Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Comparative Study to Characterise the Pharmaceutical Potential of Synthesised Snake Venom Bradykinin-Potentiating Peptides In Vivo

Author(s): Aisha Munawar*, Fakhar Zaman, Muhammad Waqas Ishaq, Khwaja Ali Hassan, Saima Masood, Zahid Ali, Khalid Abdul Majeed, Ahmed Akrem, Syed Abid Ali and Christian Betzel

Volume 29, Issue 42, 2022

Published on: 01 April, 2022

Page: [6422 - 6432] Pages: 11

DOI: 10.2174/0929867329666220203153051

Price: $65

Abstract

Background: Bradykinin-potentiating peptides (BPPs) are snake venom peptides inhibiting the angiotensin-converting enzyme (ACE). ACE plays an important role in the regulation of blood pressure. BPPs lead to the development of ACE inhibitors for the treatment of hypertension.

Objective: The objective of the present work was to carry out a comprehensive comparative study of four synthesised snake venom BPPs in vivo.

Methods: Four synthesised snake venom BPPs were administered to rats via the intraperitoneal route for 15 days at a fixed dose. Lisinopril was used as a comparative standard. Thirty male albino rats were divided into six groups: A, B, C, D, E (lisinopril), and F (control). Group F was maintained as the control group and given only saline. After 15 days, blood samples and tissues were removed for the study of selective biochemical parameters and histomorphometric analysis. Statistical evaluation of all results was also performed.

Results: The results indicated that peptide I, with the sequence ZSAPGNEAIPP, was highly toxic and adversely affected all the biochemical and histological parameters studied in this work. Peptide II (ZNWPHPQIPP) and peptide IV (ZQWAQGRAPHPP) showed lower toxicity. None of the BPPs raised the serum creatinine level and exhibited nephroprotective effects. Although lisinopril raised the creatinine level, it showed a protective role towards the pancreas and lungs in parallel.

Conclusion: The present work shows that although there is a high sequence similarity between the four BPPs, their in vivo activity varies. The sequences of peptide II and peptide IV can be used to improve the design of current ACE inhibitors used for hypertension treatment.

Keywords: Snake venom bradykinin-potentiating peptides, lisinopril, creatinine, seminiferous tubules, liver histomorphometry, ACE.

[1]
Mathur, S.; Hoskins, C. Drug development: Lessons from nature. Biomed. Rep., 2017, 6(6), 612-614.
[http://dx.doi.org/10.3892/br.2017.909] [PMID: 28584631]
[2]
Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), E1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[3]
King, G.F. Venoms as a platform for human drugs: Translating toxins into therapeutics. Expert Opin. Biol. Ther., 2011, 11(11), 1469-1484.
[http://dx.doi.org/10.1517/14712598.2011.621940] [PMID: 21939428]
[4]
Koh, C.Y.; Kini, R.M. From snake venom toxins to therapeutics--cardiovascular examples. Toxicon, 2012, 59(4), 497-506.
[http://dx.doi.org/10.1016/j.toxicon.2011.03.017] [PMID: 21447352]
[5]
Ruder, T.; Ali, S.A.; Ormerod, K.; Brust, A.; Roymanchadi, M.L.; Ventura, S.; Undheim, E.A.; Jackson, T.N.; Mercier, A.J.; King, G.F.; Alewood, P.F.; Fry, B.G. Functional characterization on invertebrate and vertebrate tissues of tachykinin peptides from octopus venoms. Peptides, 2013, 47, 71-76.
[http://dx.doi.org/10.1016/j.peptides.2013.07.002] [PMID: 23850991]
[6]
Almeida, J.R.; Resende, L.M.; Watanabe, R.K.; Carregari, V.C.; Huancahuire-Vega, S.; da S Caldeira, C.A.; Coutinho-Neto, A.; Soares, A.M.; Vale, N.; de C Gomes, P.A.; Marangoni, S.; de A Calderon, L.; Da Silva, S.L. snake venom peptides and low mass proteins: Molecular tools and therapeutic agents. Curr. Med. Chem., 2017, 24(30), 3254-3282.
[http://dx.doi.org/10.2174/0929867323666161028155611] [PMID: 27804880]
[7]
Almeida, D.; Domínguez-Pérez, D.; Matos, A.; Agüero-Chapin, G.; Osório, H.; Vasconcelos, V.; Campos, A.; Antunes, A. Putative antimicrobial peptides of the posterior salivary glands from the cephalopod Octopus vulgaris revealed by exploring a composite protein database. Antibiotics (Basel), 2020, 9(11), E757.
[http://dx.doi.org/10.3390/antibiotics9110757] [PMID: 33143020]
[8]
Bordon, K.C.F.; Cologna, C.T.; Fornari-Baldo, E.C.; Pinheiro-Júnior, E.L.; Cerni, F.A.; Amorim, F.G.; Anjolette, F.A.P.; Cordeiro, F.A.; Wiezel, G.A.; Cardoso, I.A.; Ferreira, I.G.; de Oliveira, I.S.; Boldrini-França, J.; Pucca, M.B.; Baldo, M.A.; Arantes, E.C. From animal poisons and venoms to medicines: Achievements, challenges and perspectives in drug discovery. Front. Pharmacol., 2020, 11, 1132.
[http://dx.doi.org/10.3389/fphar.2020.01132] [PMID: 32848750]
[9]
Munawar, A.; Ali, S.A.; Akrem, A.; Betzel, C. Snake venom peptides: Tools of biodiscovery. Toxins (Basel), 2018, 10(11), E474.
[http://dx.doi.org/10.3390/toxins10110474] [PMID: 30441876]
[10]
Cotton, J.; Hayashi, M.A.; Cuniasse, P.; Vazeux, G.; Ianzer, D.; De Camargo, A.C.; Dive, V. Selective inhibition of the C-domain of angiotensin I converting enzyme by bradykinin potentiating peptides. Biochemistry, 2002, 41(19), 6065-6071.
[http://dx.doi.org/10.1021/bi012121x] [PMID: 11994001]
[11]
van Esch, J.H.; Tom, B.; Dive, V.; Batenburg, W.W.; Georgiadis, D.; Yiotakis, A.; van Gool, J.M.; de Bruijn, R.J.; de Vries, R.; Danser, A.H. Selective angiotensin-converting enzyme C-domain inhibition is sufficient to prevent angiotensin I-induced vasoconstriction. Hypertension, 2005, 45(1), 120-125.
[http://dx.doi.org/10.1161/01.HYP.0000151323.93372.f5] [PMID: 15583077]
[12]
Ferreira, L.A.; Alves, W.E.; Lucas, M.S.; Habermehl, G.G. Isolation and characterization of a bradykinin potentiating peptide (BPP-S) isolated from Scaptocosa raptoria venom. Toxicon, 1996, 34(5), 599-603.
[http://dx.doi.org/10.1016/0041-0101(96)00010-4] [PMID: 8783454]
[13]
Conceição, K.; Konno, K.; de Melo, R.L.; Antoniazzi, M.M.; Jared, C.; Sciani, J.M.; Conceição, I.M.; Prezoto, B.C.; de Camargo, A.C.; Pimenta, D.C. Isolation and characterization of a novel bradykinin potentiating peptide (BPP) from the skin secretion of Phyllomedusa hypochondrialis. Peptides, 2007, 28(3), 515-523.
[http://dx.doi.org/10.1016/j.peptides.2006.10.002] [PMID: 17098329]
[14]
Verano-Braga, T.; Rocha-Resende, C.; Silva, D.M.; Ianzer, D.; Martin-Eauclaire, M.F.; Bougis, P.E.; de Lima, M.E.; Santos, R.A.; Pimenta, A.M. Tityus serrulatus Hypotensins: A new family of peptides from scorpion venom. Biochem. Biophys. Res. Commun., 2008, 371(3), 515-520.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.104] [PMID: 18445483]
[15]
Arcanjo, D.D.; Vasconcelos, A.G.; Comerma-Steffensen, S.G.; Jesus, J.R.; Silva, L.P.; Pires Júnior, O.R.; Costa-Neto, C.M.; Oliveira, E.B.; Migliolo, L.; Franco, O.L.; Restini, C.B.; Paulo, M.; Bendhack, L.M.; Bemquerer, M.P.; Oliveira, A.P.; Simonsen, U.; Leite, J.R. A novel vasoactive proline-rich oligopeptide from the skin secretion of the frog Brachycephalus ephippium. PLoS One, 2015, 10(12), e0145071.
[http://dx.doi.org/10.1371/journal.pone.0145071] [PMID: 26661890]
[16]
Ganellin, J.F.C.R.; Alfoldi, S.; Fischer, J., Eds.; Analogue-Based Drug Discovery; John Wiley & Sons: Germany, 2006.
[17]
Bakhle, Y.S. How ACE inhibitors transformed the renin-angiotensin system. Br. J. Pharmacol., 2020, 177(12), 2657-2665.
[http://dx.doi.org/10.1111/bph.15045] [PMID: 32144755]
[18]
Sciani, J.M.; Pimenta, D.C. The modular nature of bradykinin-potentiating peptides isolated from snake venoms. J. Venom. Anim. Toxins Incl. Trop. Dis., 2017, 23, 45.
[http://dx.doi.org/10.1186/s40409-017-0134-7] [PMID: 29090005]
[19]
Ianzer, D.; Xavier, C.H.; Fraga, F.C.; Lautner, R.Q.; Guerreiro, J.R.; Machado, L.T.; Mendes, E.P.; de Camargo, A.C.; Santos, R.A. BPP-5a produces a potent and long-lasting NO-dependent antihypertensive effect. Ther. Adv. Cardiovasc. Dis., 2011, 5(6), 281-295.
[http://dx.doi.org/10.1177/1753944711427318] [PMID: 22032921]
[20]
Morais, K.L.; Ianzer, D.; Miranda, J.R.; Melo, R.L.; Guerreiro, J.R.; Santos, R.A.; Ulrich, H.; Lameu, C. Proline rich-oligopeptides: Diverse mechanisms for antihypertensive action. Peptides, 2013, 48, 124-133.
[http://dx.doi.org/10.1016/j.peptides.2013.07.016] [PMID: 23933300]
[21]
Sciani, J.M.; Vigerelli, H.; Costa, A.S.; Câmara, D.A.; Junior, P.L.; Pimenta, D.C. An unexpected cell-penetrating peptide from Bothrops jararaca venom identified through a novel size exclusion chromatography screening. J. Pept. Sci., 2017, 23(1), 68-76.
[http://dx.doi.org/10.1002/psc.2965] [PMID: 28054409]
[22]
Querobino, S.M.; Costa, M.S.; Alberto-Silva, C. Protective effects of distinct proline-rich oligopeptides from B. jararaca snake venom against oxidative stress-induced neurotoxicity. Toxicon, 2019, 167, 29-37.
[http://dx.doi.org/10.1016/j.toxicon.2019.06.012] [PMID: 31181294]
[23]
Alberto-Silva, C.; Gilio, J.M.; Portaro, F.C.; Querobino, S.M.; Camargo, A.C. Angiotensin-converting enzyme inhibitors of Bothrops jararaca snake venom affect the structure of mice seminiferous epithelium. J. Venom. Anim. Toxins Incl. Trop. Dis., 2015, 21, 27.
[http://dx.doi.org/10.1186/s40409-015-0030-y] [PMID: 26244047]
[24]
Alberto-Silva, C.; Franzin, C.S.; Gilio, J.M.; Bonfim, R.S.; Querobino, S.M. Toxicological effects of bioactive peptide fractions obtained from Bothrops jararaca snake venom on the structure and function of mouse seminiferous epithelium. J. Venom. Anim. Toxins Incl. Trop. Dis., 2020, 26, e20200007.
[http://dx.doi.org/10.1590/1678-9199-jvatitd-2020-0007] [PMID: 32636877]
[25]
Natesh, R.; Schwager, S.L.; Sturrock, E.D.; Acharya, K.R. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature, 2003, 421(6922), 551-554.
[http://dx.doi.org/10.1038/nature01370] [PMID: 12540854]
[26]
Masuyer, G.; Schwager, S.L.; Sturrock, E.D.; Isaac, R.E.; Acharya, K.R. Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Sci. Rep., 2012, 2, 717.
[http://dx.doi.org/10.1038/srep00717] [PMID: 23056909]
[27]
Sturrock, E.D.; Lubbe, L.; Cozier, G.E.; Schwager, S.L.U.; Arowolo, A.T.; Arendse, L.B.; Belcher, E.; Acharya, K.R. Structural basis for the C-domain-selective angiotensin-converting enzyme inhibition by bradykinin-potentiating peptide b (BPPb). Biochem. J., 2019, 476(10), 1553-1570.
[http://dx.doi.org/10.1042/BCJ20190290] [PMID: 31072910]
[28]
Munawar, A.; Zahid, A.; Negm, A.; Akrem, A.; Spencer, P.; Betzel, C. Isolation and characterization of Bradykinin potentiating peptides from Agkistrodon bilineatus venom. Proteome Sci., 2016, 14, 1.
[http://dx.doi.org/10.1186/s12953-016-0090-0] [PMID: 26770072]
[29]
Joyce, M. Gilio, F.C.P., Maria I Borella, Claudiana Lameu, Antonio CM Camargo and Carlos Alberto-Silva, A bradykinin-potentiating peptide (BPP-10c) from Bothrops jararaca induces changes in seminiferous tubules. J. Venom. Anim. Toxins Incl. Trop. Dis., 2013, 19, 28.
[http://dx.doi.org/10.1186/1678-9199-19-28]
[30]
Alturkistani, H.A.; Tashkandi, F.M.; Mohammedsaleh, Z.M. Histological stains: A literature review and case study. Glob. J. Health Sci., 2015, 8(3), 72-79.
[http://dx.doi.org/10.5539/gjhs.v8n3p72] [PMID: 26493433]
[31]
StatPearls; StatPearls Publishing: Treasure Island (FL), 2021.
[32]
Gokcimen, A.; Kocak, A.; Kilbas, S.; Bayram, D.; Kilbas, A.; Cim, A.; Kockar, C.; Kutluhan, S. Effect of lisinopril on rat liver tissues in L-NAME induced hypertension model. Mol. Cell. Biochem., 2007, 296(1-2), 159-164.
[http://dx.doi.org/10.1007/s11010-006-9310-8] [PMID: 16988888]
[33]
Dodiya, H.; Kale, V.; Goswami, S.; Sundar, R.; Jain, M. Evaluation of adverse effects of lisinopril and rosuvastatin on hematological and biochemical analytes in wistar rats. Toxicol. Int., 2013, 20(2), 170-176.
[http://dx.doi.org/10.4103/0971-6580.117261] [PMID: 24082511]
[34]
Yun Shin Chun, M.D. Jean-Nicolas Vauthey. Venous Embolization of the Liver: Radiologic and Surgical Practice; Springer, 2011.
[35]
Al-Rifaie, A.; Khan, M.A.; Ali, A.; Dube, A.K.; Gleeson, D.; Hoeroldt, B. Lisinopril-induced liver injury: An unusual presentation and literature review. Eur. J. Case Rep. Intern. Med., 2020, 7(7), 001600.
[http://dx.doi.org/10.12890/2020_001600] [PMID: 32665926]
[36]
Bekheet, S.H.; Awadalla, E.A.; Salman, M.M.; Hassan, M.K. Bradykinin potentiating factor isolated from Buthus occitanus venom has a protective effect against cadmium-induced rat liver and kidney damage. Tissue Cell, 2011, 43(6), 337-343.
[http://dx.doi.org/10.1016/j.tice.2011.07.001] [PMID: 21862094]
[37]
Bekheet, S.H.; Awadalla, E.A.; Salman, M.M.; Hassan, M.K. Prevention of hepatic and renal toxicity with bradykinin potentiating factor (BPF) isolated from Egyptian scorpion venom (Buthus occitanus) in gentamicin treated rats. Tissue Cell, 2013, 45(2), 89-94.
[http://dx.doi.org/10.1016/j.tice.2012.09.006] [PMID: 23218888]
[38]
Yakubu, M.T.; Adesokan, A.A.; M.A, A. Biochemical changes in the Liver, Kidney and Serum of rat following chronic administration of cimetidine. Afr. J. Biomed. Res., 2006, 9, 213-218.
[39]
Dodiya, H.; Jain, M.; Goswami, S.S. Renal toxicity of lisinopril and rosuvastatin, alone and in combination, in Wistar rats. Int. J. Toxicol., 2011, 30(5), 518-527.
[http://dx.doi.org/10.1177/1091581811415293] [PMID: 21878554]
[40]
Nakamura, M.; Funakoshi, T.; Yoshida, H.; Arakawa, N.; Suzuki, T.; Hiramori, K. Endothelium-dependent vasodilation is augmented by angiotensin converting enzyme inhibitors in healthy volunteers. J. Cardiovasc. Pharmacol., 1992, 20(6), 949-954.
[http://dx.doi.org/10.1097/00005344-199212000-00015] [PMID: 1282598]
[41]
Henein, M.Y.; O’Sullivan, C.A.; Coats, A.J.; Gibson, D.G. Angiotensin-converting enzyme (ACE) inhibitors revert abnormal right ventricular filling in patients with restrictive left ventricular disease. J. Am. Coll. Cardiol., 1998, 32(5), 1187-1193.
[http://dx.doi.org/10.1016/S0735-1097(98)00412-4] [PMID: 9809924]
[42]
Caneguim, B.H.; Cerri, P.S.; Spolidório, L.C.; Miraglia, S.M.; Sasso-Cerri, E. Structural alterations in the seminiferous tubules of rats treated with immunosuppressor tacrolimus. Reprod. Biol. Endocrinol., 2009, 7(1), 19.
[http://dx.doi.org/10.1186/1477-7827-7-19] [PMID: 19243597]
[43]
Adebayo, A.; Olamide, A.; Helen, A.; Oluwaseun, H.I.; Olusegun, S.; Selimot, H.A. Toxicity effects of amlodipine on the testis histology in adult Wistar rats. Afr. J. Med. Med. Sci., 2012, 2(3), 36-40.
[http://dx.doi.org/10.5923/j.ajmms.20120203.02]
[44]
Foresta, C.; Indino, M.; Manoni, F.; Scandellari, C. Angiotensin-converting enzyme content of human spermatozoa and its release during capacitation. Fertil. Steril., 1987, 47(6), 1000-1003.
[http://dx.doi.org/10.1016/S0015-0282(16)59236-X] [PMID: 3036607]
[45]
Ojaghi, M.; Kastelic, J.; Thundathil, J. Testis-specific isoform of angiotensin-converting enzyme (tACE) is involved in the regulation of bovine sperm capacitation. Mol. Reprod. Dev., 2017, 84(5), 376-388.
[http://dx.doi.org/10.1002/mrd.22790] [PMID: 28244620]
[46]
Guo, D.; Li, S.; Behr, B.; Eisenberg, M.L. Hypertension and male fertility. World J. Mens Health, 2017, 35(2), 59-64.
[http://dx.doi.org/10.5534/wjmh.2017.35.2.59] [PMID: 28868816]
[47]
Mohammadi-Karakani, A.; Ghazi-Khansari, M.; Sotoudeh, M. Lisinopril ameliorates paraquat-induced lung fibrosis. Clin. Chim. Acta, 2006, 367(1-2), 170-174.
[http://dx.doi.org/10.1016/j.cca.2005.12.012] [PMID: 16458281]
[48]
Silva, Rde.B.; Ramalho, F.S.; Ramalho, L.Z. The effect of anti-hypertensive drugs on the obstructive pancreatitis in rats. Acta Cir. Bras., 2010, 25(5), 396-400.
[http://dx.doi.org/10.1590/S0102-86502010000500003] [PMID: 20877948]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy