Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Platycodon D-induced A549 Cell Apoptosis through RRM1-Regulated p53/VEGF/ MMP2 Pathway

Author(s): Jiurong Li, Aiping Ma, Wenbin Lan and Qun Liu*

Volume 22, Issue 13, 2022

Published on: 18 March, 2022

Page: [2458 - 2467] Pages: 10

DOI: 10.2174/1871520622666220128095355

Price: $65

Abstract

Background: Lung cancer is one of the leading causes of cancer-related deaths worldwide. Platycodin D (PD), a major pharmacological constituent from the Chinese medicinal herb named Platycodonis Radix, has shown potent anti-tumor activity. Also, it is reported that PD could inhibit cellular growth in the non-small-cell lung carcinoma (NSCLC) A549 cell line. However, the underlying mechanism is not fully clarified.

Methods: Cell proliferation was measured by MTT assay. Annexin V and propidium iodide (PI) assay were employed to study the apoptosis effects of PD on A549 cells. Western blot analysis was used to evaluate protein expression. Also, we used a siRNA against p53, as well as a plasmid-based RRM1 over-expression to investigate their functions.

Results: It is demonstrated that PD inhibited A549 cell proliferation in a dose- and time-dependent manner. Further investigations showed that PD induced cell apoptosis, which was supported by dose-dependent and time-dependent caspase-3 activation and p53/VEGF/MMP2 pathway regulation. Also, PD demonstrated the inhibition effect of ribonucleotide reductase M1 (RRM1), whose role in various tumors is contradictory. Remarkably, in this work, RRM1 overexpression in A549 cells could have a negative impact on the regulation of the p53/VEGF/MMP2 pathway induced by PD treatment. Note that RRM1 overexpression also attenuated cell apoptosis and inhibition of cell proliferation of A549 treated with PD.

Conclusion: The results suggested that PD could inhibit A549 cell proliferation and induce cell apoptosis by regulating p53/VEGF/MMP2 pathway, in which RRM1 plays an important role directly.

Keywords: p53/VEGF/MMP2 pathway, RRM1, platycodin D, cell proliferation, cell apoptosis, lung cancer.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of inci-dence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Liu, G.; Pei, F.; Yang, F.; Li, L.; Amin, A.D.; Liu, S.; Buchan, J.R.; Cho, W.C. Role of autophagy and apoptosis in non-small-cell lung cancer. Int. J. Mol. Sci., 2017, 18(2), 367.
[http://dx.doi.org/10.3390/ijms18020367] [PMID: 28208579]
[3]
de Mello, R.A.; Marques, D.S.; Medeiros, R.; Araújo, A.M. Epidermal growth factor receptor and K-Ras in non-small cell lung cancer-molecular pathways involved and targeted therapies. World J. Clin. Oncol., 2011, 2(11), 367-376.
[http://dx.doi.org/10.5306/wjco.v2.i11.367] [PMID: 22087435]
[4]
Xiao, R.; Ding, C.; Zhu, H.; Liu, X.; Gao, J.; Liu, Q.; Lu, D.; Zhang, N.; Zhang, A.; Zhou, H. Suppression of asparagine synthetase enhances the anti-tumor potency of ART and artemalogue SOMCL-14-221 in non-small cell lung cancer. Cancer Lett., 2020, 475, 22-33.
[http://dx.doi.org/10.1016/j.canlet.2020.01.035] [PMID: 32014457]
[5]
Park, K.I.; Park, H.S.; Kang, S.R.; Nagappan, A.; Lee, D.H.; Kim, J.A.; Han, D.Y.; Kim, G.S. Korean Scutellaria baicalensis water extract inhibits cell cycle G1/S transition by suppressing cyclin D1 expression and matrix-metalloproteinase-2 activity in human lung cancer cells. J. Ethnopharmacol., 2011, 133(2), 634-641.
[http://dx.doi.org/10.1016/j.jep.2010.10.057] [PMID: 21073943]
[6]
Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei), 2017, 7(4), 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[7]
Ham, Y.A.; Choi, H.J.; Kim, S.H.; Chung, M.J.; Ham, S.S. Antimutagenic and antitumor effects of Adenophora triphylla extracts. J Korean Soc Food Sci Nutr, 2009, 38, 25-31.
[http://dx.doi.org/10.3746/jkfn.2009.38.1.025]
[8]
Supriya, K.; Pallavi, K.; Srinivasababu, P. Natural and herbal remedies for cancer treatment. Inventi Impact: Planta Activa, 2016, 2016, 140-147.
[9]
Li, W.; Zhang, W.; Xiang, L.; Wang, Z.; Zheng, Y.N.; Wang, Y.P.; Zhang, J.; Chen, L. Platycoside N: a new oleanane-type triterpenoid saponin from the roots of Platycodon grandiflorum. Molecules, 2010, 15(12), 8702-8708.
[http://dx.doi.org/10.3390/molecules15128702] [PMID: 21119565]
[10]
Han, L.K.; Zheng, Y.N.; Xu, B.J.; Okuda, H.; Kimura, Y. Saponins from platycodi radix ameliorate high fat diet-induced obesity in mice. J. Nutr., 2002, 132(8), 2241-2245.
[http://dx.doi.org/10.1093/jn/132.8.2241] [PMID: 12163669]
[11]
Zhao, H.L.; Sim, J.S.; Shim, S.H.; Ha, Y.W.; Kang, S.S.; Kim, Y.S. Antiobese and hypolipidemic effects of platycodin saponins in diet-induced obese rats: evidences for lipase inhibition and calorie intake restriction. Int. J. Obes., 2005, 29(8), 983-990.
[http://dx.doi.org/10.1038/sj.ijo.0802948] [PMID: 15852049]
[12]
Hong, J.; Shin, K.H.; Lim, S.S.; Kwak, J.H.; Zee, O.; Ishihara, K.; Hirasawa, N.; Seyama, T.; Ohuchi, K. Lead compounds for anti-inflammatory drugs isolated from the plants of the traditional oriental medicine in Korea. Inflamm. Allergy Drug Targets, 2008, 7(3), 195-202.
[http://dx.doi.org/10.2174/187152808785748100] [PMID: 18782027]
[13]
Khan, M.; Maryam, A.; Zhang, H.; Mehmood, T.; Ma, T. Killing cancer with platycodin D through multiple mechanisms. J. Cell. Mol. Med., 2016, 20(3), 389-402.
[http://dx.doi.org/10.1111/jcmm.12749] [PMID: 26648178]
[14]
Park, J.C.; Lee, Y.J.; Choi, H.Y.; Shin, Y.K.; Kim, J.D.; Ku, S.K. In vivo and in vitro antitumor effects of platycodin d, a saponin purified from platycodi radix on the h520 lung cancer cell. Evid. Based Complement. Alternat. Med., 2014, 2014, 478653.
[http://dx.doi.org/10.1155/2014/478653] [PMID: 25477992]
[15]
Pitterle, D.M.; Kim, Y.C.; Jolicoeur, E.M.; Cao, Y.; O’Briant, K.C.; Bepler, G. Lung cancer and the human gene for ribonucleotide reductase subunit M1 (RRM1). Mamm. Genome, 1999, 10(9), 916-922.
[http://dx.doi.org/10.1007/s003359901114] [PMID: 10441745]
[16]
Aye, Y.; Li, M.; Long, M.J.; Weiss, R.S. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene, 2015, 34(16), 2011-2021.
[http://dx.doi.org/10.1038/onc.2014.155] [PMID: 24909171]
[17]
Besse, B.; Olaussen, K.A.; Soria, J.C. ERCC1 and RRM1: ready for prime time? J. Clin. Oncol., 2013, 31(8), 1050-1060.
[http://dx.doi.org/10.1200/JCO.2012.43.0900] [PMID: 23401439]
[18]
Gautam, A.; Bepler, G. Suppression of lung tumor formation by the regula-tory subunit of ribonucleotide reductase. Cancer Res., 2006, 66(13), 6497-6502.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4462] [PMID: 16818620]
[19]
Jordheim, L.P.; Sève, P.; Trédan, O.; Dumontet, C. The ribonucleotide reduc-tase large subunit (RRM1) as a predictive factor in patients with cancer. Lancet Oncol., 2011, 12(7), 693-702.
[http://dx.doi.org/10.1016/S1470-2045(10)70244-8] [PMID: 21163702]
[20]
Gautam, A.; Li, Z.R.; Bepler, G. RRM1-induced metastasis suppression through PTEN-regulated pathways. Oncogene, 2003, 22(14), 2135-2142.
[http://dx.doi.org/10.1038/sj.onc.1206232] [PMID: 12687015]
[21]
Nakano, Y.; Tanno, S.; Koizumi, K.; Nishikawa, T.; Nakamura, K.; Minogu-chi, M.; Izawa, T.; Mizukami, Y.; Okumura, T.; Kohgo, Y. Gemcitabine chemoresistance and molecular markers associated with gemcitabine transport and metabolism in human pancreatic cancer cells. Br. J. Cancer, 2007, 96(3), 457-463.
[http://dx.doi.org/10.1038/sj.bjc.6603559] [PMID: 17224927]
[22]
Oettle, H.; Post, S.; Neuhaus, P.; Gellert, K.; Langrehr, J.; Ridwelski, K.; Schramm, H.; Fahlke, J.; Zuelke, C.; Burkart, C.; Gutberlet, K.; Kettner, E.; Schmalenberg, H.; Weigang-Koehler, K.; Bechstein, W.O.; Niedergethmann, M.; Schmidt-Wolf, I.; Roll, L.; Doerken, B.; Riess, H. Adjuvant chemother-apy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: A randomized controlled trial. JAMA, 2007, 297(3), 267-277.
[http://dx.doi.org/10.1001/jama.297.3.267] [PMID: 17227978]
[23]
Guan, X. Cancer metastases: challenges and opportunities. Acta Pharm. Sin. B, 2015, 5(5), 402-418.
[http://dx.doi.org/10.1016/j.apsb.2015.07.005] [PMID: 26579471]
[24]
Gong, J.; Zhu, S.; Zhang, Y.; Wang, J. Interplay of VEGFa and MMP2 regu-lates invasion of glioblastoma. Tumour Biol., 2014, 35(12), 11879-11885.
[http://dx.doi.org/10.1007/s13277-014-2438-3] [PMID: 25213694]
[25]
He, M.; Dong, C.; Ren, R.; Yuan, D.; Xie, Y.; Pan, Y.; Shao, C. Radiation enhances the invasiveness of irradiated and nonirradiated bystander hepa-toma cells through a VEGF-MMP2 pathway initiated by p53. Radiat. Res., 2013, 180(4), 389-397.
[http://dx.doi.org/10.1667/RR3355.1] [PMID: 24059678]
[26]
Komarova, E.A.; Gudkov, A.V. Suppression of p53: a new approach to overcome side effects of antitumor therapy. Biochemistry (Mosc.), 2000, 65(1), 41-48.
[PMID: 10702639]
[27]
Elledge, S.J.; Zhou, Z.; Allen, J.B. Ribonucleotide reductase: regulation, regulation, regulation. Trends Biochem. Sci., 1992, 17(3), 119-123.
[http://dx.doi.org/10.1016/0968-0004(92)90249-9] [PMID: 1412696]
[28]
Nordlund, P.; Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem., 2006, 75, 681-706.
[http://dx.doi.org/10.1146/annurev.biochem.75.103004.142443] [PMID: 16756507]
[29]
Bepler, G.; Sharma, S.; Cantor, A.; Gautam, A.; Haura, E.; Simon, G.; Shar-ma, A.; Sommers, E.; Robinson, L. RRM1 and PTEN as prognostic parame-ters for overall and disease-free survival in patients with non-small-cell lung cancer. J. Clin. Oncol., 2004, 22(10), 1878-1885.
[http://dx.doi.org/10.1200/JCO.2004.12.002] [PMID: 15143080]
[30]
Ferrandina, G.; Mey, V.; Nannizzi, S.; Ricciardi, S.; Petrillo, M.; Ferlini, C.; Danesi, R.; Scambia, G.; Del Tacca, M. Expression of nucleoside transport-ers, deoxycitidine kinase, ribonucleotide reductase regulatory subunits, and gemcitabine catabolic enzymes in primary ovarian cancer. Cancer Chemother. Pharmacol., 2010, 65(4), 679-686.
[http://dx.doi.org/10.1007/s00280-009-1073-y] [PMID: 19639316]
[31]
Choudhary, G.S.; Al-Harbi, S.; Almasan, A. Caspase-3 activation is a criti-cal determinant of genotoxic stress-induced apoptosis. Methods Mol. Biol., 2015, 1219, 1-9.
[http://dx.doi.org/10.1007/978-1-4939-1661-0_1] [PMID: 25308257]
[32]
Wang, H.; Tang, L.; Tang, Y.; Yuan, Z. SAR analysis and biological studies of synthesized podophyllum derivates obtained by N linkage modification at C-4 position. Bioorg. Med. Chem., 2014, 22(21), 6183-6192.
[http://dx.doi.org/10.1016/j.bmc.2014.08.025] [PMID: 25282651]
[33]
Wang, H.; Feng, J.; Zhou, T.; Wei, L.; Zhou, J. P-3F, a microtubule polymeri-zation inhibitor enhances P53 stability through the change in localization of RPS27a. Int. J. Biochem. Cell Biol., 2017, 92, 53-62.
[http://dx.doi.org/10.1016/j.biocel.2017.09.010] [PMID: 28928040]
[34]
Moskovits, N.; Kalinkovich, A.; Bar, J.; Lapidot, T.; Oren, M. p53 Attenu-ates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res., 2006, 66(22), 10671-10676.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2323] [PMID: 17108103]
[35]
Cheng, J.C.; Auersperg, N.; Leung, P.C. Inhibition of p53 induces invasion of serous borderline ovarian tumor cells by accentuating PI3K/Akt-mediated suppression of E-cadherin. Oncogene, 2011, 30(9), 1020-1031.
[http://dx.doi.org/10.1038/onc.2010.486] [PMID: 20972462]
[36]
Henriet, P.; Emonard, H. Matrix metalloproteinase-2: Not (just) a “hero” of the past. Biochimie, 2019, 166, 223-232.
[http://dx.doi.org/10.1016/j.biochi.2019.07.019] [PMID: 31362036]
[37]
Park, J.Y.; Park, D.H.; Jeon, Y.; Kim, Y.J.; Lee, J.; Shin, M.S.; Kang, K.S.; Hwang, G.S.; Kim, H.Y.; Yamabe, N. Eupatilin inhibits angiogenesis-mediated human hepatocellular metastasis by reducing MMP-2 and VEGF signaling. Bioorg. Med. Chem. Lett., 2018, 28(19), 3150-3154.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.034] [PMID: 30177376]
[38]
Mukhopadhyay, D.; Tsiokas, L.; Sukhatme, V.P. Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res., 1995, 55(24), 6161-6165.
[PMID: 8521408]
[39]
Farhang Ghahremani, M.; Goossens, S.; Nittner, D.; Bisteau, X.; Bartunko-va, S.; Zwolinska, A.; Hulpiau, P.; Haigh, K.; Haenebalcke, L.; Drogat, B.; Jochemsen, A.; Roger, P.P.; Marine, J.C.; Haigh, J.J. p53 promotes VEGF expression and angiogenesis in the absence of an intact p21-Rb pathway. Cell Death Differ., 2013, 20(7), 888-897.
[http://dx.doi.org/10.1038/cdd.2013.12] [PMID: 23449391]
[40]
Chen, L.; Lin, G.; Chen, K.; Liang, R.; Wan, F.; Zhang, C.; Tian, G.; Zhu, X. VEGF promotes migration and invasion by regulating EMT and MMPs in nasopharyngeal carcinoma. J. Cancer, 2020, 11(24), 7291-7301.
[http://dx.doi.org/10.7150/jca.46429] [PMID: 33193893]
[41]
Chen, L.; Wang, H. Nicotine promotes human papillomavirus (HPV)-immortalized cervical epithelial cells (H8) proliferation by activating RPS27a-Mdm2-P53 pathway in vitro. Toxicol. Sci., 2019, 167(2), 408-418.
[http://dx.doi.org/10.1093/toxsci/kfy246] [PMID: 30272249]
[42]
Sagawa, M.; Ohguchi, H.; Harada, T.; Samur, M.K.; Tai, Y.T.; Munshi, N.C.; Kizaki, M.; Hideshima, T.; Anderson, K.C. Ribonucleotide reductase cata-lytic subunit M1 (RRM1) as a novel therapeutic target in multiple myeloma. Clin. Cancer Res., 2017, 23(17), 5225-5237.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0263] [PMID: 28442502]
[43]
Kim, S.H.; Park, E.R.; Joo, H.Y.; Shen, Y.N.; Hong, S.H.; Kim, C.H.; Singh, R.; Lee, K.H.; Shin, H.J. RRM1 maintains centrosomal integrity via CHK1 and CDK1 signaling during replication stress. Cancer Lett., 2014, 346(2), 249-256.
[http://dx.doi.org/10.1016/j.canlet.2013.12.031] [PMID: 24434653]
[44]
Wang, K.; Yu, B.; Pathak, J.L. An update in clinical utilization of photody-namic therapy for lung cancer. J. Cancer, 2021, 12(4), 1154-1160.
[http://dx.doi.org/10.7150/jca.51537] [PMID: 33442413]
[45]
Buyel, J.F. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol. Adv., 2018, 36(2), 506-520.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.002] [PMID: 29408560]
[46]
Luan, X.; Gao, Y.G.; Guan, Y.Y.; Xu, J.R.; Lu, Q.; Zhao, M.; Liu, Y.R.; Liu, H.J.; Fang, C.; Chen, H.Z. Platycodin D inhibits tumor growth by antiangio-genic activity via blocking VEGFR2-mediated signaling pathway. Toxicol. Appl. Pharmacol., 2014, 281(1), 118-124.
[http://dx.doi.org/10.1016/j.taap.2014.09.009] [PMID: 25250884]
[47]
Kim, M.O.; Moon, D.O.; Choi, Y.H.; Lee, J.D.; Kim, N.D.; Kim, G.Y. Platycodin D induces mitotic arrest in vitro, leading to endoreduplication, inhibition of proliferation and apoptosis in leukemia cells. Int. J. Cancer, 2008, 122(12), 2674-2681.
[http://dx.doi.org/10.1002/ijc.23442] [PMID: 18351645]
[48]
Kim, M.O.; Moon, D.O.; Choi, Y.H.; Shin, D.Y.; Kang, H.S.; Choi, B.T.; Lee, J.D.; Li, W.; Kim, G.Y. Platycodin D induces apoptosis and decreases te-lomerase activity in human leukemia cells. Cancer Lett., 2008, 261(1), 98-107.
[http://dx.doi.org/10.1016/j.canlet.2007.11.010] [PMID: 18093727]
[49]
Li, T.; Chen, X.; Chen, X.; Ma, D.L.; Leung, C.H.; Lu, J.J. Platycodin D potentiates proliferation inhibition and apoptosis induction upon AKT in-hibition via feedback blockade in non-small cell lung cancer cells. Sci. Rep., 2016, 6, 37997.
[http://dx.doi.org/10.1038/srep37997] [PMID: 27897231]
[50]
Zhao, R.; Chen, M.; Jiang, Z.; Zhao, F.; Xi, B.; Zhang, X.; Fu, H.; Zhou, K. Platycodin-D induced autophagy in non-small cell lung cancer cells via PI3K/Akt/mTOR and MAPK signaling pathways. J. Cancer, 2015, 6(7), 623-631.
[http://dx.doi.org/10.7150/jca.11291] [PMID: 26078792]
[51]
Seo, Y.S.; Kang, O.H.; Kong, R.; Zhou, T.; Kim, S.A.; Ryu, S.; Kim, H.R.; Kwon, D.Y. Polygalacin D induces apoptosis and cell cycle arrest via the PI3K/Akt pathway in non-small cell lung cancer. Oncol. Rep., 2018, 39(4), 1702-1710.
[http://dx.doi.org/10.3892/or.2018.6230] [PMID: 29393481]
[52]
Fan, H.; Huang, A.; Villegas, C.; Wright, J.A. The R1 component of mamma-lian ribonucleotide reductase has malignancy-suppressing activity as demonstrated by gene transfer experiments. Proc. Natl. Acad. Sci. USA, 1997, 94(24), 13181-13186.
[http://dx.doi.org/10.1073/pnas.94.24.13181] [PMID: 9371820]
[53]
Sermeus, A.; Michiels, C. Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis., 2011, 2, e164.
[http://dx.doi.org/10.1038/cddis.2011.48] [PMID: 21614094]
[54]
Vousden, K.H.; Lu, X. Live or let die: the cell’s response to p53. Nat. Rev. Cancer, 2002, 2(8), 594-604.
[http://dx.doi.org/10.1038/nrc864] [PMID: 12154352]
[55]
Djebaïli, M.; De Bock, F.; Baille, V.; Bockaert, J.; Rondouin, G. Implication of p53 and caspase-3 in kainic acid but not in N-methyl-D-aspartic acid-induced apoptosis in organotypic hippocampal mouse cultures. Neurosci. Lett., 2002, 327(1), 1-4.
[http://dx.doi.org/10.1016/S0304-3940(02)00137-4] [PMID: 12098486]
[56]
Zhang, L.; Yu, D.; Hu, M.; Xiong, S.; Lang, A.; Ellis, L.M.; Pollock, R.E. Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res., 2000, 60(13), 3655-3661.
[PMID: 10910082]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy