Review Article

Microbial Synthesis of Gold Nanoparticles and their Application

Author(s): Neehasri Kumar Chowdhury, Reshma Choudhury, Bhoirob Gogoi, Chung-Ming Chang and Ramendra Pati Pandey*

Volume 23, Issue 7, 2022

Published on: 12 April, 2022

Page: [752 - 760] Pages: 9

DOI: 10.2174/1389450123666220128152408

Price: $65

Abstract

Background: Nanoparticles play a very important role in our daily lives and have a wide range of applications in agriculture and biology, such as antioxidants and antimicrobial compounds. Among them are gold nanoparticles (AuNPs) that are highly complex and are widely used. In recent years gold nanoparticles have attracted much attention because of their optical properties, electronic, physicochemical, and surface Plasmon resonance (SPR). Gold plated nanoparticles, similar to metal nanoparticles, have many unusual chemical and physical properties due to the effects of their quantum size and location compared to other iron or metal atoms. Gold nanoparticles can be used in pharmaceutical products such as antimicrobial and anti-biofilm agents, targeted delivery of anticancer drugs, biosensors, biocatalysis, bioremediation modification of toxic chemicals exposing the soil and atmosphere, dye reduction, etc. Yet such methods are expensive and out of harmony with nature. In that account, the microbes-mediated synthesis of gold nanoparticles recently changed rapidly when pure microbes becoming ac-friendly, non-toxic, and biocompatible as physiological and chemical methods. This document aims to review the progress made in recent years with the fusion of gold nanoparticles. The microbial source includes bacteria, algae fungi. These works motivate people how to apply and synthesize gold nanoparticles. This review also focuses on the process of classification of gold nanoparticles, structures, and their use in the development of various requirements.

Objective: The main goal is to study gold nanoparticles and their application in the future.

Methods: We studied different research papers, reviewed papers from “Google Scholar”, “NCBI”, “PubMed”, “Science Direct” made.

Conclusion: Metal nanoparticles are suitable for many emerging technologies. Understanding the microorganisms found in nature because the fusion of gold nanoparticles is required.

Keywords: Gold nanoparticles (AuNPs), Surface Plasmon Resonance (SPR), Microbial synthesis, anti-biofilm, eco-friendly, biosensors.

Graphical Abstract

[1]
Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine 2010; 6(2): 257-62.
[http://dx.doi.org/10.1016/j.nano.2009.07.002] [PMID: 19616126]
[2]
Singh RP, Shukla VK, Yadav RS, Sharma PK, Singh PK, Pandey AC. Biological approach of zinc oxide nanoparticles formation and its characterization. Adv Mater Lett 2011; 2(4): 313-7.
[http://dx.doi.org/10.5185/amlett.indias.204]
[3]
Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf B Biointerfaces 2010; 79(1): 5-18.
[http://dx.doi.org/10.1016/j.colsurfb.2010.03.029] [PMID: 20417070]
[4]
Narges E, Mehdi K, Mohammad HB. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018; 184: 537-56.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[5]
Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res 2016; 7(1): 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[6]
Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA. Microbial synthesis of gold nanoparticles: Current status and future prospects. Adv Colloid Interface Sci 2014; 209: 40-8.
[http://dx.doi.org/10.1016/j.cis.2013.12.011] [PMID: 24456802]
[7]
Michael F. The Bakerian Lecture. Experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 1857; 147: 145-81.
[http://dx.doi.org/10.1098/rstl.1857.0011]
[8]
Singh TR, Shrivastava V. Synthesis of gold nanoparticles: A biological approach. Synthesis 2014; 3(2): 5.
[9]
Ahmad A, Mukherjee P, Senapati S, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 2003; 28(4): 313-8.
[http://dx.doi.org/10.1016/S0927-7765(02)00174-1]
[10]
Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 2006; 69(5): 485-92.
[http://dx.doi.org/10.1007/s00253-005-0179-3] [PMID: 16317546]
[11]
Menon S. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technol 2017; 3(4): 516-27.
[http://dx.doi.org/10.1016/j.reffit.2017.08.002]
[12]
Xie J, Lee JY, Wang DIC, Ting YP. Silver nanoplates: From biological to biomimetic synthesis. ACS Nano 2007; 1(5): 429-39.
[http://dx.doi.org/10.1021/nn7000883] [PMID: 19206664]
[13]
He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. Biosynthesis of gold nanoparticles using the bacteria rhodopseudomonas capsulata. Mater Lett 2007; 61(18): 3984-7.
[http://dx.doi.org/10.1016/j.matlet.2007.01.018]
[14]
Whiteley C, Govender Y, Riddin T, Rai M. Enzymatic synthesis of platinum nanoparticles: Prokaryote and eukaryote systems. In: Rai M, Duran N.Metal Nanoparticles Microbiol. Berlin, Heidelberg: Springer 2011.
[http://dx.doi.org/10.1007/978-3-642-18312-6_5]
[15]
Brayner R, Barberousse H, Hemadi M, et al. Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 2007; 7(8): 2696-708.
[http://dx.doi.org/10.1166/jnn.2007.600] [PMID: 17685286]
[16]
Das SK, Marsili E. A green chemical approach for the synthesis of gold nanoparticles: Characterization and mechanistic aspect. Rev Environ Sci Biotechnol 2010; 9(3): 199-204.
[http://dx.doi.org/10.1007/s11157-010-9188-5]
[17]
Mukherjee P, Ahmad A, Mandal D, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett 2001; 1(10): 515-9.
[http://dx.doi.org/10.1021/nl0155274]
[18]
Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: Technological concepts and future applications. J Nanopart Res 2007; 10(3): 507-17.
[http://dx.doi.org/10.1007/s11051-007-9275-x]
[19]
Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 2009; 15(63): 1231-4.
[http://dx.doi.org/10.1016/j.matlet.2009.02.042]
[20]
Koul B, Poonia AK, Yadav D, Jin JO. Microbe-mediated biosynthesis of nanoparticles: Applications and future prospects. Biomolecules 2021; 11(6): 886.
[http://dx.doi.org/10.3390/biom11060886] [PMID: 34203733]
[21]
Kumar G, Rao B. Biosynthesis of silver anoparticles from marine yeast and theirantimicrobial activity against multidrug resistant pathogens. Pharmacologyonline 2011; 3: 1100-11.
[22]
Sohn JS, Kwon YW, Jin J, Jo BW. DNA-templated preparation of gold nanoparticles. Molecules 2011; 16(10): 8143-51.
[http://dx.doi.org/10.3390/molecules16108143]
[23]
Suresh AK, Pelletier DA, Wang W, et al. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 2011; 7(5): 2148-52.
[http://dx.doi.org/10.1016/j.actbio.2011.01.023] [PMID: 21241833]
[24]
Pei L, Mori K, Adachi M. Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization. Langmuir 2004; 20(18): 7837-43.
[http://dx.doi.org/10.1021/la049262v] [PMID: 15323538]
[25]
Gole A, Dash C, Ramakrishnan V, et al. Pepsin-gold colloid conjugates: Preparation, characterization, and enzymatic activity. Langmuir 2001; 17(5): 1674-9.
[http://dx.doi.org/10.1021/la001164w]
[26]
Biosynthesis of metal nanoparticles using fungi and actinomycete- Publications of the IAS Fellows. Available from: . http://repository.ias.ac.in/47133/ (accessed 2021 -08 -13).
[27]
Si S, Mandal TK. Tryptophan-based peptides to synthesize gold and silver nanoparticles: A mechanistic and kinetic study. Chemistry 2007; 13(11): 3160-8.
[http://dx.doi.org/10.1002/chem.200601492] [PMID: 17245786]
[28]
Beveridge TJ, Murray RG. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 1980; 141(2): 876-87.
[http://dx.doi.org/10.1128/jb.141.2.876-887.1980] [PMID: 6767692]
[29]
Sanghi R, Verma P, Puri S. Enzymatic formation of gold nanoparticles using & Phanerochaete chrysosporium. Adv Chem Eng Sci 2011; 01(03): 154-62.
[http://dx.doi.org/10.4236/aces.2011.13023]
[30]
Ettadili FE, Aghris S, Laghrib F, et al. Recent advances in the nanoparticles synthesis using plant extract: Applications and future recommendations. J Mol Struct 2022; 1248131538
[http://dx.doi.org/10.1016/j.molstruc.2021.131538]
[31]
Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 2009; 68(1): 88-92.
[http://dx.doi.org/10.1016/j.colsurfb.2008.09.022] [PMID: 18995994]
[32]
Rana A, Yadav K, Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J Clean Prod 2020; 272122880
[http://dx.doi.org/10.1016/j.jclepro.2020.122880]
[33]
Parastoo P, Yahyaei B. Biological production of silver nanoparticles by soil isolated bacteria and preliminary study of their cytotoxicity and cutaneous wound healing efficiency in rat. J Trace Elem Med Biol 2016; 34: 22-31.
[http://dx.doi.org/10.1016/j.jtemb.2015.11.004] [PMID: 26854241]
[34]
Bharde A, Kulkarni A, Rao M, Prabhune A, Sastry M. Bacterial enzyme mediated biosynthesis of gold nanoparticles. J Nanosci Nanotechnol 2007; 7(12): 4369-77.
[http://dx.doi.org/10.1166/jnn.2007.891] [PMID: 18283817]
[35]
Shah M, Badwaik V, Kherde Y, et al. Gold nanoparticles: Various methods of synthesis and antibacterial applications.In Front Biosci 2014; 19(8): 1320-44.
[36]
Yahyaei B, Peyvandi N, Akbari H, et al. Production, assessment, and impregnation of hyaluronic acid with silver nanoparticles that were produced by Streptococcus pyogenes for tissue engineering applications. Appl Biol Chem 2016; 59(2): 227-37.
[http://dx.doi.org/10.1007/s13765-016-0147-x]
[37]
Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005; 21(23): 10644-54.
[http://dx.doi.org/10.1021/la0513712] [PMID: 16262332]
[38]
West JL, Halas NJ. Applications of nanotechnology to biotechnology commentary. Curr Opin Biotechnol 2000; 11(2): 215-7.
[http://dx.doi.org/10.1016/S0958-1669(00)00082-3] [PMID: 10753774]
[39]
Biogenesis of nanoparticles - A current perspective - Manipal Academy of Higher Education, Manipal, India. Available from:. https://manipal.pure.elsevier.com/en/publications/biogenesis-of-nanoparticles-a-current-perspective (accessed 2021 -08 -13).
[40]
Marie CD, Didier A. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004; 104: 293-346.
[41]
Murphy CJ, Gole AM, Stone JW, et al. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc Chem Res 2008; 41(12): 1721-30.
[http://dx.doi.org/10.1021/ar800035u] [PMID: 18712884]
[42]
Roduner E. Size matters: Why nanomaterials are different. Chem Soc Rev 2006; 35(7): 583-92.
[http://dx.doi.org/10.1039/b502142c] [PMID: 16791330]
[43]
Andreescu D, Sau TK, Goia DV. Stabilizer-free nanosized gold sols. J Colloid Interface Sci 2006; 298(2): 742-51.
[http://dx.doi.org/10.1016/j.jcis.2006.01.011] [PMID: 16473363]
[44]
Pimpang P, Choopun S. Monodispersity and stability of gold nanoparticles stabilized by using polyvinyl alcohol. In: Chiang Mai J Sci 2011; 38(1): 31-8.
[45]
Majzik A, Patakfalvi R, Hornok V, Dékány I. Growing and stability of gold nanoparticles and their functionalization by cysteine. Gold Bull 2009; 42(2): 113-23.
[http://dx.doi.org/10.1007/BF03214921]
[46]
Gao J, Huang X, Liu H, Zan F, Ren J. Colloidal stability of gold nanoparticles modified with thiol compounds: Bioconjugation and application in cancer cell imaging. Langmuir 2012; 28(9): 4464-71.
[http://dx.doi.org/10.1021/la204289k] [PMID: 22276658]
[47]
Li Q, Lu B, Zhang L, Lu C. Synthesis and stability evaluation of size-controlled gold nanoparticles via nonionic fluorosurfactant-assisted hydrogen peroxide reduction. J Mater Chem 2012; 22(27): 13564-70.
[http://dx.doi.org/10.1039/c2jm31528a]
[48]
Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA. Targeted photodynamic therapy of breast cancer cells using antibody–phthalocyanine–gold nanoparticle conjugates. Photochem Photobiol Sci 2011; 10(5): 822-31.
[http://dx.doi.org/10.1039/c1pp05014a]
[49]
SD. P.; WC, C. In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proc Natl Acad Sci USA 2010; 107(25): 11194-9.
[http://dx.doi.org/10.1073/pnas.1001367107] [PMID: 20534561]
[50]
Brown SD, Nativo P, Smith JA, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 2010; 132(13): 4678-84.
[http://dx.doi.org/10.1021/ja908117a] [PMID: 20225865]
[51]
Sehgal N, Soni K, Gupta N, Kohli K. Microorganism assisted synthesis of gold nanoparticles: a review. Asian J Biomed Pharma Sci 2018; 8(64): 22-9.
[52]
Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol 2020; 8: 990.
[http://dx.doi.org/10.3389/fbioe.2020.00990] [PMID: 32903562]
[54]
Zhang X, Yan S, Tyagi RD, Surampalli RY. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 2011; 82(4): 489-94.
[http://dx.doi.org/10.1016/j.chemosphere.2010.10.023] [PMID: 21055786]
[55]
Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv Colloid Interface Sci 2019; 271101989
[http://dx.doi.org/10.1016/j.cis.2019.101989] [PMID: 31330396]
[56]
Pang B, Köhler R, Roddatis V, et al. One-step synthesis of quadrilateral-shaped silver nanoplates with lamellar structures tuned by amylopectin derivatives. ACS Omega 2018; 3(6): 6841-8.
[http://dx.doi.org/10.1021/acsomega.8b00833] [PMID: 31458853]
[57]
Daniela NCL, Sebastian AMI, Miguel EC, Patricio AM, Jenny MB. Gold nanoparticles synthesized by Geobacillus sp. strain id17 a thermophilic bacterium isolated from deception island, Antarctica. Microb Cell Fact 2013; 12(1): 75.
[http://dx.doi.org/10.1186/1475-2859-12-75]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy