Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Systemic Optimization and Validation of RP-HPLC Method for the Estimation of Ritonavir from Hybrid Polymeric Nanoparticles in Rat Plasma

Author(s): Vijayaraj Surendran*, Narahari N. Palei, Murugesan Vanangamudi and Prathap Madheswaragupta

Volume 18, Issue 6, 2022

Published on: 19 May, 2022

Page: [650 - 662] Pages: 13

DOI: 10.2174/1573412918666220128092959

Price: $65

Abstract

Background: Hybrid polymeric materials have been in research focus owing to their outstanding progression in drug targeting. A new Quality by Design approach by RP-HPLC was developed and validated for the estimation of hybrid polymeric nanoparticles of Ritonavir in rat plasma.

Objective: The main objective of the present study was to develop and validate a simple, robust, and accurate method by QbD approach for the detection of hybrid polymeric nanoparticles of Ritonavir (RTV) in plasma.

Methods: The mobile phase consisting of a mixture of Acetonitrile: HPLC grade water (60:40 v/v), 1.0 ml/min flow rate and UV detection at 240 nm. Critical Analytical Attributes (CAAs) were screened and selected by Taguchi orthogonal array model. Box-Behnken's three-level, the 3- factorial design, was employed to create and analyze a "Design Space" (DoE). This design was statistically analyzed by ANOVA, contour-plot, and 3D response surfaces plots, which demonstrated that the model was statistically significant. The developed method was validated as per the ICH guidelines Q2 (R1).

Results: The developed method showed excellent linearity between 100 and 600 ng/mL with good regression (R2>0.998), LOD (10 ng/mL) and LOQ (30 ng/mL). The validation results of the tested parameters were found within the acceptable limit.

Conclusion: From the study, it was concluded that QbD driven bioanalytical method is suitable for the in-vitro and in-vivo estimation of RTV from bulk as well as from hybrid polymeric nanoparticles formulation.

Keywords: Design of Experiments (DoE), hybrid polymeric nanoparticles, ICH Guidelines, RP-HPLC method, Ritonavir, rat plasma.

« Previous
Graphical Abstract

[1]
National Center for Biotechnology Information. PubChem Compound Summary for CID 392622, Ritonavir. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ritonavir
[2]
Kashish, G.; Nisha, P.; Hiren, K. Analytical techniques in the analysis of darunavir and ritonavir: A review. Curr. Pharm. Anal., 2020, 16(5), 447-455.
[http://dx.doi.org/10.2174/1573412915666190206124808]
[3]
Alagar, R.M.; Rao, K.N.V.; Banji, D.; Kumar, S.D. Simultaneous estimation of method development and validation of atazanavir and ritonavir by RP-HPLC method. Asi. J. Pharm. Anal. Medi. Chem., 2015, 3(3), 89-99.
[4]
Bindu, M.J.; Reddy, K.N.K.; Himabindu, G. RP-HPLC method development and validation for simultaneous estimation of lopinavir and Ritonavir in tablet dosage form. Ind. J. Res. Pharm. Bio., 2017, 5(1), 77.
[5]
Gorja, A.; Bandla, J. Method development and validation for the simultaneous estimation of ritonavir and lopinavir in pharmaceutical dosage forms by RP-HPLC. WJPPS, 2014, 3(10), 694-702.
[6]
Penzak, S.R.; Lawhorn, W.D.; Gubbins, P.O. Rapid and sensitive high-performance liquid chromatographic method for the determination of ritonavir in human plasma. Int. J. Clin. Pharmacol. Ther., 2001, 39(9), 400-405.
[http://dx.doi.org/10.5414/CPP39400] [PMID: 11563687]
[7]
Al-Zoman, N.Z.; Maher, H.M.; Al-Subaie, A. Simultaneous determination of newly developed antiviral agents in pharmaceutical formulations by HPLC-DAD. Chem. Cent. J., 2017, 11(1), 1.
[http://dx.doi.org/10.1186/s13065-016-0232-6] [PMID: 28101128]
[8]
Rao, B.V.; Vidyadhara, S.; Babu, R.R.; Kumar, B.P.; Kumar, G.K. Analytical method development and validation for simultaneous estimation of lopinavir and ritonavir by RP-HPLC. Intern. J. Res. Devel. Pharm. L. Sci., 2014, 3(4), 1074-1079.
[9]
Yekkala, R.S.; Ashenafi, D.; Mariën, I.; Xin, H.; Haghedooren, E.; Hoogmartens, J.; Adams, E. Evaluation of an International Pharmacopoeia method for the analysis of ritonavir by liquid chromatography. J. Pharm. Biomed. Anal., 2008, 48(3), 1050-1054.
[http://dx.doi.org/10.1016/j.jpba.2008.08.007] [PMID: 18801634]
[10]
Punagoti, R.A.; Jupally, V.R. Development and validation of a RP-HPLC method for simultaneous determination of ritonavir and lopinavir in combined dosage form. Anal. Chem. Ind. J., 2014, 14(3), 88-92.
[11]
Varaprasad, B.L.; Harinadha, B.K.; Kumar, R.A.; Kumar, V.G. Development method validation of RP-HPLC method for simultaneous determination of lopinavir and ritonavir in bulk and formulation dosage. Int. Res. J. Pharm. Appl. Sci., 2012, 2, 84-90.
[12]
Gandhi, S.V.; Korhale, R.R. A RP-HPLC method development and validation for the estimation of ritonavir in bulk and pharmaceutical dosage form. J. Chem. Pharm. Res., 2016, 8(7), 901-904.
[13]
Sudha, T.; Vanitha, R.; Ganesan, V. Development and validation of RP-HPLC and HPTLC methods for estimation of ritonavir in bulk and in pharmaceutical formulation. Pharma. Chem., 2011, 3, 127-134.
[14]
Koehn, J.; Ho, R.J. Novel liquid chromatography-tandem mass spectrometry method for simultaneous detection of anti-HIV drugs Lopinavir, Ritonavir, and Tenofovir in plasma. Antimicrob. Agents Chemother., 2014, 58(5), 2675-2680.
[http://dx.doi.org/10.1128/AAC.02748-13] [PMID: 24566184]
[15]
Temghare, G.A.; Shetye, S.S.; Joshi, S.S. Rapid and sensitive method for quantitative determination of lopinavir and ritonavir in human plasma by liquid chromatography-tandem mass specrtometry. E-J. Chem., 2009, 6(1), 223-230.
[http://dx.doi.org/10.1155/2009/709478]
[16]
Patel, D.J.; Desai, S.D.; Savaliya, R.P.; Gohil, D.Y. Simultaneous HPTLC determination of lopinavir and ritonavir in combined dosage form. Asian J. Pharm. Clin. Res., 2011, 4(1), 59-61.
[17]
Sulebhavikar, A.V.; Pawar, U.D.; Mangoankar, K.V.; Prabhu-Navelkar, N.D. HPTLC method for simultaneous determination of lopinavir and ritonavir in capsule dosage form. J. Chem., 2008, 5(4), 706-712.
[http://dx.doi.org/10.1155/2008/539849]
[18]
Mardia, R.B.; Suhagia, B.N.; Pasha, T.Y.; Chauhan, S.P.; Solanki, S.D. Development and validation of HPTLC method for simultaneous analysis of lopinavir and ritonavir in their combined tablet dosage form. Intern. J. Pharma. Res. Sch., 2012, 1(1), 39-44.
[http://dx.doi.org/10.31638/IJPRS.V1.I1.00017]
[19]
Dinakaran, S.K.; Botla, D.N.P.; Pothula, A.; Kassetti, K.; Avasarala, H.; Kakaraparthy, R. Spectrophotometric method development and validation for valacyclovir hydrochloride monohydrate and ritonavir in bulk and tablet dosage form using absorption ratio method. Malays. J. Pharm. Sci., 2013, 11(2), 21-19.
[20]
Patil, P.M.; Kannapurkar, S.S. Development and validation of UV- Spectrophotometric method for simultaneous determination of atazanvir sulphate and ritonavir in its pure and pharmaceutical dosage forms. IJMPS, 2016, 6(1), 79-86.
[21]
Trivedi, C.D.; Mardia, R.B.; Suhagia, B.N.; Chauhan, S.P. Development and validation of spectrophotometric method for the estimation of ritonavir in tablet dosage form. Int. J. Pharm. Sci. Res., 2013, 4(12), 4567.
[22]
Seetaramaiah, K.; Smith, A.A.; Ramyateja, K.; Alagumanivasagam, G.; Manavalan, R. Spectrophotometric determination of ritonavir in bulk and pharmaceutical formulation. Sci. Revi. Chem. Com., 2012, 2(1), 1-6.
[23]
Pereira, E.A.; Micke, G.A.; Tavares, M.F. Determination of antiretroviral agents in human serum by capillary electrophoresis. J. Chromatogr. A, 2005, 1091(1-2), 169-176.
[http://dx.doi.org/10.1016/j.chroma.2005.07.031] [PMID: 16395807]
[24]
Tuan, N.D.; Gutleben, W.; Scherer, K.; Stoiber, H.; Falkensammer, B.; Dierich, M.P.; Zemann, A. Simultaneous separation of fifteen approved protease and reverse transcriptase inhibitors for human immunodeficiency virus therapy by capillary electrophoresis. Electrophoresis, 2003, 24(4), 662-670.
[http://dx.doi.org/10.1002/elps.200390078] [PMID: 12601735]
[25]
Rajput, A.P.; Edlabadkar, A.P. An inclusive review on analytical methods for ritonavir in various pharmaceutical and biological matrix. Pharm. Methods, 2017, 8(2), 149-159.
[http://dx.doi.org/10.5530/phm.2017.8.23]
[26]
Elkateb, H.; Tatham, L.M.; Cauldbeck, H.; Niezabitowska, E.; Owen, A.; Rannard, S.; McDonald, T. Optimization of the synthetic parameters of lipid polymer hybrid nanoparticles dual loaded with darunavir and ritonavir for the treatment of HIV. Int. J. Pharm., 2020, 588, 119794.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119794] [PMID: 32828978]
[27]
Javan, F.; Vatanara, A.; Azadmanesh, K.; Nabi-Meibodi, M.; Shakouri, M. Encapsulation of ritonavir in solid lipid nanoparticles: In-vitro anti-HIV-1 activity using lentiviral particles. J. Pharm. Pharmacol., 2017, 69(8), 1002-1009.
[http://dx.doi.org/10.1111/jphp.12737] [PMID: 28471000]
[28]
Ivone, R.; Fernando, A.; DeBoef, B.; Meenach, S.A.; Shen, J. Development of spray-dried cyclodextrin-based pediatric anti-HIV formulations. AAPS PharmSciTech, 2021, 22(5), 193.
[http://dx.doi.org/10.1208/s12249-021-02068-w] [PMID: 34184163]
[29]
Peraman, R.; Bhadraya, K.; Padmanabha Reddy, Y. Analytical quality by design: A tool for regulatory flexibility and robust analytics. Int. J. Anal. Chem., 2015, 2015, 868727.
[http://dx.doi.org/10.1155/2015/868727] [PMID: 25722723]
[30]
Vogt, F.G.; Kord, A.S. Development of quality-by-design analytical methods. J. Pharm. Sci., 2011, 100(3), 797-812.
[http://dx.doi.org/10.1002/jps.22325] [PMID: 21280050]
[31]
Bhatt, D.A.; Rane, S.I. QbD approach to analytical RP-HPLC method development and its validation. Int. J. Pharm. Pharm. Sci., 2011, 3(1), 179-187.
[32]
Krull, I.S.; Swartz, M.; Turpin, J.; Lukulay, P.H.; Verseput, R.A. A quality-by-design methodology for rapid LC method development-part I. LC GC Norht Am., 2008, 26, 1190-1197.
[33]
Yao, H.; Vancoillie, J.; D’Hondt, M.; Wynendaele, E.; Bracke, N.; De Spiegeleer, B. An analytical quality by design (aQbD) approach for a L-asparaginase activity method. J. Pharm. Biomed. Anal., 2016, 117(117), 232-239.
[http://dx.doi.org/10.1016/j.jpba.2015.08.042] [PMID: 26378979]
[34]
Narahari, N.P.; Vijayaraj, S.; Lathasri, K.; Archana, D.; Rajavel, P. Chemometric approach to develop and validate RP-HPLC method for estimation of erlotinib hydrochloride in nano structured lipid carriers. Curr. Pharm. Anal., 2020, 16(2), 210-219.
[http://dx.doi.org/10.2174/1573412915666181113130245]
[35]
Vijayaraj, S.; Narahari, N.P.; Katyayani, T. Quality by design (Qbd) approach to develop HPLC method for estimation of gliclazide and its impurity (gliclazide impurity A) in bulk drug. Curr. Pharm. Anal., 2019, 15(7), 716-723.
[http://dx.doi.org/10.2174/1573412914666180523092012]
[36]
Krishna, M.V.; Dash, R.N.; Jalachandra Reddy, B.; Venugopal, P.; Sandeep, P.; Madhavi, G. Quality by Design (QbD) approach to develop HPLC method for eberconazole nitrate: Application oxidative and photolytic degradation kinetics. J. Saudi Chem. Soc., 2016, 20(1), S313-S322.
[http://dx.doi.org/10.1016/j.jscs.2012.12.001]
[37]
Vijayaraj, S.; Narahari, N.P.; Archana, D.; Lathasri, K.; Rajavel, P. Quality by design (Qbd) approach to develop stability indicating HPLC method for estimation of rutin in chitosan-sodium alginate nanoparticles. Braz. J. Pharm. Sci., 2020, 56, 1-14.
[38]
ICH guideline Q2 (R1), 2005. Validation of analytical procedures: text and methodology. ICH. 2021. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf
[39]
Vats, R.; Murthy, A.N.; Ravi, P.R. Simple, rapid and validated LC determination of lopinavir in rat plasma and its application in pharmacokinetic studies. Sci. Pharm., 2011, 79(4), 849-863.
[http://dx.doi.org/10.3797/scipharm.1107-24] [PMID: 22145109]
[40]
Myasein, F.; Kim, E.; Zhang, J.; Wu, H.; El-Shourbagy, T.A. Rapid, simultaneous determination of lopinavir and ritonavir in human plasma by stacking protein precipitations and salting-out assisted liquid/liquid extraction, and ultrafast LC-MS/MS. Anal. Chim. Acta, 2009, 651(1), 112-116.
[http://dx.doi.org/10.1016/j.aca.2009.08.010] [PMID: 19733744]
[41]
Damaramadugu, R.; Inamadugu, J.; Kanneti, R. Simultaneous determination of ritonavir and lopinavir in human plasma after protein precipitation and LC-MS-MS. Chroma., 2010, 71, 815-824.
[http://dx.doi.org/10.1365/s10337-010-1550-9]
[42]
Patil, H.; Kulkarni, V.; Majumdar, S.; Repka, M.A. Continuous manufacturing of solid lipid nanoparticles by hot melt extrusion. Int. J. Pharm., 2014, 471(1-2), 153-156.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.024] [PMID: 24853459]
[43]
Jose, C.; Amra, K.; Bhavsar, C.; Momin, M.; Omri, A. Polymeric lipid hybrid nanoparticles: Properties and therapeutic applications. Crit. Rev. Ther. Drug Carrier Syst., 2018, 35(6), 555-588.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018024751] [PMID: 30317969]
[44]
Dash, R.N.; Mohammed, H.; Humaira, T. An integrated Taguchi and response surface methodological approach for the optimization of an HPLC method to determine glimepiride in a supersaturatable self-nanoemulsifying formulation. Saudi Pharm. J., 2016, 24(1), 92-103.
[http://dx.doi.org/10.1016/j.jsps.2015.03.004] [PMID: 26903773]
[45]
Davis, R.; John, P. Application of Taguchi-based design of experiments for industrial chemical processes. In: Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes; Silva, V., Ed.; IntechOpen: London, 2018; pp. 2-48.
[http://dx.doi.org/10.5772/intechopen.69501]
[46]
González, O.; Alonso, R.M. Validation of bioanalytical chromatographic methods for the quantification of drugs in biological fluids. In: Handbook of Analytical Separations; Elsevier B.V.: Amsterdam, 2020; pp. 115-134.
[47]
Michael, W.D.; Kim, H.B. Stability studies and testing of pharmaceuticals - An overview. LC GC North Am., 2020, 38(6), 325-336.
[48]
ICH guideline Q1A (R2), 2003. Stability testing of new drug substances and products. ICH. 2003. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q1A_R2/Step 4/Q1A_R2__Guideline.pdf
[49]
Tim, T.; Nina, Z.; Zdenko, C.; Ales, O. Development and optimization of liquid chromatography analytical methods by using AQbD principles: Overview and recent advances. Org. Process Res. Dev., 2019, 23(9), 1784-1802.
[http://dx.doi.org/10.1021/acs.oprd.9b00238]
[50]
Mandlik, S.K.; Agarwal, P.P.; Dandgavhal, H.P. Implementation of quality by design (qbd) approach in formulation and development of ritonavir pellets using extrusion spheronization method. Int. J. Appl. Pharm., 2020, 12(1), 139-146.
[51]
Sharma, T.; Khurana, R.K.; Jain, A.; Katare, O.P.; Singh, B. Development of a validated liquid chromatographic method for quantification of sorafenib tosylate in the presence of stress-induced degradation products and in biological matrix employing analytical quality by design approach. Biomed. Chromatogr., 2018, 32(5), e4169.
[http://dx.doi.org/10.1002/bmc.4169] [PMID: 29244215]
[52]
Saini, S.; Sharma, T.; Patel, A.; Kaur, R.; Tripathi, S.K.; Katare, O.P.; Singh, B. QbD-steered development and validation of an RP-HPLC method for quantification of ferulic acid: Rational application of chemometric tools. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1155, 122300.
[http://dx.doi.org/10.1016/j.jchromb.2020.122300] [PMID: 32771967]
[53]
Khotimah, K.; Martono, S.; Rohman, A. Box–Behnken design-based HPLC optimization for quantitative analysis of chloramphenicol and hydrocortisone acetate in cream. J. Appl. Pharm. Sci., 2020, 10(09), 134-139.
[54]
[56]
Lee, S.; Lee, D.K. What is the proper way to apply the multiple comparison test? Korean J. Anesthesiol., 2018, 71(5), 353-360.
[http://dx.doi.org/10.4097/kja.d.18.00242] [PMID: 30157585]
[57]
Kumar, L.; Sreenivasa Reddy, M.; Managuli, R.S.; Pai, K. G. Full factorial design for optimization, development and validation of HPLC method to determine valsartan in nanoparticles. Saudi Pharm. J., 2015, 23(5), 549-555.
[http://dx.doi.org/10.1016/j.jsps.2015.02.001] [PMID: 26594122]
[58]
Sahu, P.K.; Patro, C.S. Application of chemometric response surface methodology in development and optimization of a RP-HPLC method for the separation of metaxalone and its base hydrolytic impurities. J. Liq. Chromatogr. Relat. Technol., 2014, 37(17), 2444-2464.
[http://dx.doi.org/10.1080/10826076.2013.840841]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy