Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Recent Advances in Drug Design and Delivery Across Biological Barriers Using Computational Models

Author(s): Vanshita, Akash Garg and Hitesh Kumar Dewangan*

Volume 19, Issue 10, 2022

Published on: 15 March, 2022

Page: [865 - 876] Pages: 12

DOI: 10.2174/1570180819999220204110306

Price: $65

Abstract

The systemic delivery of pharmacological substances generally exhibits several significant limitations associated with the bio-distribution of active drugs in the body. Human body’s defense mechanisms have been found to become impediments to drug delivery. Various technologies have evolved to overcome these limitations, including computational approaches and advanced drug delivery. As the body of a human has evolved to defend itself from hostile biological as well as chemical invaders, the biological barriers, such as ocular barriers, blood-brain barriers, intestinal and skin barriers, also limit the passage of drugs across desired sites. Therefore, efficient delivery remains an utmost challenge for researchers and scientists. The present review focuses on the techniques to deliver the drugs with efficient therapeutic efficacy at the targeted sites. This review article provides an insight into the main biological barriers along with the application of computational or numerical methods to deal with different barriers by determining the drug flow, temperature and various other parameters. It also summarizes the advanced implantable drug delivery systems to circumvent the inherent resistance exhibited by these biological barriers, and in turn, to improve the drug delivery process.

Keywords: Biological barriers, computational models, implants, drug delivery, targeting, blood-brain barrier.

Next »
Graphical Abstract

[1]
Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[2]
Singh, S.; Sahu, D. A review on novel drug delivery system. Microsponges. Int. J. Drug Deliv. Technol., 2017, 7(4), 298-303.
[http://dx.doi.org/10.25258/ijddt.v7i04.10652]
[3]
Suhasini, S.; Ramesh Babu, C.H. New trends: Drug delivery systems. Res. Rev. J. Pharm. Nanotechnol., 2016, 4, 131-139.
[4]
Schneider, M.; Windbergs, M.; Daum, N.; Loretz, B.; Collnot, E.M.; Hansen, S.; Schaefer, U.F.; Lehr, C.M. Crossing biological barriers for advanced drug delivery. Eur. J. Pharm. Biopharm., 2013, 84(2), 239-241.
[http://dx.doi.org/10.1016/j.ejpb.2013.03.009] [PMID: 23531604]
[5]
Moghimi, S.M.; Howard, K.A. Targeting biological barriers: Turning a wall into a therapeutic springboard. Mol. Ther., 2018, 26(4), 933-934.
[http://dx.doi.org/10.1016/j.ymthe.2018.03.008] [PMID: 29571965]
[6]
Meng, H.; Leong, W.; Leong, K.W.; Chen, C.; Zhao, Y. Walking the line: The fate of nanomaterials at biological barriers. Biomaterials, 2018, 174, 41-53.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.056] [PMID: 29778981]
[7]
Dewangan, H.K.; Pandey, T.; Maurya, L.; Singh, S. Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery carriers. Int. J. Biol. Macromol., 2018, 111, 804-812.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.073]
[8]
Dewangan, H.K.; Singh, S.; Maurya, L.; Srivastava, A. Hepatitis B antigen loaded biodegradable polymeric nanoparticles: formulation optimization and in-vivo immunization in BALB/C mice. Curr. Drug Deliv., 2018, 15(8), 1204-1215.
[http://dx.doi.org/10.2174/1567201815666180604110457]
[9]
Lee, B.K. Computational fluid dynamics in cardiovascular disease. Korean Circ. J., 2011, 41(8), 423-430.
[http://dx.doi.org/10.4070/kcj.2011.41.8.423] [PMID: 21949524]
[10]
Masic, I.; Parojcic, J.; Djuric, Z. Computational fluid dynamics: Applications in pharmaceutical technology.In: Computer-Aided Applica-tions in Pharmaceutical Technology; Woodhead Publishing Limited: Sawston, UK, 2013, pp. 233-259.
[http://dx.doi.org/10.1533/9781908818324.233]
[11]
Sahu, A.K.; Kumar, P.; Patwardhan, A.W.; Joshi, J.B. CFD modelling and mixing in stirred tanks. Chem. Eng. Sci., 1999, 54(13-14), 2285-2293.
[http://dx.doi.org/10.1016/S0009-2509(98)00334-0]
[12]
Chen, X.; Luo, L.; Shen, C.; Ding, P.; Luo, J. An in silico method for predicting drug synergy based on multitask learning. Interdiscip. Sci., 2021, 13(2), 299-311.
[http://dx.doi.org/10.1007/s12539-021-00422-x] [PMID: 33611781]
[13]
Indelicato, S.; Bongiorno, D.; Calabrese, V.; Perricone, U.; Almerico, A.M.; Ceraulo, L.; Piazzese, D.; Tutone, M. Micelles, rods, lipo-somes, and other supramolecular surfactant aggregates: Computational approaches. Interdiscip. Sci., 2017, 9(3), 392-405.
[http://dx.doi.org/10.1007/s12539-017-0234-7] [PMID: 28478537]
[14]
Pons-Faudoa, F.P.; Ballerini, A.; Sakamoto, J.; Grattoni, A. Advanced implantable drug delivery technologies: Transforming the clinical landscape of therapeutics for chronic diseases. Biomed. Microdevices, 2019, 21(2), 47.
[http://dx.doi.org/10.1007/s10544-019-0389-6] [PMID: 31104136]
[15]
Suri, R.; Beg, S.; Kohli, K. Target strategies for drug delivery bypassing ocular barriers. J. Drug Deliv. Sci. Technol., 2020, 55, 101389.
[http://dx.doi.org/10.1016/j.jddst.2019.101389]
[16]
Hornof, M.; Toropainen, E.; Urtti, A. Cell culture models of the ocular barriers. Eur. J. Pharm. Biopharm., 2005, 60(2), 207-225.
[http://dx.doi.org/10.1016/j.ejpb.2005.01.009] [PMID: 15939234]
[17]
Cunha-Vaz, J.; Bernardes, R.; Lobo, C. Blood-retinal barrier. Eur. J. Ophthalmol., 2011, 21(6)(Suppl. 6), S3-S9.
[http://dx.doi.org/10.5301/EJO.2010.6049] [PMID: 23264323]
[18]
Raghava, S.; Hammond, M.; Kompella, U.B. Periocular routes for retinal drug delivery. Expert Opin. Drug Deliv., 2004, 1(1), 99-114.
[http://dx.doi.org/10.1517/17425247.1.1.99] [PMID: 16296723]
[19]
Cunha-Vaz, J.G. The blood-ocular barriers: past, present, and future. Doc. Ophthalmol., 1997, 93(1-2), 149-157.
[http://dx.doi.org/10.1007/BF02569055] [PMID: 9476613]
[20]
Urtti, A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Deliv. Rev., 2006, 58(11), 1131-1135.
[http://dx.doi.org/10.1016/j.addr.2006.07.027] [PMID: 17097758]
[21]
Barar, J.; Javadzadeh, A.R.; Omidi, Y. Ocular novel drug delivery: Impacts of membranes and barriers. Expert Opin. Drug Deliv., 2008, 5(5), 567-581.
[http://dx.doi.org/10.1517/17425247.5.5.567] [PMID: 18491982]
[22]
Haqqani, A.S.; Hill, J.J.; Mullen, J.; Stanimirovic, D.B. The blood–brain and other neural barriers. Methods Mol. Biol., 2011, 686(1), 337-353.
[http://dx.doi.org/10.1007/978-1-60761-938-3_16] [PMID: 21082380]
[23]
Gardner, T.W.; Antonetti, D.A.; Barber, A.J.; Lieth, E.; Tarbell, J.A. The molecular structure and function of the inner blood-retinal barri-er. Doc. Ophthalmol., 1999, 97(3-4), 229-237.
[http://dx.doi.org/10.1023/A:1002140812979] [PMID: 10896336]
[24]
Foulds, W.S. Drug delivery to the retina. Asia Pac. Biotech. News, 2002, 6(3), 79-81.
[http://dx.doi.org/10.1142/S0219030302000289]
[25]
Barar, J.; Asadi, M.; Mortazavi-Tabatabaei, S.A.; Omidi, Y. Ocular drug delivery; impact of in vitro cell culture models. J. Ophthalmic Vis. Res., 2009, 4(4), 238-252.
[PMID: 23198080]
[26]
Selvin, B.L. Systemic effects of topical ophthalmic medications. South. Med. J., 1983, 76(3), 349-358.
[http://dx.doi.org/10.1097/00007611-198303000-00020] [PMID: 6131541]
[27]
Elliott, R.O.; He, M. Unlocking the power of exosomes for crossing biological barriers in drug delivery. Pharmaceutics, 2021, 13(1), 1-20.
[http://dx.doi.org/10.3390/pharmaceutics13010122] [PMID: 33477972]
[28]
Persidsky, Y.; Ramirez, S.H.; Haorah, J.; Kanmogne, G.D. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J. Neuroimmune Pharmacol., 2006, 1(3), 223-236.
[http://dx.doi.org/10.1007/s11481-006-9025-3] [PMID: 18040800]
[29]
Gagliardi, M.; Bardi, G.; Gamucci, O.; Mazzolai, B. Targeted drug delivery across biological barriers using polymer nanoparticles. Expert Opin. Drug Deliv., 2013, 10(3), 96-109.
[http://dx.doi.org/10.4155/ebo.13.266]
[30]
Wood, M.J.; O’Loughlin, A.J.; Samira, L. Exosomes and the blood-brain barrier: implications for neurological diseases. Ther. Deliv., 2011, 2(9), 1095-1099.
[http://dx.doi.org/10.4155/tde.11.83] [PMID: 22833906]
[31]
Cuggino, J.C.; Blanco, E.R.O.; Gugliotta, L.M.; Alvarez Igarzabal, C.I.; Calderón, M. Crossing biological barriers with nanogels to improve drug delivery performance. J. Control. Release, 2019, 307, 221-246.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.005] [PMID: 31175895]
[32]
Pardridge, W.M. The blood-brain barrier: bottleneck in brain drug development. NeuroRx, 2005, 2(1), 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[33]
Wilson, B.; Samanta, M.K.; Santhi, K.; Kumar, K.P.S.; Paramakrishnan, N.; Suresh, B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res., 2008, 1200, 159-168.
[http://dx.doi.org/10.1016/j.brainres.2008.01.039] [PMID: 18291351]
[34]
Stewart, P.A.; Tuor, U.I. Blood-eye barriers in the rat: Correlation of ultrastructure with function. J. Comp. Neurol., 1994, 340(4), 566-576.
[http://dx.doi.org/10.1002/cne.903400409] [PMID: 8006217]
[35]
Gao, C.; Wang, Y.; Ye, Z.; Lin, Z.; Ma, X.; He, Q. Biomedical micro-/nanomotors: from overcoming biological barriers to in vivo imaging. Adv. Mater., 2021, 33(6), e2000512.
[http://dx.doi.org/10.1002/adma.202000512] [PMID: 32578282]
[36]
Deepika, D.; Dewangan, H.K.; Maurya, L.; Singh, S. Intranasal drug delivery of frovatriptan succinate loaded polymeric nanoparticles for brain targeting. J. Pharm. Sci., 2019, 108(2), 851-859.
[http://dx.doi.org/10.1016/j.xphs.2018.07.013]
[37]
Jătariu, A.N.; Popa, M.; Peptu, C.A. Different particulate systems-bypass the biological barriers? J. Drug Target., 2010, 18(4), 243-253.
[http://dx.doi.org/10.3109/10611860903398099] [PMID: 19883240]
[38]
Dubey, R.K.; Dewangan, H.K. Rational design and characterization of transdermal patch of irbesartan for hypertension. IJPER, 2020, 54(3s), s464-s472.
[http://dx.doi.org/10.5530/ijper.54.3s.145]
[39]
Baroni, A.; Buommino, E.; De Gregorio, V.; Ruocco, E.; Ruocco, V.; Wolf, R. Structure and function of the epidermis related to barrier properties. Clin. Dermatol., 2012, 30(3), 257-262.
[http://dx.doi.org/10.1016/j.clindermatol.2011.08.007] [PMID: 22507037]
[40]
Proksch, E.; Brandner, J.M.; Jensen, J.M. The skin: An indispensable barrier. Exp. Dermatol., 2008, 17(12), 1063-1072.
[http://dx.doi.org/10.1111/j.1600-0625.2008.00786.x] [PMID: 19043850]
[41]
Tanner, T.; Marks, R. Delivering drugs by the transdermal route: Review and comment. Skin Res. Technol., 2008, 14(3), 249-260.
[http://dx.doi.org/10.1111/j.1600-0846.2008.00316.x] [PMID: 19159369]
[42]
Wanat, K. Biological barriers, and the influence of protein binding on the passage of drugs across them. Mol. Biol. Rep., 2020, 47(4), 3221-3231.
[http://dx.doi.org/10.1007/s11033-020-05361-2] [PMID: 32140957]
[43]
Honeywell-Nguyen, P.L.; Bouwstra, J.A. Vesicles as a tool for transdermal and dermal delivery. Drug Discov. Today. Technol., 2005, 2(1), 67-74.
[http://dx.doi.org/10.1016/j.ddtec.2005.05.003] [PMID: 24981757]
[44]
Ting, W.W.; Vest, C.D.; Sontheimer, R.D. Review of traditional and novel modalities that enhance the permeability of local therapeutics across the stratum corneum. Int. J. Dermatol., 2004, 43(7), 538-547.
[http://dx.doi.org/10.1111/j.1365-4632.2004.02147.x] [PMID: 15230899]
[45]
Müller, C.A.; Autenrieth, I.B.; Peschel, A. Innate defenses of the intestinal epithelial barrier. Cell. Mol. Life Sci., 2005, 62(12), 1297-1307.
[http://dx.doi.org/10.1007/s00018-005-5034-2] [PMID: 15971105]
[46]
Dewangan, H.K. Rational application of nanoadjuvant for mucosal vaccine delivery system. J. Immunol. Methods, 2020, 481-482, 1-11.
[47]
Wikman, A.; Karlsson, J.; Carlstedt, I.; Artursson, P. A drug absorption model based on the mucus layer producing human intestinal gob-let cell line HT29-H. Pharm. Res., 1993, 10(6), 843-852.
[http://dx.doi.org/10.1023/A:1018905109971] [PMID: 8321852]
[48]
Pade, V.; Stavchansky, S. Link between drug absorption solubility and permeability measurements in Caco-2 cells. J. Pharm. Sci., 1998, 87(12), 1604-1607.
[http://dx.doi.org/10.1021/js980111k] [PMID: 10189274]
[49]
Ebangwese, S. Molecular Investigation of the Intestinal Barrier in Health and Disease; Syracuse University Honors Program Capstone Projects; Syracuse University: NY, USA, 2019, p. 1113.
[50]
Daugherty, A.L.; Mrsny, R.J. Transcellular uptake mechanisms of the intestinal epithelial barrier Part one. Pharm. Sci. Technol. Today, 1999, 4(2), 144-151.
[http://dx.doi.org/10.1016/S1461-5347(99)00142-X] [PMID: 10322371]
[51]
Laukoetter, M.G.; Bruewer, M.; Nusrat, A. Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr. Opin. Gastroenterol., 2006, 22(2), 85-89.
[http://dx.doi.org/10.1097/01.mog.0000203864.48255.4f] [PMID: 16462161]
[52]
Ramezanpour, M.; Leung, S.S.W.; Delgado-Magnero, K.H.; Bashe, B.Y.M.; Thewalt, J.; Tieleman, D.P. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochim. Biophys. Acta, 2016, 1858(7 Pt B), 1688-1709.
[http://dx.doi.org/10.1016/j.bbamem.2016.02.028] [PMID: 26930298]
[53]
Sundararaj, S.; Abraham, B.A.; Krishnakumar, P. Computational fluid dynamics analysis of flow in diffuser of a desiccant type air dryer. Mater. Today, 2020, 37(2), 1517-1523.
[http://dx.doi.org/10.1016/j.matpr.2020.07.120]
[54]
Baldi, A. Computational approaches for drug design and discovery: An overview. Syst. Rev. Pharm., 2010, 1(1), 99-105.
[http://dx.doi.org/10.4103/0975-8453.59519]
[55]
Rostami-Hodjegan, A. Physiologically based pharmacokinetics joined with in vitro-in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin. Pharmacol. Ther., 2012, 92(1), 50-61.
[http://dx.doi.org/10.1038/clpt.2012.65] [PMID: 22644330]
[56]
Sheridan, R.P.; Nam, K.; Maiorov, V.N.; McMasters, D.R.; Cornell, W.D. QSAR models for predicting the similarity in binding profiles for pairs of protein kinases and the variation of models between experimental data sets. J. Chem. Inf. Model., 2009, 49(8), 1974-1985.
[http://dx.doi.org/10.1021/ci900176y] [PMID: 19639957]
[57]
Giaginis, C.; Zira, A.; Theocharis, S.; Tsantili-Kakoulidou, A. Application of quantitative structure-activity relationships for modeling drug and chemical transport across the human placenta barrier: A multivariate data analysis approach. J. Appl. Toxicol., 2009, 29(8), 724-733.
[http://dx.doi.org/10.1002/jat.1466] [PMID: 19728316]
[58]
Chuman, H. Toward basic understanding of the partition coefficient log P and its application in QSAR. SAR QSAR Environ. Res., 2008, 19(1-2), 71-79.
[http://dx.doi.org/10.1080/10629360701844050] [PMID: 18311635]
[59]
Ekuase, E.J.; Liu, Y.; Lehmler, H.J.; Robertson, L.W.; Duffel, M.W. Structure-activity relationships for hydroxylated polychlorinated biphenyls as inhibitors of the sulfation of dehydroepiandrosterone catalyzed by human hydroxysteroid sulfotransferase SULT2A1. Chem. Res. Toxicol., 2011, 24(10), 1720-1728.
[http://dx.doi.org/10.1021/tx200260h] [PMID: 21913674]
[60]
Chen, C.Y.; Ko, C.W.; Lee, P.I. Toxicity of substituted anilines to Pseudokirchneriella subcapitata and quantitative structure-activity rela-tionship analysis for polar narcotics. Environ. Toxicol. Chem., 2007, 26(6), 1158-1164.
[http://dx.doi.org/10.1897/06-293R.1] [PMID: 17571680]
[61]
Garmire, L.X.; Garmire, D.G.; Hunt, C.A. An in silico transwell device for the study of drug transport and drug-drug interactions. Pharm. Res., 2007, 24(12), 2171-2186.
[http://dx.doi.org/10.1007/s11095-007-9391-4] [PMID: 17703347]
[62]
Dolghih, E.; Jacobson, M.P. Predicting efflux ratios and blood-brain barrier penetration from chemical structure: Combining passive per-meability with active efflux by P-glycoprotein. ACS Chem. Neurosci., 2013, 4(2), 361-367.
[http://dx.doi.org/10.1021/cn3001922] [PMID: 23421687]
[63]
Zhang, W.; Prausnitz, M.R.; Edwards, A. Model of transient drug diffusion across cornea. J. Control. Release, 2004, 99(2), 241-258.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.001] [PMID: 15380634]
[64]
Missel, P.J. Simulating intravitreal injections in anatomically accurate models for rabbit, monkey, and human eyes. Pharm. Res., 2012, 29(12), 3251-3272.
[http://dx.doi.org/10.1007/s11095-012-0721-9] [PMID: 22752935]
[65]
Jooybar, E.; Abdekhodaie, M.J.; Farhadi, F.; Cheng, Y.L. Computational modeling of drug distribution in the posterior segment of the eye: Effects of device variables and positions. Math. Biosci., 2014, 255, 11-20.
[http://dx.doi.org/10.1016/j.mbs.2014.06.008] [PMID: 24946303]
[66]
Subedi, R.K.; Oh, S.Y.; Chun, M.K.; Choi, H.K. Recent advances in transdermal drug delivery. Arch. Pharm. Res., 2010, 33(3), 339-351.
[http://dx.doi.org/10.1007/s12272-010-0301-7] [PMID: 20361297]
[67]
Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev., 2004, 56(5), 603-618.
[http://dx.doi.org/10.1016/j.addr.2003.10.025] [PMID: 15019749]
[68]
Talreja, P.; Kleene, N.K.; Pickens, W.L.; Wang, T.F.; Kasting, G.B. Visualization of the lipid barrier and measurement of lipid pathlength in human stratum corneum. AAPS PharmSci, 2001, 3(2), E13.
[http://dx.doi.org/10.1208/ps030213] [PMID: 11741264]
[69]
Scheuplein, R.J. Permeability of the skin: A review of major concepts and some new developments. J. Invest., 1976, 67(5), 672-676.
[http://dx.doi.org/10.1111/1523-1747.ep12544513]
[70]
Schätzlein, A.; Cevc, G. Non-uniform cellular packing of the stratum corneum and permeability barrier function of intact skin: a high-resolution confocal laser scanning microscopy study using highly deformable vesicles (Transfersomes). Br. J. Dermatol., 1998, 138(4), 583-592.
[http://dx.doi.org/10.1046/j.1365-2133.1998.02166.x] [PMID: 9640361]
[71]
Gienger, G.; Knoch, A.; Merkle, H.P. Modeling and numerical computation of drug transport in laminates: Model case evaluation of trans-dermal delivery system. J. Pharm. Sci., 1986, 75(1), 9-15.
[http://dx.doi.org/10.1002/jps.2600750104] [PMID: 3083091]
[72]
Stüben, K.; Trottenberg, U. Multigrid methods: Fundamental algorithms, model problem analysis and applications. In: Multigrid Methods. Lecture Notes in Mathematics; Hackbusch, W.; Trottenberg, U., Eds.; Springer, 1982, 960.
[http://dx.doi.org/10.1007/BFb0069928]
[73]
Feuchter, D.; Heisig, M.; Wittum, G. A geometry model for the simulation of drug diffusion through the stratum corneum. Comput. Vis. Sci., 2006, 9(2), 117-130.
[http://dx.doi.org/10.1007/s00791-006-0017-x]
[74]
Bastian, P.; Birken, K.; Johannsen, K.; Lang, S.; Neuß, N.; Rentz-Reichert, H.; Wieners, C. UG - A flexible software toolbox for solving partial differential equations. Comput. Vis. Sci., 1997, 1(1), 27-40.
[http://dx.doi.org/10.1007/s007910050003]
[75]
Ward, N.L.; Lamanna, J.C. The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems. Neurol. Res., 2004, 26(8), 870-883.
[http://dx.doi.org/10.1179/016164104X3798] [PMID: 15727271]
[76]
Förster, C.; Silwedel, C.; Golenhofen, N.; Burek, M.; Kietz, S.; Mankertz, J.; Drenckhahn, D. Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine in vitro system. J. Physiol., 2005, 565(Pt 2), 475-486.
[http://dx.doi.org/10.1113/jphysiol.2005.084038] [PMID: 15790664]
[77]
Irudayanathan, F.J.; Wang, N.; Wang, X.; Nangia, S. Architecture of the paracellular channels formed by claudins of the blood-brain barri-er tight junctions. Ann. N. Y. Acad. Sci., 2017, 1405(1), 131-146.
[http://dx.doi.org/10.1111/nyas.13378] [PMID: 28614588]
[78]
Suarez, C.; Maglietti, F.; Colonna, M.; Breitburd, K.; Marshall, G. Mathematical modeling of human glioma growth based on brain topolog-ical structures: study of two clinical cases. PLoS One, 2012, 7(6), e39616.
[http://dx.doi.org/10.1371/journal.pone.0039616] [PMID: 22761843]
[79]
Mang, A.; Toma, A.; Schuetz, T.A.; Becker, S.; Eckey, T.; Mohr, C.; Petersen, D.; Buzug, T.M. Biophysical modeling of brain tumor pro-gression: from unconditionally stable explicit time integration to an inverse problem with parabolic PDE constraints for model calibration. Med. Phys., 2012, 39(7), 4444-4459.
[http://dx.doi.org/10.1118/1.4722749] [PMID: 22830777]
[80]
Yan, Y.B.; Qi, W.; Wu, Z.X.; Qiu, T.X.; Teo, E.C.; Lei, W. Finite element study of the mechanical response in spinal cord during the thoracolumbar burst fracture. PLoS One, 2012, 7(9), e41397.
[http://dx.doi.org/10.1371/journal.pone.0041397] [PMID: 23028426]
[81]
Panagiotopoulou, O. Finite element analysis (FEA): Applying an engineering method to functional morphology in anthropology and hu-man biology. Ann. Hum. Biol., 2009, 36(5), 609-623.
[http://dx.doi.org/10.1080/03014460903019879] [PMID: 19657767]
[82]
Brand, R.M.; Hannah, T.L.; Mueller, C.; Cetin, Y.; Hamel, F.G. A novel system to study the impact of epithelial barriers on cellular metab-olism. Ann. Biomed. Eng., 2000, 28(10), 1210-1217.
[http://dx.doi.org/10.1114/1.1318926] [PMID: 11144982]
[83]
Hadad, A.; Braidot, A. 2014, Paraná, Argentina 2029, 30 & 31 October 2014. I.F.M.B.E. Proc. 49(October 2014) Lat. Am. Congress on Biomedical Engineering CLAIB, 2014, VI, 148-149.
[84]
Ramirez-fernandez, O.; Cacopardo, L.; Leon-Mancilla, B.; Costa, J. Design and development of a dual-flow bioreactor mimicking intestinal peristalsis and permeability in epithelial tissue barriers for drug transport assessment. Biocell, 2019, 43(1), 29-35.
[http://dx.doi.org/10.32604/biocell.2019.04790]
[85]
Lennernäs, H. Intestinal permeability and its relevance for absorption and elimination. Xenobiotica, 2007, 37(10-11), 1015-1051.
[http://dx.doi.org/10.1080/00498250701704819] [PMID: 17968735]
[86]
Giusti, S.; Sbrana, T.; La Marca, M.; Di Patria, V.; Martinucci, V.; Tirella, A.; Domenici, C.; Ahluwalia, A. A novel dual-flow bioreactor simulates increased fluorescein permeability in epithelial tissue barriers. Biotechnol. J., 2014, 9(9), 1175-1184.
[http://dx.doi.org/10.1002/biot.201400004] [PMID: 24756869]
[87]
Gerstel, M.S.; Place, V.A. Drug Delivery Device US 3964482A, 1976.
[88]
Lakshmi; Singh, S.; Vijayakumar, M. R.; Dewangan, H. K. Lipid based aqueous core nanocapsules (ACNs) for encapsulating hydrophilic vinorelbine bitartrate: Preparation, optimization, characterization and in vitro safety assessment for intravenous administration. Curr. Drug Deliv., 2018, 15(9), 1284-1293.
[http://dx.doi.org/10.2174/1567201815666180716112457]
[89]
Lee, S.S.; Hughes, P.; Ross, A.D.; Robinson, M.R. Biodegradable implants for sustained drug release in the eye. Pharm. Res., 2010, 27(10), 2043-2053.
[http://dx.doi.org/10.1007/s11095-010-0159-x] [PMID: 20535532]
[90]
Fumimoto, Y.; Matsuyama, A.; Komoda, H.; Okura, H.; Lee, C.M.; Nagao, A.; Nishida, T.; Ito, T.; Sawa, Y. Creation of a rich subcutane-ous vascular network with implanted adipose tissue-derived stromal cells and adipose tissue enhances subcutaneous grafting of islets in diabetic mice. Tissue Eng. Part C Methods, 2009, 15(3), 437-444.
[http://dx.doi.org/10.1089/ten.tec.2008.0555] [PMID: 19320553]
[91]
Birch, D.G.; Weleber, R.G.; Duncan, J.L.; Jaffe, G.J.; Tao, W. Randomized trial of ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for retinitis pigmentosa. Am. J. Ophthalmol., 2013, 156(2), 283-292.e1.
[http://dx.doi.org/10.1016/j.ajo.2013.03.021] [PMID: 23668681]
[92]
Knight, K.H.; Brand, F.M.; Mchaourab, A.S.; Veneziano, G. Implantable intrathecal pumps for chronic pain: highlights and updates. Croat. Med. J., 2007, 48(1), 22-34.
[PMID: 17309136]
[93]
Kumar, A.; Pillai, J. Nanostructures for the engineering of cells, tissues and organs: From design to applications implantable drug delivery systems: An overview. 2018, 473-511.
[http://dx.doi.org/10.1016/B978-0-12-813665-2.00013-2]
[94]
Dhillon, B.; Kamal, A.; Leen, C. Intravitreal sustained-release ganciclovir implantation to control cytomegalovirus retinitis in AIDS. Int. J. STD AIDS, 1998, 9(4), 227-230.
[http://dx.doi.org/10.1258/0956462981922098] [PMID: 9598751]
[95]
Jaffe, G.J.; Martin, D.; Callanan, D.; Pearson, P.A.; Levy, B.; Comstock, T. Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis: Thirty-four-week results of a multicenter randomized clinical study. Ophthalmology, 2006, 113(6), 1020-1027.
[http://dx.doi.org/10.1016/j.ophtha.2006.02.021] [PMID: 16690128]
[96]
Massa, H.; Nagar, A.M.; Vergados, A.; Dadoukis, P.; Patra, S.; Panos, G.D. Intravitreal fluocinolone acetonide implant (ILUVIEN®) for diabetic macular oedema: A literature review. J. Int. Med. Res., 2019, 47(1), 31-43.
[http://dx.doi.org/10.1177/0300060518816884] [PMID: 30556449]
[97]
Bastiat, G.; Plourde, F.; Motulsky, A.; Furtos, A.; Dumont, Y.; Quirion, R.; Fuhrmann, G.; Leroux, J.C. Tyrosine-based rivastigmine-loaded organogels in the treatment of Alzheimer’s disease. Biomaterials, 2010, 31(23), 6031-6038.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.009] [PMID: 20472283]
[98]
Thakur, R.; Jones, D. Biodegradable implants for sustained intraocular delivery of small and large molecules. ondrugdelivery, 2018, 82, 28-31.
[99]
Sonabend, A.M.; Stupp, R. Overcoming the blood-brain barrier with an implantable ultrasound device. Clin. Cancer Res., 2019, 25(13), 3750-3752.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0932] [PMID: 31076548]
[100]
Zhang, D.Y.; Dmello, C.; Chen, L.; Arrieta, V.A.; Gonzalez-Buendia, E.; Kane, J.R.; Magnusson, L.P.; Baran, A.; James, C.D.; Horbinski, C.; Carpentier, A.; Desseaux, C.; Canney, M.; Muzzio, M.; Stupp, R.; Sonabend, A.M. Ultrasound-mediated delivery of paclitaxel for gli-oma: A comparative study of distribution, toxicity, and efficacy of albumin-bound versus cremophor formulations. Clin. Cancer Res., 2020, 26(2), 477-486.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2182] [PMID: 31831565]
[101]
Bota, D.A.; Desjardins, A.; Quinn, J.A.; Affronti, M.L.; Friedman, H.S. Interstitial chemotherapy with biodegradable BCNU (Gliadel) wa-fers in the treatment of malignant gliomas. Ther. Clin. Risk Manag., 2007, 3(5), 707-715.
[PMID: 18472995]
[102]
Jonas, O.; Calligaris, D.; Methuku, K.R.; Poe, M.M.; Francois, J.P.; Tranghese, F.; Changelian, A.; Sieghart, W.; Ernst, M.; Krummel, D.A.; Cook, J.M.; Pomeroy, S.L.; Cima, M.; Agar, N.Y.; Langer, R.; Sengupta, S. First in vivo testing of compounds targeting group 3 medullo-blastomas using an implantable microdevice as a new paradigm for drug development. J. Biomed. Nanotechnol., 2016, 12(6), 1297-1302.
[http://dx.doi.org/10.1166/jbn.2016.2262] [PMID: 27319222]
[103]
Koskimäki, J.; Tarkia, M.; Ahtola-Sätilä, T.; Saloranta, L.; Simola, O.; Forsback, A.P.; Laakso, A.; Frantzén, J. Intracranial biodegradable silica-based nimodipine drug release implant for treating vasospasm in subarachnoid hemorrhage in an experimental healthy pig and dog model. BioMed Res. Int., 2015, 2015, 715752.
[http://dx.doi.org/10.1155/2015/715752] [PMID: 25685803]
[104]
Kasuya, H.; Kawashima, A.; Sasahara, A.; Onda, H.; Hori, T. Development of nicardipine prolonged-release implants for preventing vaso-spasm. Acta Neurochir. Suppl. (Wien), 2001, 77, 217-220.
[http://dx.doi.org/10.1007/978-3-7091-6232-3_46] [PMID: 11563291]
[105]
Rainer, M.K. Risperidone long-acting injection: A review of its long term safety and efficacy. Neuropsychiatr. Dis. Treat., 2008, 4(5), 919-927.
[http://dx.doi.org/10.2147/NDT.S3311] [PMID: 19183782]
[106]
Avachat, A.M.; Kapure, S.S. Asenapine maleate in situ forming biodegradable implant: an approach to enhance bioavailability. Int. J. Pharm., 2014, 477(1-2), 64-72.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.006] [PMID: 25305379]

© 2024 Bentham Science Publishers | Privacy Policy