]
[38]
Olson, G.E.; Whitin, J.C.; Hill, K.E.; Winfrey, V.P.; Motley, A.K.; Austin, L.M.; Deal, J.; Cohen, H.J.; Burk, R.F. Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells. Am. J. Physiol., 2010, 298(5), F1244-F1253.
[http://dx.doi.org/10.1152/ajprenal.00662.2009] [PMID: 20015939]
[39]
Yi, Z.; Jiang, L.; Zhao, L.; Zhou, M.; Ni, Y.; Yang, Y.; Yang, H.; Yang, L.; Zhang, Q.; Kuang, Y.; Deng, M.; Zhu, Y. Glutathione peroxi-dase 3 (GPX3) suppresses the growth of melanoma cells through reactive oxygen species (ROS)-dependent stabilization of hypoxia-inducible factor 1-α and 2-α. J. Cell. Biochem., 2019, 120(11), 19124-19136.
[http://dx.doi.org/10.1002/jcb.29240] [PMID: 31310363]
[40]
Chen, B.; Rao, X.; House, M.G.; Nephew, K.P.; Cullen, K.J.; Guo, Z. GPx3 promoter hypermethylation is a frequent event in human can-cer and is associated with tumorigenesis and chemotherapy response. Cancer Lett., 2011, 309(1), 37-45.
[http://dx.doi.org/10.1016/j.canlet.2011.05.013] [PMID: 21684681]
[41]
Ottaviano, F.G.; Tang, S.S.; Handy, D.E.; Loscalzo, J. Regulation of the extracellular antioxidant selenoprotein plasma glutathione peroxi-dase (GPx-3) in mammalian cells. Mol. Cell. Biochem., 2009, 327(1-2), 111-126.
[http://dx.doi.org/10.1007/s11010-009-0049-x] [PMID: 19219623]
[42]
Mahmoud, A.I.; Porrello, E.R. Turning back the cardiac regenerative clock: lessons from the neonate. Trends Cardiovasc. Med., 2012, 22(5), 128-133.
[http://dx.doi.org/10.1016/j.tcm.2012.07.008] [PMID: 22902092]
[43]
Porrello, E.R.; Mahmoud, A.I.; Simpson, E.; Hill, J.A.; Richardson, J.A.; Olson, E.N.; Sadek, H.A. Transient regenerative potential of the neonatal mouse heart. Science, 2011, 331(6020), 1078-1080.
[http://dx.doi.org/10.1126/science.1200708] [PMID: 21350179]
[44]
Razeghi, P.; Young, M.E.; Alcorn, J.L.; Moravec, C.S.; Frazier, O.H.; Taegtmeyer, H. Metabolic gene expression in fetal and failing human heart. Circulation, 2001, 104(24), 2923-2931.
[http://dx.doi.org/10.1161/hc4901.100526] [PMID: 11739307]
[45]
Kwartler, C.S.; Chen, J.; Thakur, D.; Li, S.; Baskin, K.; Wang, S.; Wang, Z.V.; Walker, L.; Hill, J.A.; Epstein, H.F.; Taegtmeyer, H.; Mile-wicz, D.M. Overexpression of smooth muscle myosin heavy chain leads to activation of the unfolded protein response and autophagic turnover of thick filament-associated proteins in vascular smooth muscle cells. J. Biol. Chem., 2014, 289(20), 14075-14088.
[http://dx.doi.org/10.1074/jbc.M113.499277] [PMID: 24711452]
[46]
Wang, Y.; Liu, S.; Zhang, Y.; Yang, J. Myosin heavy chain 9: Oncogene or tumor suppressor gene? Med. Sci. Monit., 2019, 25, 888-892.
[http://dx.doi.org/10.12659/MSM.912320] [PMID: 30739906]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy