Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

The Role of Inflammation as a Preponderant Risk Factor in Cardiovascular Diseases

Author(s): Rodrigo Damián García*, Joana Antonela Asensio, Diahann Jeanette Perdicaro and María de los Ángeles Peral

Volume 20, Issue 3, 2022

Published on: 24 February, 2022

Page: [244 - 259] Pages: 16

DOI: 10.2174/1570161120666220201160038

Price: $65

Abstract

Cardiovascular diseases cause considerable health and economic burden, as they are the leading cause of disability and death in the western world. Inactivity, hypertension, obesity, diabetes, and smoking are among the classic risk factors for cardiovascular disease. From a pathophysiological point of view, the arteries of our body bear the harmful stimuli produced by these factors and respond to them with a series of intricate adaptive mechanisms. Vascular remodeling constitutes an adaptive response to hemodynamic and inflammatory alterations associated with hypertension, diabetes, and other illnesses. Thickening of the arterial walls leads to endothelial dysfunction and increases the risk of cerebrovascular and coronary events. During the last decades, antiplatelet, lipid-lowering, and antihypertensive therapies have been the cornerstone of primary and secondary prevention of cardiovascular events. However, it is still unknown whether their efficacy is strictly associated with the control of the classical risk factors or their additive effects on vascular inflammation. Since inflammation of arterial walls is related to the pathogenesis of atherosclerosis, it has been hypothesized that anti-inflammatory therapies could prevent and treat vascular remodeling. Clinical trials based on canakinumab or hydroxychloroquine provide further insight into the role of inflammation in the pathophysiology of cardiovascular diseases. In this review, we have analyzed evidence and suggested that inflammation may play an important role in the final pathway of many cardiovascular risk factors.

Keywords: Cardiovascular diseases, inflammation, hypertension, diabetes, C-reactive protein, obesity, endothelial dysfunction.

Graphical Abstract

[1]
World Health Organization. Cardiovascular diseases (CVDs) 2021.
[2]
Kaptoge S, Pennells L, De Bacquer D, et al. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health 2019; 7(10): e1332-45.
[http://dx.doi.org/10.1016/S2214-109X(19)30318-3] [PMID: 31488387]
[3]
Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019. J Am Coll Cardiol 2020; 76(25): 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[4]
Bloom DE, Cafiero ET, Jané-Llopis E, et al. The global economic burden of noncommunicable diseases. Geneva: World Economic Forum, 2011.
[5]
Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J III. Factors of risk in the development of coronary heart disease--six year fol-low-up experience. The Framingham Study. Ann Intern Med 1961; 55(1): 33-50.
[http://dx.doi.org/10.7326/0003-4819-55-1-33] [PMID: 13751193]
[6]
Andersson C, Johnson AD, Benjamin EJ, Levy D, Vasan RS. 70-year legacy of the Framingham Heart Study. Nat Rev Cardiol 2019; 16(11): 687-98.
[http://dx.doi.org/10.1038/s41569-019-0202-5] [PMID: 31065045]
[7]
O’Donnell CJ, Elosua R. Cardiovascular risk factors. Insights from Framingham Heart Study. Rev Esp Cardiol 2008; 61(3): 299-310.
[http://dx.doi.org/10.1157/13116658] [PMID: 18361904]
[8]
Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update: A report from the american heart association. Circulation 2021; 143(8): e254-743.
[http://dx.doi.org/10.1161/CIR.0000000000000950] [PMID: 33501848]
[9]
Wood D. Established and emerging cardiovascular risk factors. Am Heart J 2001; 141(2)(Suppl.): S49-57.
[http://dx.doi.org/10.1067/mhj.2001.109951] [PMID: 11174359]
[10]
Unger T, Borghi C, Charchar F, et al. International society of hypertension global hypertension practice guidelines. Hypertension 2020; 75(6): 1334-57.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15026] [PMID: 32370572]
[11]
Forouzanfar MH, Liu P, Roth GA, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990-2015. JAMA 2017; 317(2): 165-82.
[http://dx.doi.org/10.1001/jama.2016.19043] [PMID: 28097354]
[12]
Humphrey JD. Mechanisms of vascular remodeling in hypertension. Am J Hypertens 2021; 34(5): 432-41.
[http://dx.doi.org/10.1093/ajh/hpaa195] [PMID: 33245319]
[13]
Suvila K, McCabe EL, Lehtonen A, et al. Early onset hypertension is associated with hypertensive end-organ damage ALREADY by MIDLIFE. Hypertension 2019; 74(2): A11913069.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.13069] [PMID: 31256722]
[14]
Wang C, Yuan Y, Zheng M, et al. Association of age of onset of hypertension with cardiovascular diseases and mortality. J Am Coll Cardiol 2020; 75(23): 2921-30.
[http://dx.doi.org/10.1016/j.jacc.2020.04.038] [PMID: 32527401]
[15]
Garcia-Cardeña G, Comander J, Anderson KR, Blackman BR, Gimbrone MA Jr. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci USA 2001; 98(8): 4478-85.
[http://dx.doi.org/10.1073/pnas.071052598] [PMID: 11296290]
[16]
Papaioannou TG, Stefanadis C. Vascular wall shear stress: Basic principles and methods. Hellenic J Cardiol 2005; 46(1): 9-15.
[PMID: 15807389]
[17]
Lansman JB, Hallam TJ, Rink TJ. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 1987; 325(6107): 811-3.
[http://dx.doi.org/10.1038/325811a0] [PMID: 2434860]
[18]
Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288(5789): 373-6.
[http://dx.doi.org/10.1038/288373a0] [PMID: 6253831]
[19]
Rubanyi GM. Pathophysiology and Clinical Applications of Nitric Oxide. USA: CRC Press 1999.
[20]
Vanhoutte PM, Eber B. Endothelium-derived relaxing and contracting factors. Wien Klin Wochenschr 1991; 103(14): 405-11.
[PMID: 1926867]
[21]
Anwar MA, Shalhoub J, Lim CS, Gohel MS, Davies AH. The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J Vasc Res 2012; 49(6): 463-78.
[http://dx.doi.org/10.1159/000339151] [PMID: 22796658]
[22]
Sorokin V, Vickneson K, Kofidis T, et al. Role of vascular smooth muscle cell plasticity and interactions in vessel wall inflammation. Front Immunol 2020; 11: 599415.
[http://dx.doi.org/10.3389/fimmu.2020.599415] [PMID: 33324416]
[23]
Liu G, Hitomi H, Hosomi N, et al. Mechanical stretch potentiates angiotensin II-induced proliferation in spontaneously hypertensive rat vascular smooth muscle cells. Hypertens Res 2010; 33(12): 1250-7.
[http://dx.doi.org/10.1038/hr.2010.187] [PMID: 20927110]
[24]
Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB. The vascular smooth muscle cell in arterial pathology: A cell that can take on multiple roles. Cardiovasc Res 2012; 95(2): 194-204.
[http://dx.doi.org/10.1093/cvr/cvs135] [PMID: 22467316]
[25]
Lehoux S, Castier Y, Tedgui A. Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med 2006; 259(4): 381-92.
[http://dx.doi.org/10.1111/j.1365-2796.2006.01624.x] [PMID: 16594906]
[26]
Ma Z, Mao C, Jia Y, Fu Y, Kong W. Extracellular matrix dynamics in vascular remodeling. Am J Physiol Cell Physiol 2020; 319(3): C481-99.
[http://dx.doi.org/10.1152/ajpcell.00147.2020] [PMID: 32579472]
[27]
Chae CU, Lee RT, Rifai N, Ridker PM. Blood pressure and inflammation in apparently healthy men. Hypertension 2001; 38(3): 399-403.
[http://dx.doi.org/10.1161/01.HYP.38.3.399] [PMID: 11566912]
[28]
Savoia C, Schiffrin EL. Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci (Lond) 2007; 112(7): 375-84.
[http://dx.doi.org/10.1042/CS20060247] [PMID: 17324119]
[29]
Schiffrin EL. Vascular remodeling in hypertension: mechanisms and treatment. Hypertension 2012; 59(2): 367-74.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.187021] [PMID: 22203749]
[30]
Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. TGF-β signaling in vascular fibrosis. Cardiovasc Res 2007; 74(2): 196-206.
[http://dx.doi.org/10.1016/j.cardiores.2007.02.008] [PMID: 17376414]
[31]
Viel EC, Lemarié CA, Benkirane K, Paradis P, Schiffrin EL. Immune regulation and vascular inflammation in genetic hypertension. Am J Physiol Heart Circ Physiol 2010; 298(3): H938-44.
[http://dx.doi.org/10.1152/ajpheart.00707.2009] [PMID: 20044442]
[32]
Williams B. Angiotensin II and the pathophysiology of cardiovascular remodeling. Am J Cardiol 2001; 87(8A): 10C-7C.
[http://dx.doi.org/10.1016/S0002-9149(01)01507-7] [PMID: 11334763]
[33]
Abramson JL, Weintraub WS, Vaccarino V. Association between pulse pressure and C-reactive protein among apparently healthy US adults. Hypertension 2002; 39(2): 197-202.
[http://dx.doi.org/10.1161/hy0202.104270] [PMID: 11847183]
[34]
Bautista LE, López-Jaramillo P, Vera LM, Casas JP, Otero AP, Guaracao AI. Is C-reactive protein an independent risk factor for essential hypertension? J Hypertens 2001; 19(5): 857-61.
[http://dx.doi.org/10.1097/00004872-200105000-00004] [PMID: 11393667]
[35]
Blake GJ, Rifai N, Buring JE, Ridker PM. Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation 2003; 108(24): 2993-9.
[http://dx.doi.org/10.1161/01.CIR.0000104566.10178.AF] [PMID: 14638538]
[36]
Fernandez-Real J-M, Vayreda M, Richart C, et al. Circulating interleukin 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J Clin Endocrinol Metab 2001; 86(3): 1154-9.
[http://dx.doi.org/10.1210/jcem.86.3.7305] [PMID: 11238501]
[37]
Williams EP, Mesidor M, Winters K, Dubbert PM, Wyatt SB. Overweight and obesity: Prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep 2015; 4(3): 363-70.
[http://dx.doi.org/10.1007/s13679-015-0169-4] [PMID: 26627494]
[38]
Mayoral LP, Andrade GM, Mayoral EP, et al. Obesity subtypes, related biomarkers & heterogeneity. Indian J Med Res 2020; 151(1): 11-21.
[http://dx.doi.org/10.4103/ijmr.IJMR_1768_17] [PMID: 32134010]
[39]
Mandviwala T, Khalid U, Deswal A. Obesity and cardiovascular disease: A risk factor or a risk marker? Curr Atheroscler Rep 2016; 18(5): 21.
[http://dx.doi.org/10.1007/s11883-016-0575-4] [PMID: 26973130]
[40]
Weir CB, Jan A. BMI Classification percentile and cut off points. USA: StatPearls 2021.
[41]
Apovian CM. Obesity: Definition, comorbidities, causes, and burden. Am J Manag Care 2016; 22(7)(Suppl.): s176-85.
[PMID: 27356115]
[42]
Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemo-kines. ISRN Inflamm 2013; 2013: 139239.
[http://dx.doi.org/10.1155/2013/139239] [PMID: 24455420]
[43]
Engin A. Endothelial Dysfunction in Obesity.Obesity and lipotoxicity Advances in Experimental Medicine and Biology.Berlim: Springer. 2017; 960: pp. 345-79.
[http://dx.doi.org/10.1007/978-3-319-48382-5_15]
[44]
Feijóo-Bandín S, Aragón-Herrera A, Moraña-Fernández S, et al. Adipokines and inflammation: Focus on cardiovascular diseases. Int J Mol Sci 2020; 21(20): 7711.
[http://dx.doi.org/10.3390/ijms21207711] [PMID: 33081064]
[45]
Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature 2006; 444(7121): 875-80.
[http://dx.doi.org/10.1038/nature05487] [PMID: 17167476]
[46]
Ota T. Obesity-induced inflammation and insulin resistance. Front Endocrinol (Lausanne) 2014; 5: 204.
[http://dx.doi.org/10.3389/fendo.2014.00204] [PMID: 25538683]
[47]
Rehman K, Akash MSH. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked? J Biomed Sci 2016; 23(1): 87.
[http://dx.doi.org/10.1186/s12929-016-0303-y] [PMID: 27912756]
[48]
Vandanmagsar B, Youm Y-H, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin re-sistance. Nat Med 2011; 17(2): 179-88.
[http://dx.doi.org/10.1038/nm.2279] [PMID: 21217695]
[49]
Zatterale F, Longo M, Naderi J, et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol 2020; 10: 1607.
[http://dx.doi.org/10.3389/fphys.2019.01607] [PMID: 32063863]
[50]
Kalupahana NS, Moustaid-Moussa N, Claycombe KJ. Immunity as a link between obesity and insulin resistance. Mol Aspects Med 2012; 33(1): 26-34.
[http://dx.doi.org/10.1016/j.mam.2011.10.011] [PMID: 22040698]
[51]
Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 2008; 70(1): 537-56.
[http://dx.doi.org/10.1146/annurev.physiol.70.113006.100707] [PMID: 17937601]
[52]
Han CY. Roles of reactive oxygen species on insulin resistance in adipose tissue. Diabetes Metab J 2016; 40(4): 272-9.
[http://dx.doi.org/10.4093/dmj.2016.40.4.272] [PMID: 27352152]
[53]
Li X. Endoplasmic reticulum stress regulates inflammation in adipocyte of obese rats via toll-like receptors 4 signaling. Iran J Basic Med Sci 2018; 21(5): 502-7.
[PMID: 29922431]
[54]
Yazıcı D, Sezer H. Insulin resistance obesity and lipotoxicity. Adv Exp Med Biol 2017; 960: 277-304.
[55]
Peppa M, Raptis SA. Advanced glycation end products and cardiovascular disease. Curr Diabetes Rev 2008; 4(2): 92-100.
[http://dx.doi.org/10.2174/157339908784220732] [PMID: 18473756]
[56]
Yubero-Serrano EM, Pérez-Martínez P. Advanced glycation end products and their involvement in cardiovascular disease. Angiology 2020; 71(8): 698-700.
[http://dx.doi.org/10.1177/0003319720916301] [PMID: 32242451]
[57]
Matsuzawa Y. The metabolic syndrome and adipocytokines. FEBS Lett 2006; 580(12): 2917-21.
[http://dx.doi.org/10.1016/j.febslet.2006.04.028] [PMID: 16674947]
[58]
Engeli S, Feldpausch M, Gorzelniak K, et al. Association between adiponectin and mediators of inflammation in obese women. Diabetes 2003; 52(4): 942-7.
[http://dx.doi.org/10.2337/diabetes.52.4.942] [PMID: 12663465]
[59]
Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89(6): 2548-56.
[http://dx.doi.org/10.1210/jc.2004-0395] [PMID: 15181022]
[60]
Jang S-A, Park DW, Kwon JE, et al. Quinic acid inhibits vascular inflammation in TNF-α-stimulated vascular smooth muscle cells. Biomed Pharmacother 2017; 96: 563-71.
[http://dx.doi.org/10.1016/j.biopha.2017.10.021] [PMID: 29032340]
[61]
Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 2015; 3(3): 207-15.
[http://dx.doi.org/10.1016/S2213-8587(14)70134-2] [PMID: 25066177]
[62]
Chen S, Okahara F, Osaki N, Shimotoyodome A. Increased GIP signaling induces adipose inflammation via a HIF-1α-dependent pathway and impairs insulin sensitivity in mice. Am J Physiol Endocrinol Metab 2015; 308(5): E414-25.
[http://dx.doi.org/10.1152/ajpendo.00418.2014] [PMID: 25537494]
[63]
Janssen A, Grobbee DE, Dendale P. Non-alcoholic fatty liver disease, a new and growing risk indicator for cardiovascular disease. Eur J Prev Cardiol 2020; 27(10): 1059-63.
[http://dx.doi.org/10.1177/2047487319891783] [PMID: 31801050]
[64]
Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol 2015; 62(1)(Suppl.): S47-64.
[http://dx.doi.org/10.1016/j.jhep.2014.12.012] [PMID: 25920090]
[65]
Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: Pathophysiology and clinical implications. Gastroenterology 2012; 142(4): 711-25.
[http://dx.doi.org/10.1053/j.gastro.2012.02.003] [PMID: 22326434]
[66]
Dorn C, Engelmann JC, Saugspier M, et al. Increased expression of c-Jun in nonalcoholic fatty liver disease. Lab Invest 2014; 94(4): 394-408.
[http://dx.doi.org/10.1038/labinvest.2014.3] [PMID: 24492282]
[67]
Kasper P, Martin A, Lang S, et al. NAFLD and cardiovascular diseases: A clinical review. Clin Res Cardiol 2021; 110(7): 921-37.
[http://dx.doi.org/10.1007/s00392-020-01709-7] [PMID: 32696080]
[68]
Chait A, den Hartigh LJ. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med 2020; 7: 22.
[http://dx.doi.org/10.3389/fcvm.2020.00022] [PMID: 32158768]
[69]
Hartge MM, Unger T, Kintscher U. The endothelium and vascular inflammation in diabetes. Diab Vasc Dis Res 2007; 4(2): 84-8.
[http://dx.doi.org/10.3132/dvdr.2007.025] [PMID: 17654441]
[70]
Dabelea D. The accelerating epidemic of childhood diabetes. Lancet 2009; 373(9680): 1999-2000.
[http://dx.doi.org/10.1016/S0140-6736(09)60874-6] [PMID: 19481250]
[71]
Imamura F, O’Connor L, Ye Z, et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015; 351: h3576.
[http://dx.doi.org/10.1136/bmj.h3576] [PMID: 26199070]
[72]
World Health Organization. Diabetes 2021.
[73]
Forrester JV, Kuffova L, Delibegovic M. The Role of inflammation in diabetic retinopathy. Front Immunol 2020; 11: 583687.
[http://dx.doi.org/10.3389/fimmu.2020.583687] [PMID: 33240272]
[74]
Pang L, Lian X, Liu H, et al. Understanding diabetic neuropathy: Focus on oxidative stress. Oxid Med Cell Longev 2020; 2020: 9524635.
[http://dx.doi.org/10.1155/2020/9524635] [PMID: 32832011]
[75]
Braunwald E. Diabetes, heart failure, and renal dysfunction: The vicious circles. Prog Cardiovasc Dis 2019; 62(4): 298-302.
[http://dx.doi.org/10.1016/j.pcad.2019.07.003] [PMID: 31377223]
[76]
Henning RJ. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol 2018; 14(6): 491-509.
[http://dx.doi.org/10.2217/fca-2018-0045] [PMID: 30409037]
[77]
Dal Canto E, Ceriello A, Rydén L, et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol 2019; 26(2_suppl)(Suppl.): 25-32.
[http://dx.doi.org/10.1177/2047487319878371] [PMID: 31722562]
[78]
Xourgia E, Tzouganatou E-M, Papazafeiropoulou A, et al. Anti-inflammatory properties of antidiabetic agents. World J Metaanal 2019; 7(4): 129-41.
[http://dx.doi.org/10.13105/wjma.v7.i4.129]
[79]
Tan SA, Tan L. Empagliflozin and canagliflozin attenuate inflammatory cytokines interferon-γ, tumor necrosis factor-α, interleukin-6: Possible mechanism of decreasing cardiovascular risk in diabetes mellitus. J Am Coll Cardiol 2018; 71(11): A1830.
[http://dx.doi.org/10.1016/S0735-1097(18)32371-4]
[80]
Xu L, Nagata N, Nagashimada M, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflamma-tion and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine 2017; 20: 137-49.
[http://dx.doi.org/10.1016/j.ebiom.2017.05.028] [PMID: 28579299]
[81]
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 Diabetes. N Engl J Med 2017; 377(7): 644-57.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
[82]
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380(4): 347-57.
[http://dx.doi.org/10.1056/NEJMoa1812389] [PMID: 30415602]
[83]
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[84]
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019; 380(24): 2295-306.
[http://dx.doi.org/10.1056/NEJMoa1811744] [PMID: 30990260]
[85]
Drucker DJ, Nauck MA. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006; 368(9548): 1696-705.
[http://dx.doi.org/10.1016/S0140-6736(06)69705-5] [PMID: 17098089]
[86]
Yang L, Yuan J, Zhou Z. Emerging roles of dipeptidyl peptidase 4 inhibitors: anti-inflammatory and immunomodulatory effect and its application in diabetes mellitus. Can J Diabetes 2014; 38(6): 473-9.
[http://dx.doi.org/10.1016/j.jcjd.2014.01.008] [PMID: 25034244]
[87]
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375(4): 311-22.
[http://dx.doi.org/10.1056/NEJMoa1603827] [PMID: 27295427]
[88]
Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375(19): 1834-44.
[http://dx.doi.org/10.1056/NEJMoa1607141] [PMID: 27633186]
[89]
Hinnen D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectr 2017; 30(3): 202-10.
[http://dx.doi.org/10.2337/ds16-0026] [PMID: 28848315]
[90]
Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2017; 377(13): 1228-39.
[http://dx.doi.org/10.1056/NEJMoa1612917] [PMID: 28910237]
[91]
Rosenstock J, Perkovic V, Johansen OE, et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabe-tes and high cardiovascular and renal risk. JAMA 2019; 321(1): 69-79.
[http://dx.doi.org/10.1001/jama.2018.18269] [PMID: 30418475]
[92]
Arakawa M, Mita T, Azuma K, et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 2010; 59(4): 1030-7.
[http://dx.doi.org/10.2337/db09-1694] [PMID: 20068138]
[93]
Bułdak Ł, Machnik G, Bułdak RJ, Łabuzek K, Bołdys A, Okopień B. Exenatide and metformin express their anti-inflammatory effects on human monocytes/macrophages by the attenuation of MAPKs and NFκB signaling. Naunyn Schmiedebergs Arch Pharmacol 2016; 389(10): 1103-15.
[http://dx.doi.org/10.1007/s00210-016-1277-8] [PMID: 27424158]
[94]
Rizzo MR, Barbieri M, Marfella R, Paolisso G. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-IV inhibition. Diabetes Care 2012; 35(10): 2076-82.
[http://dx.doi.org/10.2337/dc12-0199] [PMID: 22688551]
[95]
Castelli WP, Anderson K, Wilson PWF, Levy D. Lipids and risk of coronary heart disease. The Framingham Study. Ann Epidemiol 1992; 2(1-2): 23-8.
[http://dx.doi.org/10.1016/1047-2797(92)90033-M] [PMID: 1342260]
[96]
Castelli WP, Anderson K. A population at risk. Prevalence of high cholesterol levels in hypertensive patients in the Framingham Study. Am J Med 1986; 80(2A): 23-32.
[http://dx.doi.org/10.1016/0002-9343(86)90157-9] [PMID: 3946458]
[97]
Collins R, Reith C, Emberson J, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 2016; 388(10059): 2532-61.
[http://dx.doi.org/10.1016/S0140-6736(16)31357-5] [PMID: 27616593]
[98]
Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333(20): 1301-7.
[http://dx.doi.org/10.1056/NEJM199511163332001] [PMID: 7566020]
[99]
Downs JR, Beere PA, Whitney E, et al. Design & rationale of the Air Force/Texas coronary atherosclerosis prevention study (AFCAPS/TexCAPS). Am J Cardiol 1997; 80(3): 287-93.
[http://dx.doi.org/10.1016/S0002-9149(97)00347-0] [PMID: 9264420]
[100]
Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004; 350(15): 1495-504.
[http://dx.doi.org/10.1056/NEJMoa040583] [PMID: 15007110]
[101]
LaRosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med 2005; 352(14): 1425-35.
[http://dx.doi.org/10.1056/NEJMoa050461] [PMID: 15755765]
[102]
Ridker PM, Danielson E, Fonseca FAH, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008; 359(21): 2195-207.
[http://dx.doi.org/10.1056/NEJMoa0807646] [PMID: 18997196]
[103]
Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coro-nary atherosclerosis: A randomized controlled trial. JAMA 2004; 291(9): 1071-80.
[http://dx.doi.org/10.1001/jama.291.9.1071] [PMID: 14996776]
[104]
Chhatriwalla AK, Nicholls SJ, Nissen SE. The ASTEROID trial: Coronary plaque regression with high-dose statin therapy. Future Cardiol 2006; 2(6): 651-4.
[http://dx.doi.org/10.2217/14796678.2.6.651] [PMID: 19804256]
[105]
Nicholls SJ, Borgman M, Nissen SE, et al. Impact of statins on progression of atherosclerosis: rationale and design of SATURN (Study of Coronary Atheroma by InTravascular Ultrasound: effect of Rosuvastatin versus AtorvastatiN). Curr Med Res Opin 2011; 27(6): 1119-29.
[http://dx.doi.org/10.1185/03007995.2011.570746] [PMID: 21446892]
[106]
Orringer CE, Jacobson TA, Saseen JJ, et al. Update on the use of PCSK9 inhibitors in adults: Recommendations from an Expert Panel of the National Lipid Association. J Clin Lipidol 2017; 11(4): 880-90.
[http://dx.doi.org/10.1016/j.jacl.2017.05.001] [PMID: 28532784]
[107]
Steffens D, Bramlage P, Scheeff C, et al. PCSK9 inhibitors and cardiovascular outcomes. Expert Opin Biol Ther 2020; 20(1): 35-47.
[http://dx.doi.org/10.1080/14712598.2020.1677604] [PMID: 31593483]
[108]
Xiao L, Liu Y, Wang N. New paradigms in inflammatory signaling in vascular endothelial cells. Am J Physiol Heart Circ Physiol 2014; 306(3): H317-25.
[http://dx.doi.org/10.1152/ajpheart.00182.2013] [PMID: 24285111]
[109]
Baumann H, Gauldie J. The acute phase response. Immunol Today 1994; 15(2): 74-80.
[http://dx.doi.org/10.1016/0167-5699(94)90137-6] [PMID: 7512342]
[110]
Woods A, Brull DJ, Humphries SE, Montgomery HE. Genetics of inflammation and risk of coronary artery disease: The central role of interleukin-6. Eur Heart J 2000; 21(19): 1574-83.
[http://dx.doi.org/10.1053/euhj.1999.2207] [PMID: 10988009]
[111]
Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart As-sociation. Circulation 2003; 107(3): 499-511.
[http://dx.doi.org/10.1161/01.CIR.0000052939.59093.45] [PMID: 12551878]
[112]
Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003; 107(3): 363-9.
[http://dx.doi.org/10.1161/01.CIR.0000053730.47739.3C] [PMID: 12551853]
[113]
Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009; 78(6): 539-52.
[http://dx.doi.org/10.1016/j.bcp.2009.04.029] [PMID: 19413999]
[114]
Szmitko PE, Wang C-H, Weisel RD, de Almeida JR, Anderson TJ, Verma S. New markers of inflammation and endothelial cell activation: Part I. Circulation 2003; 108(16): 1917-23.
[http://dx.doi.org/10.1161/01.CIR.0000089190.95415.9F] [PMID: 14568885]
[115]
Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J S Afr 2012; 23(4): 222-31.
[http://dx.doi.org/10.5830/CVJA-2011-068] [PMID: 22614668]
[116]
Anderson TJ, Gerhard MD, Meredith IT, et al. Systemic nature of endothelial dysfunction in atherosclerosis. Am J Cardiol 1995; 75(6): 71B-4B.
[http://dx.doi.org/10.1016/0002-9149(95)80017-M] [PMID: 7863979]
[117]
Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dys-function associated with cardiovascular and metabolic diseases. Vascul Pharmacol 2018; 100: 1-19.
[http://dx.doi.org/10.1016/j.vph.2017.05.005] [PMID: 28579545]
[118]
De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol 2000; 130(5): 963-74.
[http://dx.doi.org/10.1038/sj.bjp.0703393] [PMID: 10882379]
[119]
Landmesser U, Hornig B, Drexler H. Endothelial dysfunction in hypercholesterolemia: Mechanisms, pathophysiological importance, and therapeutic interventions. Semin Thromb Hemost 2000; 26(5): 529-37.
[http://dx.doi.org/10.1055/s-2000-13209] [PMID: 11129409]
[120]
Nakagami H, Kaneda Y, Ogihara T, Morishita R. Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis. Curr Diabetes Rev 2005; 1(1): 59-63.
[http://dx.doi.org/10.2174/1573399052952550] [PMID: 18220582]
[121]
Messner B, Bernhard D. Smoking and cardiovascular disease: Mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol 2014; 34(3): 509-15.
[http://dx.doi.org/10.1161/ATVBAHA.113.300156] [PMID: 24554606]
[122]
Puddu P, Puddu GM, Zaca F, Muscari A. Endothelial dysfunction in hypertension. Acta Cardiol 2000; 55(4): 221-32.
[http://dx.doi.org/10.2143/AC.55.4.2005744] [PMID: 11041120]
[123]
Ridker PM, Libby P, MacFadyen JG, et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur Heart J 2018; 39(38): 3499-507.
[http://dx.doi.org/10.1093/eurheartj/ehy310] [PMID: 30165610]
[124]
Quinn U, Tomlinson LA, Cockcroft JR. Arterial stiffness. JRSM Cardiovasc Dis 2012; 1(6): 1-8.
[http://dx.doi.org/10.1258/cvd.2012.012024] [PMID: 24175072]
[125]
Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applica-tions. Eur Heart J 2006; 27(21): 2588-605.
[http://dx.doi.org/10.1093/eurheartj/ehl254] [PMID: 17000623]
[126]
Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hyperten-sive patients. Hypertension 2001; 37(5): 1236-41.
[http://dx.doi.org/10.1161/01.HYP.37.5.1236] [PMID: 11358934]
[127]
Mozos I, Malainer C, Horbańczuk J, et al. Inflammatory markers for arterial stiffness in cardiovascular diseases. Front Immunol 2017; 8: 1058.
[http://dx.doi.org/10.3389/fimmu.2017.01058] [PMID: 28912780]
[128]
Roman MJ, Devereux RB, Schwartz JE, et al. Arterial stiffness in chronic inflammatory diseases. Hypertension 2005; 46(1): 194-9.
[http://dx.doi.org/10.1161/01.HYP.0000168055.89955.db] [PMID: 15911740]
[129]
Mahmud A, Feely J. Arterial stiffness is related to systemic inflammation in essential hypertension. Hypertension 2005; 46(5): 1118-22.
[http://dx.doi.org/10.1161/01.HYP.0000185463.27209.b0] [PMID: 16216991]
[130]
Wang G, Jacquet L, Karamariti E, Xu Q. Origin and differentiation of vascular smooth muscle cells. J Physiol 2015; 593(14): 3013-30.
[http://dx.doi.org/10.1113/JP270033] [PMID: 25952975]
[131]
Allahverdian S, Chaabane C, Boukais K, Francis GA, Bochaton-Piallat ML. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc Res 2018; 114(4): 540-50.
[http://dx.doi.org/10.1093/cvr/cvy022] [PMID: 29385543]
[132]
Qiu J, Zheng Y, Hu J, et al. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding. J R Soc Interface 2013; 11(90): 20130852.
[http://dx.doi.org/10.1098/rsif.2013.0852] [PMID: 24152813]
[133]
Zanoli L, Briet M, Empana JP, et al. Vascular consequences of inflammation: A position statement from the ESH working group on vascu-lar structure and function and the ARTERY Society. J Hypertens 2020; 38(9): 1682-98.
[http://dx.doi.org/10.1097/HJH.0000000000002508] [PMID: 32649623]
[134]
Bersi MR, Bellini C, Wu J, Montaniel KRC, Harrison DG, Humphrey JD. Excessive adventitial remodeling leads to early aortic maladapta-tion in angiotensin-induced hypertension. Hypertension 2016; 67(5): 890-6.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06262] [PMID: 27001298]
[135]
Maiellaro K, Taylor WR. The role of the adventitia in vascular inflammation. Cardiovasc Res 2007; 75(4): 640-8.
[http://dx.doi.org/10.1016/j.cardiores.2007.06.023] [PMID: 17662969]
[136]
Yasmin McEniery CM, Wallace S. C-reactive protein is associated with arterial stiffness in apparently healthy individuals. Arterioscler Thromb Vasc Biol 2004; 24(5): 969-74.
[137]
Wong M, Toh L, Wilson A, et al. Reduced arterial elasticity in rheumatoid arthritis and the relationship to vascular disease risk factors and inflammation. Arthritis Rheum 2003; 48(1): 81-9.
[http://dx.doi.org/10.1002/art.10748] [PMID: 12528107]
[138]
Booth AD, Wallace S, McEniery CM, et al. Inflammation and arterial stiffness in systemic vasculitis: a model of vascular inflammation. Arthritis Rheum 2004; 50(2): 581-8.
[http://dx.doi.org/10.1002/art.20002] [PMID: 14872502]
[139]
Mendoza-Pinto C, Rojas-Villarraga A, Molano-González N, et al. Endothelial dysfunction and arterial stiffness in patients with systemic lupus erythematosus: A systematic review and meta-analysis. Atherosclerosis 2020; 297: 55-63.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.01.028] [PMID: 32078830]
[140]
Hürlimann D, Forster A, Noll G, et al. Anti-tumor necrosis factor-α treatment improves endothelial function in patients with rheumatoid arthritis. Circulation 2002; 106(17): 2184-7.
[http://dx.doi.org/10.1161/01.CIR.0000037521.71373.44] [PMID: 12390945]
[141]
Mäki-Petäjä KM, Hall FC, Booth AD, et al. Rheumatoid arthritis is associated with increased aortic pulse-wave velocity, which is reduced by anti-tumor necrosis factor-α therapy. Circulation 2006; 114(11): 1185-92.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.601641] [PMID: 16952987]
[142]
Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000; 101(15): 1767-72.
[http://dx.doi.org/10.1161/01.CIR.101.15.1767] [PMID: 10769275]
[143]
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010; 140(6): 805-20.
[http://dx.doi.org/10.1016/j.cell.2010.01.022] [PMID: 20303872]
[144]
Sessa L, Gatti E, Zeni F, et al. The receptor for advanced glycation end-products (RAGE) is only present in mammals, and belongs to a family of cell adhesion molecules (CAMs). PLoS One 2014; 9(1): e86903.
[http://dx.doi.org/10.1371/journal.pone.0086903] [PMID: 24475194]
[145]
Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology 2019; 20(3): 279-301.
[http://dx.doi.org/10.1007/s10522-019-09808-3] [PMID: 30968282]
[146]
Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 2020; 20(2): 95-112.
[http://dx.doi.org/10.1038/s41577-019-0215-7] [PMID: 31558839]
[147]
Sun H-J, Ren X-S, Xiong X-Q, et al. NLRP3 inflammasome activation contributes to VSMC phenotypic transformation and proliferation in hypertension. Cell Death Dis 2017; 8(10): e3074-4.
[http://dx.doi.org/10.1038/cddis.2017.470] [PMID: 28981106]
[148]
Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell 2014; 157(5): 1013-22.
[http://dx.doi.org/10.1016/j.cell.2014.04.007] [PMID: 24855941]
[149]
Martinon F, Burns K, Tschopp J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002; 10(2): 417-26.
[http://dx.doi.org/10.1016/S1097-2765(02)00599-3] [PMID: 12191486]
[150]
Bai B, Yang Y, Wang Q, et al. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis 2020; 11(9): 776.
[http://dx.doi.org/10.1038/s41419-020-02985-x] [PMID: 32948742]
[151]
Grebe A, Hoss F, Latz E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ Res 2018; 122(12): 1722-40.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311362] [PMID: 29880500]
[152]
Libby P. Interleukin-1 beta as a target for atherosclerosis therapy. J Am Coll Cardiol 2017; 70(18): 2278-89.
[http://dx.doi.org/10.1016/j.jacc.2017.09.028] [PMID: 29073957]
[153]
Chun H-Y, Chung J-W, Kim H-A, et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J Clin Immunol 2007; 27(5): 461-6.
[http://dx.doi.org/10.1007/s10875-007-9104-0] [PMID: 17587156]
[154]
Kostopoulou M, Nikolopoulos D, Parodis I, Bertsias G. Cardiovascular disease in systemic lupus erythematosus: recent data on epidemi-ology, risk factors and prevention. Curr Vasc Pharmacol 2020; 18(6): 549-65.
[http://dx.doi.org/10.2174/1570161118666191227101636] [PMID: 31880245]
[155]
Atzeni F, Nucera V, Gerratana E, et al. Cardiovascular consequences of autoimmune rheumatic diseases. Curr Vasc Pharmacol 2020; 18(6): 566-79.
[http://dx.doi.org/10.2174/1570161118666200127142936] [PMID: 31985379]
[156]
Kishimoto T. Interleukin-6: Discovery of a pleiotropic cytokine. Arthritis Res Ther 2006; 8(Suppl. 2): S2.
[http://dx.doi.org/10.1186/ar1916] [PMID: 16899106]
[157]
Mavropoulou E, Mechie N-C, Knoop R, et al. Association of serum interleukin-6 and soluble interleukin-2-receptor levels with disease activity status in patients with inflammatory bowel disease: A prospective observational study. PLoS One 2020; 15(5): e0233811.
[http://dx.doi.org/10.1371/journal.pone.0233811] [PMID: 32470973]
[158]
Ulander L, Tolppanen H, Hartman O, et al. Hydroxychloroquine reduces interleukin-6 levels after myocardial infarction: The randomized, double-blind, placebo-controlled OXI pilot trial. Int J Cardiol 2021; 337: 21-7.
[http://dx.doi.org/10.1016/j.ijcard.2021.04.062] [PMID: 33961943]
[159]
Hartman O, Kovanen PT, Lehtonen J, Eklund KK, Sinisalo J. Hydroxychloroquine for the prevention of recurrent cardiovascular events in myocardial infarction patients: rationale and design of the OXI trial. Eur Heart J Cardiovasc Pharmacother 2017; 3(2): 92-7.
[PMID: 28025216]
[160]
Akita K, Isoda K, Sato-Okabayashi Y, et al. An interleukin-6 receptor antibody suppresses atherosclerosis in atherogenic mice. Front Cardiovasc Med 2017; 4: 84.
[http://dx.doi.org/10.3389/fcvm.2017.00084] [PMID: 29312959]
[161]
Biondi-Zoccai G, Garmendia CM, Abbate A, et al. Atherothrombosis prevention and treatment with anti-interleukin-1 agents. Curr Atheroscler Rep 2020; 22(1): 4.
[http://dx.doi.org/10.1007/s11883-020-0819-1] [PMID: 31932973]
[162]
Buckley LF, Abbate A. Interleukin-1 blockade in cardiovascular diseases: from bench to bedside. BioDrugs 2018; 32(2): 111-8.
[http://dx.doi.org/10.1007/s40259-018-0274-5] [PMID: 29549570]
[163]
Luo P, Wang Y, Zhao C, et al. Bazedoxifene exhibits anti-inflammation and anti-atherosclerotic effects via inhibition of IL-6/IL-6R/STAT3 signaling. Eur J Pharmacol 2021; 893: 173822.
[http://dx.doi.org/10.1016/j.ejphar.2020.173822] [PMID: 33347820]
[164]
Alonso A, Barnes AE, Guest JL, Shah A, Shao IY, Marconi V. HIV infection and incidence of cardiovascular diseases: An analysis of a large healthcare database. J Am Heart Assoc 2019; 8(14): e012241.
[http://dx.doi.org/10.1161/JAHA.119.012241] [PMID: 31266386]
[165]
Brasier AR, Recinos A III, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol 2002; 22(8): 1257-66.
[http://dx.doi.org/10.1161/01.ATV.0000021412.56621.A2] [PMID: 12171785]
[166]
Dandona P, Dhindsa S, Ghanim H, Chaudhuri A. Angiotensin II and inflammation: the effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens 2007; 21(1): 20-7.
[http://dx.doi.org/10.1038/sj.jhh.1002101] [PMID: 17096009]
[167]
Lindeman JHN. Ace inhibitors potently reduce vascular inflammation, results of an open proof-of-concept study in the abdominal aortic aneurysm. Atherosclerosis 2014; 235(2): e141.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.05.398]
[168]
Ridker PM, Danielson E, Rifai N, et al. Valsartan, blood pressure reduction, and C-reactive protein. Hypertension 2006; 48(1): 73-9.
[169]
Mahwati Y, Nurrika D. Obesity Indicators and C-reactive protein in Indonesian adults (≥ 40 years): The indonesian family life survey-5 2014-2015. Kesmas Natl Public Heal J 2020; 15(3).
[170]
Esposito K, Pontillo A, Di Palo C, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: A randomized trial. JAMA 2003; 289(14): 1799-804.
[http://dx.doi.org/10.1001/jama.289.14.1799] [PMID: 12684358]
[171]
Clegg LE, Penland RC, Bachina S, et al. Effects of exenatide and open-label SGLT2 inhibitor treatment, given in parallel or sequentially, on mortality and cardiovascular and renal outcomes in type 2 diabetes: insights from the EXSCEL trial. Cardiovasc Diabetol 2019; 18(1): 138.
[http://dx.doi.org/10.1186/s12933-019-0942-x] [PMID: 31640705]
[172]
Hattori S. Omarigliptin decreases inflammation and insulin resistance in a pleiotropic manner in patients with type 2 diabetes. Diabetol Metab Syndr 2020; 12(1): 24.
[http://dx.doi.org/10.1186/s13098-020-00533-3] [PMID: 32211075]
[173]
Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors. JACC Basic Transl Sci 2020; 5(6): 632-44.
[http://dx.doi.org/10.1016/j.jacbts.2020.02.004] [PMID: 32613148]
[174]
McGuire DK, Shih WJ, Cosentino F, et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes. JAMA Cardiol 2021; 6(2): 148-58.
[http://dx.doi.org/10.1001/jamacardio.2020.4511] [PMID: 33031522]
[175]
Phillips GB. Relationship between serum sex hormones and glucose, insulin and lipid abnormalities in men with myocardial infarction. Proc Natl Acad Sci USA 1977; 74(4): 1729-33.
[http://dx.doi.org/10.1073/pnas.74.4.1729] [PMID: 193114]
[176]
Sposito AC, Berwanger O, de Carvalho LSF, Saraiva JFK. GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc Diabetol 2018; 17(1): 157.
[http://dx.doi.org/10.1186/s12933-018-0800-2] [PMID: 30545359]
[177]
Steven S, Münzel T, Daiber A. Exploiting the pleiotropic antioxidant effects of established drugs in cardiovascular disease. Int J Mol Sci 2015; 16(8): 18185-223.
[http://dx.doi.org/10.3390/ijms160818185] [PMID: 26251902]
[178]
Zou C-Y, Liu X-K, Sang Y-Q, Wang B, Liang J. Effects of SGLT2 inhibitors on cardiovascular outcomes and mortality in type 2 diabetes: A meta-analysis. Medicine (Baltimore) 2019; 98(49): e18245.
[http://dx.doi.org/10.1097/MD.0000000000018245] [PMID: 31804352]
[179]
Aksungar FB, Topkaya AE, Akyildiz M. Interleukin-6, C-reactive protein and biochemical parameters during prolonged intermittent fasting. Ann Nutr Metab 2007; 51(1): 88-95.
[http://dx.doi.org/10.1159/000100954] [PMID: 17374948]
[180]
Aliasghari F, Izadi A, Gargari BP, Ebrahimi S. The effects of ramadan fasting on body composition, blood pressure, glucose] metabolism, and markers of inflammation in NAFLD patients: An observational trial. J Am Coll Nutr 2017; 36(8): 640-5.
[http://dx.doi.org/10.1080/07315724.2017.1339644] [PMID: 28922096]
[181]
Cioffi I, Evangelista A, Ponzo V, et al. Intermittent versus continuous energy restriction on weight loss and cardiometabolic outcomes: a systematic review and meta-analysis of randomized controlled trials. J Transl Med 2018; 16(1): 371.
[http://dx.doi.org/10.1186/s12967-018-1748-4] [PMID: 30583725]
[182]
Malinowski B, Zalewska K, Węsierska A, et al. Intermittent fasting in cardiovascular disorders-an overview. Nutrients 2019; 11(3): 673.
[http://dx.doi.org/10.3390/nu11030673] [PMID: 30897855]
[183]
Pellegrini M, Cioffi I, Evangelista A, et al. Effects of time-restricted feeding on body weight and metabolism. A systematic review and meta-analysis. Rev Endocr Metab Disord 2020; 21(1): 17-33.
[http://dx.doi.org/10.1007/s11154-019-09524-w] [PMID: 31808043]
[184]
Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. Can J Cardiol 2018; 34(5): 575-84.
[http://dx.doi.org/10.1016/j.cjca.2017.12.005] [PMID: 29459239]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy