Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Bioisosterism in Drug Discovery and Development - An Overview

Author(s): B.S. Jayashree*, P. Sai Nikhil and Soumyajeet Paul

Volume 18, Issue 9, 2022

Published on: 18 March, 2022

Page: [915 - 925] Pages: 11

DOI: 10.2174/1573406418666220127124228

Price: $65

Abstract

Bioisosterism is a unique approach used by medicinal chemists for the reasonable modification of lead compounds into safer, more clinically effective, economical, and therapeutically attractive drugs. It is one of the most crucial lead modification tools, widely applied in the field of rational drug design to amplify the desired activity and eliminate undesirable properties, thus facilitating the optimization of pharmacokinetic profile and achievement of target selectivity. This review demonstrates the importance of bioisosterism in the process of drug discovery and development and highlights its relevance in the molecular evolution of many classes of drugs such as antibacterial sulfonamides, anticancer drugs, antivirals, antifungals, anthelmintics, local anesthetics, barbiturates, antidepressants, antihistamines, proton pump inhibitors and work carried out by our team of researchers. The role of bioisosterism as a strategy to achieve inhibition of enzymes such as thymidylate synthase, DNA polymerase, reverse transcriptase and several others has also been pointed out. There are no limits to the classes of drugs where bioisosterism has been successfully applied.

Keywords: Bioisosterism, lead, enzyme inhibition, scaffold hopping, antimetabolites, benzopyrones, carbostyrils.

Graphical Abstract

[1]
Liu, C.; Guan, A.; Yang, J.; Chai, B.; Li, M.; Li, H. Efficient approach to discover novel agrochemical candidates: Intermediate derivatiza-tion method. J. Agric. Food Chem., 2016, 64(1), 45-51.
[http://dx.doi.org/10.1021/jf5054707]
[2]
Singh, J.; Ator, M.A.; Jaeger, E.P.; Allen, M.P.; Whipple, D.A.; Soloweij, J.E. Application of genetic algorithms to combinatorial synthesis: A computational approach to lead identification and lead optimization. J. Am. Chem. Soc., 1996, 118(7), 1669-1676.
[http://dx.doi.org/10.1021/ja953172i]
[3]
Sheridan, R.P. The most common chemical replacements in drug-like compounds. J. Chem. Inf. Comput. Sci., 2002, 42(1), 103-108.
[http://dx.doi.org/10.1021/ci0100806]
[4]
Wipf, P. Bioisosterism allows modification of physicochemical parameters., 2008.
[5]
Wang, H.; Byun, Y.; Barinka, C. Pullambhatla, M Bioisosterism of urea-based GCPII inhibitors: Synthesis and structure-activity relation-ship studies. Bioorg. Med. Chem. Lett., 2010, 20(1), 392-397.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.061]
[6]
Ertl, P. Identification of bioisosteric substituents by a deep neural network. J. Chem. Inf. Model., 2020, 60(7), 3369-3375.
[http://dx.doi.org/10.1021/acs.jcim.0c00290]
[7]
Lima, L.; Barreiro, E. Bioisosterism: A useful strategy for molecular modification and drug design. Curr. Med. Chem., 2012, 12(1), 23-49.
[http://dx.doi.org/10.2174/0929867053363540]
[8]
Irving Langmuir, B. Isomorphism, isosterism and covalence. J. Am. Chem. Soc., 1919, 41(10), 1543-1559.
[http://dx.doi.org/10.1021/ja02231a009]
[9]
Brown, N. Bioisosterism in medicinal chemistry.Bioisosteres in Medicinal Chemistry; Brown, N., Ed.; Wiley Online Library: Hoboken, New Jersey, 2012, pp. 1-14.
[http://dx.doi.org/10.1002/9783527654307.ch1]
[10]
Den Naturst, V.; Liislich, B. Synthese, 1944, 1951, 31.
[11]
Gaikwad, P.L.; Gandhi, P.S.; Jagdale, D.M.; Kadam, V.J. The use of bioisosterism in drug design and molecular modification. Am. J. PharmTech. Res., 2012, 2(4), 1-23.
[12]
Burger, A.; Abraham, D.J. Burger's Medicinal Chemistry and Drug Discovery., 2003.
[13]
Lima, L.M.; Barreiro, E.J. Beyond bioisosterism: New concepts in drug discovery In: Comprehensive Medicinal Chemistry III; Third Edit; Elsevier, 2017; 1-8, p. 186-210.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12290-5]
[14]
Lipinski, C.A. Bioisosterism in drug design. Annu. Rep. Med. Chem., 1986, 21(C), 283-291.
[http://dx.doi.org/10.1016/S0065-7743(08)61137-9]
[15]
Thornber, C.W. Isosterism and molecular modification in drug design. Chem. Soc. Rev., 1979, 8(4), 563-580.
[http://dx.doi.org/10.1039/cs9790800563]
[16]
Cramer, R.D.; Clark, R.D.; Patterson, D.E.; Ferguson, A.M. Bioisosterism as a molecular diversity descriptor: Steric fields of single “to-pomeric” conformers. J. Med. Chem., 1996, 39(16), 3060-3069.
[http://dx.doi.org/10.1021/jm960291f]
[17]
Polêto, M.D.; Rusu, V.H.; Grisci, B.I.; Dorn, M.; Lins, R.D.; Verli, H. Aromatic rings commonly used in medicinal chemistry: Force fields comparison and interactions with water toward the design of new chemical entities. Front. Pharmacol., 2018, 9(APR), 1-20.
[http://dx.doi.org/10.3389/fphar.2018.00395]
[18]
Patani, G.A.; LaVoie, E.J. Bioisosterism: A rational approach in drug design. Chem. Rev., 1996, 96(8), 3147-3176.
[http://dx.doi.org/10.1021/cr950066q]
[19]
Yousef, F.; Mansour, O.; Herbali, J. Sulfonamides: Historical discovery development (structure-activity relationship notes). In-Vitro In-Vivo In-Silico J., 2018, 1(1), 1-5.
[20]
Tobergte, D.R.; Curtis, S. An introduction to medicinal chemistry. J. Chem. Inf. Model., 2013, 53, 1689-1699.
[21]
Mykhailiuk, P.K. Saturated bioisosteres of benzene: Where to go next? Org. Biomol. Chem., 2019, 17(11), 2839-2849.
[http://dx.doi.org/10.1039/C8OB02812E]
[22]
Chinthakindi, P.K.; Naicker, T.; Thota, N.; Govender, T.; Kruger, H.G.; Arvidsson, P.I. Sulfonimidamides in medicinal and agricultural chemistry. Angew. Chem. Int. Ed., 2017, 56(15), 4100-4109.
[http://dx.doi.org/10.1002/anie.201610456]
[23]
Bentley, R. Different roads to discovery; Prontosil (hence sulfa drugs) and penicillin (hence β-lactams). J. Ind. Microbiol. Biotechnol., 2009, 36(6), 775-786.
[http://dx.doi.org/10.1007/s10295-009-0553-8]
[24]
Tripathi, K. Essentials of Medical Pharmacology; 8th ed; Jaypee Brothers Medical Publishers (P) LTD: New Delhi, 2019.
[25]
Abraham, D.J. Burger’s Medicinal Chemistry and Drug Discovery; Wiley-Interscience: Hoboken, New Jersey, 1998, p. 1.
[26]
Chen, C.A.; Sieburth, S.M.N.; Glekas, A.; Hewitt, G.W.; Trainor, G.L.; Erickson-Viitanen, S. Drug design with a new transition state analog of the hydrated carbonyl: Silicon-based inhibitors of the HIV protease. Chem. Biol., 2001, 8(12), 1161-1166.
[http://dx.doi.org/10.1016/S1074-5521(01)00079-5]
[27]
Harbeson, S.L.; Tung, R.D. Deuterium medicinal chemistry: A new approach to drug discovery and development. Medchem. News, 2014, 2, 8-22.
[28]
Valdés, E.; Cuevas-yañez, E. Design and synthesis of antifungal compounds from 1, 2, 3-triazoles through the click chemistry approach. Org. Med. Chem. Int. J., 2019, 8(2), 13-15.
[29]
Giraudo, A.; Krall, J.; Nielsen, B.; Sørensen, T.E.; Kongstad, K.T.; Rolando, B. 4-Hydroxy-1,2,3-triazole moiety as bioisostere of the carboxylic acid function: A novel scaffold to probe the orthosteric γ-aminobutyric acid receptor binding site. Eur. J. Med. Chem., 2018, 158, 311-321.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.094]
[30]
Zafrani, Y.; Saphier, S.; Gershonov, E. Utilizing the CF2H moiety as a H-bond-donating group in drug discovery. Future Med. Chem., 2020, 12(5), 361-365.
[http://dx.doi.org/10.4155/fmc-2019-0309]
[31]
Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in me-dicinal chemistry. Drug Discov. Today, 2017, 22(10), 1572-1581.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014]
[32]
Sharma, S.; Anand, N. Approaches to design and synthesis of antiparasitic drugs. Pharmacochem Libr, 1997, 26(18), 71-123.
[33]
McKellar, Q.A.; Scott, E.W. The benzimidazole anthelmintic agents-a review. J. Vet. Pharmacol. Ther., 1990, 13(3), 223-247.
[http://dx.doi.org/10.1111/j.1365-2885.1990.tb00773.x]
[34]
Yagiela, J.A. Local anesthetics. Anesth. Prog., 1991, 38(4-5), 128-141.
[35]
Ruetsch, Y.; Boni, T.; Borgeat, A. From cocaine to ropivacaine: The history of local anesthetic drugs. Curr. Top. Med. Chem., 2005, 1(3), 175-182.
[http://dx.doi.org/10.2174/1568026013395335]
[36]
Docimo, T.; Reichelt, M.; Schneider, B.; Kai, M.; Kunert, G.; Gershenzon, J. The first step in the biosynthesis of cocaine in Erythroxylum coca: The characterization of arginine and ornithine decarboxylases. Plant Mol. Biol., 2012, 78(6), 599-615.
[http://dx.doi.org/10.1007/s11103-012-9886-1]
[37]
Vázquez, A.J.; Diamond, B.I.; Sabelli, H.C. Differential effects of phenobarbital and pentobarbital on isolated nervous tissue. Epilepsia, 1975, 16(4), 601-608.
[http://dx.doi.org/10.1111/j.1528-1157.1975.tb04742.x]
[38]
Pérez-Bárcena, J.; Llompart-Pou, J.A.; Homar, J. Pentobarbital versus thiopental in the treatment of refractory intracranial hypertension in patients with traumatic brain injury: A randomized controlled trial. Crit. Care, 2008, 12, R112.
[http://dx.doi.org/10.1186/cc6999]
[39]
Weber, J. Phenothiazines. In: Encyclopedia of Toxicology, 2nd ed; Wexler, P., Ed.; Elsevier Academic Press: Cambridge, Massachusetts, 2005; pp. 399-401.
[40]
Wu, J-W.; Yin, L.; Liu, Y-Q.; Zhang, H.; Xie, Y-F.; Wang, R-L.; Zhao, G-L. Synthesis, biological evaluation and 3D-QSAR studies of 1,2,4-triazole-5-substituted carboxylic acid bioisosteres as uric acid transporter 1 (URAT1) inhibitors for the treatment of hyperuricemia associated with gout. Bioorg. Med. Chem. Lett., 2019, 29(3), 383-388.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.036]
[41]
Ohlow, M.J.; Moosmann, B. Phenothiazine: The seven lives of pharmacology’s first lead structure. Drug Discov. Today, 2011, 16(3-4), 119-131.
[http://dx.doi.org/10.1016/j.drudis.2011.01.001]
[42]
Brown, N. Bioisosteres and scaffold hopping in medicinal chemistry. Mol. Inform., 2014, 33(6-7), 458-462.
[http://dx.doi.org/10.1002/minf.201400037]
[43]
Shaw, D.H. Drugs acting on the gastrointestinal tract.Pharmacology and Therapeutics for Dentistry, 7th ed; Elsevier, 2017, pp. 404-416.
[http://dx.doi.org/10.1016/B978-0-323-39307-2.00028-X]
[44]
Wermuth, C.G.; Ciapetti, P.; Giethlen, B.; Bazzini, P. Bioisosterism. Compr. Med. Chem. II, 2006, 2, 649-711.
[45]
Shin, J.M.; Sachs, G. Proton pump inhibitors. In: Encyclopedia of Gastroenterology; Johnson, L.R., Ed.; Elsevier Academic Press: Cambridge, Massachusetts, 2004; p. 259-262.
[46]
Strand, D.S.; Kim, D.; Peura, D.A. 25 years of proton pump inhibitors: A comprehensive review. Gut Liver, 2017, 11(1), 27-37.
[http://dx.doi.org/10.5009/gnl15502]
[47]
Gomes, M.N.; Muratov, E.N.; Pereira, M.; Peixoto, J.C.; Rosseto, L.P.; Cravo, P.V.L. Chalcone derivatives: Promising starting points for drug design. Molecules, 2017, 22(8), 1210.
[http://dx.doi.org/10.3390/molecules22081210]
[48]
Jayashree, B.; Nigam, S.; Pai, A.; Patel, H.K.; Reddy, N.; Kumar, N. Targets in anticancer research-A review. Indian J. Exp. Biol., 2015, 53(8), 489-507.
[49]
Pai, A.; Jayashree, B.S. Design, synthesis and biological evaluation of novel piperidinyl chalcones. Indian. J. Pharm. Educ. Res., 2019, 53(3), S313-S324.
[http://dx.doi.org/10.5530/ijper.53.3s.101]
[50]
Alam, A.; Jaiswal, V.; Akhtar, S.; Jayashree, B.S.; Dhar, K.L. Isolation of isoflavones from Iris kashmiriana Baker as potential anti prolif-erative agents targeting NF-kappaB. Phytochemistry, 2017, 136, 70-80.
[http://dx.doi.org/10.1016/j.phytochem.2017.01.002]
[51]
Basu Mallik, S.; Pai, A.; Shenoy, R.R.; Jayashree, B.S. Novel flavonol analogues as potential inhibitors of JMJD3 histone demethylase-A study based on molecular modelling. J. Mol. Graph. Model., 2017, 72, 81-87.
[http://dx.doi.org/10.1016/j.jmgm.2016.12.002]
[52]
Nigam, S.; Jayashree, B.S.; Pande, A.N.; Reddy, N.D.; Venkata Rao, J. Investigating the potential of tetrahydropyridinyl chalcones as use-ful agents against breast carcinoma: An in vitro and in vivo study. Res. Chem. Intermed., 2018, 44(2), 901-924.
[http://dx.doi.org/10.1007/s11164-017-3143-9]
[53]
Nigam, S.; Jayashree, B.S. Limitation of Algar-Flynn-Oyamada reaction using methoxy substituted chalcones as reactants and evaluation of the newly transformed aurones for their biological activities. Res. Chem. Intermed., 2017, 43(5), 2839-2864.
[http://dx.doi.org/10.1007/s11164-016-2797-z]
[54]
Pande, A.N.; Biswas, S.; Reddy, N.D.; Jayashree, B.S.; Kumar, N.; Rao, C.M. In vitro and in vivo anticancer studies of 2′-hydroxy chal-cone derivatives exhibit apoptosis in colon cancer cells by hdac inhibition and cell cycle arrest. EXCLI J., 2017, 16, 448-463.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy