Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Synergy based Extracts of Medicinal Plants: Future Antimicrobials to Combat Multidrug Resistance

Author(s): Sageer Abass, Rabea Parveen, Mohammad Irfan, Bisma Jan, Syed Akhtar Husain* and Sayeed Ahmad*

Volume 23, Issue 13, 2022

Published on: 21 April, 2022

Page: [1527 - 1540] Pages: 14

DOI: 10.2174/1389201023666220126115656

Price: $65

Abstract

The use of herbal medicines and supplements in the last thirty years has increased enormously. Herbal medication has demonstrated promising and effective potential against various diseases. Herbal and phytoconstituent medications are gaining popularity globally and many people are adopting herbal remedies to deal with different health issues. The indiscriminate use of antibiotics, due to the development of antimicrobial resistance, poses an unprecedented problem for human civilization. Bacterial infections are difficult to cure because of the propensity of microbes to acquire resistance to a wide range of antimicrobial drugs. New compounds are being explored and quantified for possible antibacterial activity with little or no side effects. Researchers are investigating the range of therapeutic plants mentioned in Unani, Ayurveda, and Siddha around the globe. Known and commonly acclaimed global databases such as PubMed, Research Gate, Science Direct, Google Scholar were searched using different search strings such as Indian medicinal plants, multidrug resistance (MDR), thin layer chromatography (TLC), antimicrobials, and Synergism were used in diverse combinations to reclaim numerous citations associated with this area. Thus, the current review aims to shed a light on the information of medicinal plants as a potential foundation of herbal drugs and elucidate how synergism and TLC bioautography play a crucial role in finding antimicrobial compounds.

Keywords: Medicinal plants, multidrug resistance (MDR), antimicrobials, ayurveda, unani, TLC-bioautography, synergism.

Next »
Graphical Abstract

[1]
de Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med., 2016, 13(11), e1002184.
[http://dx.doi.org/10.1371/journal.pmed.1002184] [PMID: 27898664]
[2]
Wise, R. The urgent need for new antibacterial agents. J. Antimicrob. Chemother., 2011, 66(9), 1939-1940.
[http://dx.doi.org/10.1093/jac/dkr261] [PMID: 21700627]
[3]
Fischbach, M.A.; Walsh, C.T. Antibiotics for emerging pathogens. Science, 2009, 325(5944), 1089-1093.
[http://dx.doi.org/10.1126/science.1176667] [PMID: 19713519]
[4]
Martínez, J.L.; Rojo, F.; Vila, J. Are nonlethal targets useful for developing novel antimicrobials? Future Microbiol., 2011, 6(6), 605-607.
[http://dx.doi.org/10.2217/fmb.11.47] [PMID: 21707307]
[5]
Sarmah, P.; Dan, M.M.; Adapa, D. Antimicrobial resistance: A tale of the past becomes a terror for the present. Electronic J Biol, 2017, 13, 420-426.
[6]
Al-Mehdar, A.; Al-Akydy, A. Pattern of antimicrobial prescribing among in-patients of a teaching hospital in Yemen: a prospective study. Univers. J. Pharm. Res, 2017, 2(5), 11-17.
[7]
Soares, N.C.; Bou, G.; Blackburn, J.M. Proteomics of microbial human pathogens. Front. Microbiol., 2016, 7, 1742.
[http://dx.doi.org/10.3389/fmicb.2016.01742] [PMID: 27867374]
[8]
Khameneh, B.; Diab, R.; Ghazvini, K.; Fazly Bazzaz, B.S. Breakthroughs in bacterial resistance mechanisms and the potential ways to com-bat them. Microb. Pathog., 2016, 95, 32-42.
[http://dx.doi.org/10.1016/j.micpath.2016.02.009] [PMID: 26911646]
[9]
Shakeri, A.; Sharifi, M.J.; Fazly Bazzaz, B.S.; Emami, A.; Soheili, V.; Sahebkar, A.; Asili, J. Bioautography detection of antimicrobial com-pounds from the essential oil of salvia Pachystachys. Curr. Bioact. Compd., 2018, 14(1), 80-85.
[http://dx.doi.org/10.2174/1573407212666161014132503]
[10]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[11]
Fazly Bazzaz, B.S.; Sarabandi, S.; Khameneh, B.; Hosseinzadeh, H. Effect of Catechins, Green tea Extract and Methylxanthines in Combina-tion with Gentamicin Against Staphylococcus aureus and Pseudomonas aeruginosa: - Combination therapy against resistant bacteria. J. Pharmacopuncture, 2016, 19(4), 312-318.
[http://dx.doi.org/10.3831/KPI.2016.19.032] [PMID: 28097041]
[12]
Betts, J.W.; Wareham, D.W. In vitro activity of curcumin in combination with epigallocatechin gallate (EGCG) versus multidrug-resistant Acinetobacter baumannii. BMC Microbiol., 2014, 14, 172.
[http://dx.doi.org/10.1186/1471-2180-14-172] [PMID: 24969489]
[13]
Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control, 2006, 34(5)(Suppl. 1), S3-S10.
[http://dx.doi.org/10.1016/j.ajic.2006.05.219] [PMID: 16813980]
[14]
Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature, 2000, 406(6797), 775-781.
[http://dx.doi.org/10.1038/35021219] [PMID: 10963607]
[15]
Walsh, C. Where will new antibiotics come from? Nat. Rev. Microbiol., 2003, 1(1), 65-70.
[http://dx.doi.org/10.1038/nrmicro727] [PMID: 15040181]
[16]
Safaei-Ghomi, J.; Ahd, A.A. Antimicrobial and antifungal properties of the essential oil and methanol extracts of Eucalyptus largiflorens and Eucalyptus intertexta. Pharmacogn. Mag., 2010, 6(23), 172-175.
[http://dx.doi.org/10.4103/0973-1296.66930] [PMID: 20931074]
[17]
Seow, Y.X.; Yeo, C.R.; Chung, H.L.; Yuk, H.G. Plant essential oils as active antimicrobial agents. Crit. Rev. Food Sci. Nutr., 2014, 54(5), 625-644.
[http://dx.doi.org/10.1080/10408398.2011.599504] [PMID: 24261536]
[18]
Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils--a review. Food Chem. Toxicol., 2008, 46(2), 446-475.
[http://dx.doi.org/10.1016/j.fct.2007.09.106] [PMID: 17996351]
[19]
Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J., 2014, 8, 6.
[20]
Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol., 2015, 4(1), 27-30.
[PMID: 28197471]
[21]
Lewis, T.; Cook, J. Fluoroquinolones and tendinopathy: a guide for athletes and sports clinicians and a systematic review of the literature. J. Athl. Train., 2014, 49(3), 422-427.
[http://dx.doi.org/10.4085/1062-6050-49.2.09] [PMID: 24762232]
[22]
Tanne, J. Paracetamol causes most liver failure in UK and US. BMJ, 2006, 332(7542), 628.
[http://dx.doi.org/10.1136/bmj.332.7542.628-a]
[23]
Hay, E.M.; Paterson, S.M.; Lewis, M.; Hosie, G.; Croft, P. Pragmatic randomised controlled trial of local corticosteroid injection and naproxen for treatment of lateral epicondylitis of elbow in primary care. BMJ, 1999, 319(7215), 964-968.
[http://dx.doi.org/10.1136/bmj.319.7215.964] [PMID: 10514160]
[24]
Lesko, S.M.; Mitchell, A.A. An assessment of the safety of pediatric ibuprofen. A practitioner-based randomized clinical trial. JAMA, 1995, 273(12), 929-933.
[http://dx.doi.org/10.1001/jama.1995.03520360043037] [PMID: 7884951]
[25]
Borst, P.; Ouellette, M. New mechanisms of drug resistance in parasitic protozoa. Annu. Rev. Microbiol., 1995, 49, 427-460.
[http://dx.doi.org/10.1146/annurev.mi.49.100195.002235] [PMID: 8561467]
[26]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[27]
Tacic, A.; Nikolic, V.; Nikolic, L.; Savic, I. Antimicrobial sulfonamide drugs. Adv. Technol, 2017, 6, 58-71.
[http://dx.doi.org/10.5937/savteh1701058T]
[28]
Marchant, J. When antibiotics turn toxic. Nature, 2018, 555(7697), 431-433.
[http://dx.doi.org/10.1038/d41586-018-03267-5]
[29]
Ray, K. Gut microbiota: adding weight to the microbiota’s role in obesity--exposure to antibiotics early in life can lead to increased adiposi-ty. Nat. Rev. Endocrinol., 2012, 8(11), 623-623.
[http://dx.doi.org/10.1038/nrendo.2012.173] [PMID: 22965166]
[30]
Lankerani, L.; Baron, E.D. Photosensitivity to exogenous agents. J. Cutan. Med. Surg., 2004, 8(6), 424-431.
[http://dx.doi.org/10.1177/120347540400800604] [PMID: 15988550]
[31]
Johannes, C.B.; Ziyadeh, N.; Seeger, J.D.; Tucker, E.; Reiter, C.; Faich, G. Incidence of allergic reactions associated with antibacterial use in a large, managed care organisation. Drug Saf., 2007, 30(8), 705-713 165/00002018-200730080-00007.
[PMID: 17696583]
[32]
Wiebe, V.; Hamilton, P. Fluoroquinolone-induced retinal degeneration in cats. J. Am. Vet. Med. Assoc., 2002, 221(11), 1568-1571.
[http://dx.doi.org/10.2460/javma.2002.221.1568] [PMID: 12479325]
[33]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov., 2007, 6(1), 29-40.
[http://dx.doi.org/10.1038/nrd2201] [PMID: 17159923]
[34]
Livermore, D.M. The need for new antibiotics. Clin. Microbiol. Infect., 2004, 10(4), 1-9.
[http://dx.doi.org/10.1111/j.1465-0691.2004.1004.x] [PMID: 15522034]
[35]
Cosgrove, S.E.; Carmeli, Y. The impact of antimicrobial resistance on health and economic outcomes. Clin. Infect. Dis., 2003, 36(11), 1433-1437.
[http://dx.doi.org/10.1086/375081] [PMID: 12766839]
[36]
Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem., 2009, 78, 119-146.
[http://dx.doi.org/10.1146/annurev.biochem.78.082907.145923] [PMID: 19231985]
[37]
He, X.; Li, S.; Kaminskyj, S.G. Using Aspergillus nidulans to identify antifungal drug resistance mutations. Eukaryot. Cell, 2014, 13(2), 288-294.
[http://dx.doi.org/10.1128/EC.00334-13] [PMID: 24363365]
[38]
Fishbain, J.; Peleg, A.Y. Treatment of Acinetobacter infections. Clin. Infect. Dis., 2010, 51(1), 79-84.
[http://dx.doi.org/10.1086/653120] [PMID: 20504234]
[39]
Spellberg, B.; Blaser, M.; Guidos, R.J. Combating antimicrobial resistance: policy recommendations to save lives. Clin. Infect. Dis., 2011, 52(5), 397-428.
[40]
Intorasoot, A.; Chornchoem, P.; Sookkhee, S.; Intorasoot, S. Bactericidal activity of herbal volatile oil extracts against multidrug-resistant Acinetobacter baumannii. J. Intercult. Ethnopharmacol., 2017, 6(2), 218-222.
[http://dx.doi.org/10.5455/jice.20170411091159] [PMID: 28512603]
[41]
Vivas, R.; Barbosa, A.A.T.; Dolabela, S.S.; Jain, S. Multidrug-resistant bacteria and alternative methods to control them: an overview. Microb. Drug Resist., 2019, 25(6), 890-908.
[http://dx.doi.org/10.1089/mdr.2018.0319] [PMID: 30811275]
[42]
Pauli, A. Antimicrobial properties of essential oil constituents. Int. J. Aromather., 2001, 11(3), 126-133.
[http://dx.doi.org/10.1016/S0962-4562(01)80048-5]
[43]
Mirskaya, E.; Agranovski, I.E. Control of Airborne Microorganisms by Essential Oils Released by VaxiPod. Atmosphere., 2021, 12, 1418.
[http://dx.doi.org/10.3390/atmos12111418]
[44]
Gismondi, A. Di; Marco, G.; Redi, E. L.; Ferrucci, L.; Cantonetti, M.; Canini, A. The antimicrobial activity of Lavandula angustifolia Mill. essential oil against Staphylococcus species in a hospital environment. J. Herb. Med., 2021, 26, 100426.
[45]
Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug resistance: an emerging crisis; Interdiscip Perspect Infect, 2014, p. 541340.
[46]
Subhose, V.; Srinivas, P.; Narayana, A. Basic principles of pharmaceutical science in Ayurvĕda. Bull. Indian Inst. Hist. Med. Hyderabad, 2005, 35(2), 83-92.
[PMID: 17333665]
[47]
Ishtiyaq, A. ALAM, A.; Siddiqui, J.I.; Kazmi, M.H. Therapeutic potential of widely used unani drug Asl-Us-Soos (Glycyrrhiza glabra Linn.): a systematic review. J. Drug Deliv. Ther., 2019, 9(4), 765-773.
[http://dx.doi.org/10.22270/jddt.v9i4-s.3318]
[48]
Saiyed, A.; Jahan, N.; Majeedi, S.F.; Roqaiya, M. Medicinal properties, phytochemistry and pharmacology of Withania somnifera: an im-portant drug of Unani Medicine. J. Sci. Inno. Res, 2016, 5(4), 156-160.
[49]
Mirjalili, M.H.; Moyano, E.; Bonfill, M.; Cusido, R.M.; Palazón, J. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules, 2009, 14(7), 2373-2393.
[http://dx.doi.org/10.3390/molecules14072373] [PMID: 19633611]
[50]
Girish, K. Antimicrobial activities of Lantana camara Linn. Asian J. Pharm. Clin. Res., 2017, 10(3), 57-67.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i3.16378]
[51]
Ahmad, T.; Husain, M.K.; Tariq, M.; Siddiqui, J.I.; Khalid, M.; Ahmed, M.W.; Kazmi, M.H. A review on Operculina turpethum: A potent herb of Unani system of medicine. J. Pharmacogn. Phytochem., 2017, 6(1), 23-26.
[52]
Jayaprakasan, M.V.; Viswanathan, K.; Rajesh, M.; Pradymnan, P.P. Ayurvedic preparation from Azadirachta indica, Terminalia chebula, Hemigraphis colorata extracts and its antimicrobial investigation. IOSR J Pharm Biol Sci., 2014, 9(2), 01-06.
[53]
Singh, M.; Singh, N.; Khare, P.B.; Rawat, A.K.S. Antimicrobial activity of some important Adiantum species used traditionally in indige-nous systems of medicine. J. Ethnopharmacol., 2008, 115(2), 327-329.
[http://dx.doi.org/10.1016/j.jep.2007.09.018] [PMID: 17997240]
[54]
Srikumar, R.; Parthasarathy, N.J.; Shankar, E.M.; Manikandan, S.; Vijayakumar, R.; Thangaraj, R.; Vijayananth, K.; Sheeladevi, R.; Rao, U.A. Evaluation of the growth inhibitory activities of Triphala against common bacterial isolates from HIV infected patients. Phytother. Res., 2007, 21(5), 476-480.
[http://dx.doi.org/10.1002/ptr.2105] [PMID: 17273983]
[55]
Ahmad, T.; Mateen, A.; Waheed, M.A.; Rasheed, N.M.; Ahmad, S.G.; Alam, M.I.; Saher, N.; Ahmed, M.W.; Yadav, P.K.; Siddiqui, Z.A.; Ali, S. Antimicrobial activity of some herbal drugs used in Unani system of medicine. Int. J. Herb. Med., 2015, 2(5), 27-30.
[56]
Hepsibah, A.H.; Mala, M.; Jothi, G.J. Antimicrobial activity and TLC profiling of Clerodendrum phlomidis Linn. F. leaf extract against multi-drug resistant clinical pathogens. Int. J. Pharm. Pharm. Sci., 2017, 9(9), 275-278.
[http://dx.doi.org/10.22159/ijpps.2017v9i9.20186]
[57]
Akinyemi, O.; Oyewole, S.O.; Jimoh, K.A. Medicinal plants and sustainable human health: a review. Horticult Int J., 2018, 2(4), 194-195.
[58]
Namita, P.; Mukesh, R. Medicinal plants used as antimicrobial agents: a review. Int Res J Pharm, 2012, 3(1), 31-40.
[59]
Nimri, L.F.; Meqdam, M.M.; Alkofahi, A. Antibacterial activity of Jordanian medicinal plants. Pharm. Biol., 1999, 37(3), 196-201.
[http://dx.doi.org/10.1076/phbi.37.3.196.6308]
[60]
Saxena, V.K.; Sharma, R.N. Antimicrobial activity of the essential oil of Lantana aculeata. Fitoterapia (Milano), 1999, 70(1), 67-70.
[http://dx.doi.org/10.1016/S0367-326X(98)00003-3]
[61]
Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol., 1999, 86(6), 985-990.
[http://dx.doi.org/10.1046/j.1365-2672.1999.00780.x] [PMID: 10438227]
[62]
Mittal, R.P.; Rana, A.; Jaitak, V. Essential oils: an impending substitute of synthetic antimicrobial agents to overcome antimicrobial re-sistance. Curr. Drug Targets, 2019, 20(6), 605-624.
[http://dx.doi.org/10.2174/1389450119666181031122917] [PMID: 30378496]
[63]
Savoia, D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol., 2012, 7(8), 979-990.
[http://dx.doi.org/10.2217/fmb.12.68] [PMID: 22913356]
[64]
Singh, M.; Chaudhry, M.A.; Yadava, J.N.S.; Sanyal, S.C. The spectrum of antibiotic resistance in human and veterinary isolates of Esche-richia coli collected from 1984-86 in northern India. J. Antimicrob. Chemother., 1992, 29(2), 159-168.
[http://dx.doi.org/10.1093/jac/29.2.159] [PMID: 1506331]
[65]
Mulligan, M.E.; Murray-Leisure, K.A.; Ribner, B.S.; Standiford, H.C.; John, J.F.; Korvick, J.A.; Kauffman, C.A.; Yu, V.L. Methicillin-resistant Staphylococcus aureus: a consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. Am. J. Med., 1993, 94(3), 313-328.
[http://dx.doi.org/10.1016/0002-9343(93)90063-U] [PMID: 8452155]
[66]
Davies, J. Inactivation of antibiotics and the dissemination of resistance genes. Science, 1994, 264(5157), 375-382.
[http://dx.doi.org/10.1126/science.8153624] [PMID: 8153624]
[67]
Aliahmadi, A.; Roghanian, R.; Emtiazi, G.; Mirzajani, F.; Ghassempour, A. Identification and primary characterization of a plant antimicro-bial peptide with remarkable inhibitory effects against antibiotic resistant bacteria. Afr. J. Biotechnol., 2012, 11(40), 9672-9676.
[68]
Lu, X.; Rasco, B.A.; Jabal, J.M.; Aston, D.E.; Lin, M.; Konkel, M.E. Investigating antibacterial effects of garlic (Allium sativum) concentrate and garlic-derived organosulfur compounds on Campylobacter jejuni by using Fourier transform infrared spectroscopy, Raman spectros-copy, and electron microscopy. Appl. Environ. Microbiol., 2011, 77(15), 5257-5269.
[http://dx.doi.org/10.1128/AEM.02845-10] [PMID: 21642409]
[69]
Aerts, A.M.; Carmona-Gutierrez, D.; Lefevre, S.; Govaert, G.; François, I.E.; Madeo, F.; Santos, R.; Cammue, B.P.; Thevissen, K. The anti-fungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett., 2009, 583(15), 2513-2516.
[http://dx.doi.org/10.1016/j.febslet.2009.07.004] [PMID: 19596007]
[70]
Srivastava, J.; Chandra, H.; Singh, N. Allelopathic response of Vetiveria zizanioides (L.) Nash on members of the family Enterobacteriaceae and Pseudomonas spp. Environmentalist, 2007, 27(2), 253-260.
[http://dx.doi.org/10.1007/s10669-007-9002-2]
[71]
Janovska, D.; Kubikova, K.; Kokoška, L. Screening for antimicrobial activity of some medicinal plants species of traditional Chinese medi-cine. Czech J. Food Sci., 2003, 21(3), 107.
[http://dx.doi.org/10.17221/3485-CJFS]
[72]
Chang, C.W.; Chang, W.L.; Chang, S.T.; Cheng, S.S. Antibacterial activities of plant essential oils against Legionella pneumophila. Water Res., 2008, 42(1-2), 278-286.
[http://dx.doi.org/10.1016/j.watres.2007.07.008] [PMID: 17659763]
[73]
Kadota, S.; Basnet, P.; Ishii, E.; Tamura, T.; Namba, T. Antibacterial activity of trichorabdal A from Rabdosia trichocarpa against Helico-bacter pylori. Zentralbl. Bakteriol., 1997, 286(1), 63-67.
[http://dx.doi.org/10.1016/S0934-8840(97)80076-X] [PMID: 9241802]
[74]
Latha, P.S.; Kannabiran, K. Antimicrobial activity and phytochemicals of Solanum trilobatum Linn. Afr. J. Biotechnol., 2006, 5(23), 2402-2404.
[75]
Scazzocchio, F.; Cometa, M.F.; Tomassini, L.; Palmery, M. Antibacterial activity of Hydrastis canadensis extract and its major isolated alkaloids. Planta Med., 2001, 67(6), 561-564.
[http://dx.doi.org/10.1055/s-2001-16493] [PMID: 11509983]
[76]
van der Watt, E.; Pretorius, J.C. Purification and identification of active antibacterial components in Carpobrotus edulis L. J. Ethnopharmacol., 2001, 76(1), 87-91.
[http://dx.doi.org/10.1016/S0378-8741(01)00197-0] [PMID: 11378287]
[77]
Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol., 2006, 106(3), 290-302.
[http://dx.doi.org/10.1016/j.jep.2006.04.003] [PMID: 16698208]
[78]
Mabhiza, D.; Chitemerere, T.; Mukanganyama, S. Antibacterial Properties of Alkaloid Extracts from Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. Int. J. Med. Chem., 2016, 2016, 6304163.
[http://dx.doi.org/10.1155/2016/6304163]
[79]
Prasannabalaji, N.; Muralitharan, G.; Sivanandan, R.N.; Kumaran, S.; Pugazhvendan, S.R. Antibacterial activities of some Indian traditional plant extracts. Asian Pac. J. Trop. Dis., 2012, 2, 291-295.
[http://dx.doi.org/10.1016/S2222-1808(12)60168-6]
[80]
Mishra, U.S.; Mishra, A.; Kumari, R.; Murthy, P.N.; Naik, B.S. Antibacterial activity of ethanol extract of Andrographis paniculata. Indian J. Pharm. Sci., 2009, 71, (4), 436-438 103/0250-474X.57294.
[PMID: 20502551]
[81]
Zhang, L.; Bao, M.; Liu, B.; Zhao, H.; Zhang, Y.; Ji, X.; Zhao, N.; Zhang, C.; He, X.; Yi, J.; Tan, Y.; Li, L.; Lu, C. Effect of andrographolide and its analogs on bacterial infection: a review. Pharmacology, 2020, 105(3-4), 123-134.
[http://dx.doi.org/10.1159/000503410] [PMID: 31694037]
[82]
Fraternale, D.; Flamini, G.; Ricci, D. Essential oil composition and antimicrobial activity of Angelica archangelica L. (Apiaceae) roots. J. Med. Food, 2014, 17(9), 1043-1047.
[http://dx.doi.org/10.1089/jmf.2013.0012] [PMID: 24788027]
[83]
Joshi, R.K. Volatile composition and antimicrobial activity of the essential oil of Artemisia absinthium growing in Western Ghats region of North West Karnataka, India. Pharm. Biol., 2013, 51(7), 888-892.
[http://dx.doi.org/10.3109/13880209.2013.768676] [PMID: 23570523]
[84]
Jerobin, J.; Makwana, P.; Suresh Kumar, R.S.; Sundaramoorthy, R.; Mukherjee, A.; Chandrasekaran, N. Antibacterial activity of neem nanoemulsion and its toxicity assessment on human lymphocytes in vitro. Int. J. Nanomedicine, 2015, 10(1), 77-86.
[PMID: 26491309]
[85]
Peng, L.; Kang, S.; Yin, Z.; Jia, R.; Song, X.; Li, L.; Li, Z.; Zou, Y.; Liang, X.; Li, L.; He, C.; Ye, G.; Yin, L.; Shi, F.; Lv, C.; Jing, B. Anti-bacterial activity and mechanism of berberine against Streptococcus agalactiae. Int. J. Clin. Exp. Pathol., 2015, 8(5), 5217-5223.
[PMID: 26191220]
[86]
Mali, M.R.; Wadje, S.D. In vitro antimicrobial activity of extracts from Careya arborea Roxb leaves. Microbiol J., 2015, 5, 17-20.
[http://dx.doi.org/10.3923/mj.2015.17.20]
[87]
He, N.; Wang, P.; Wang, P.; Ma, C.; Kang, W. Antibacterial mechanism of chelerythrine isolated from root of Toddalia asiatica (Linn). Lam. BMC Complement. Altern. Med., 2018, 18(1), 261.
[http://dx.doi.org/10.1186/s12906-018-2317-3] [PMID: 30257662]
[88]
Alizadeh Behbahani, B.; Falah, F.; Lavi Arab, F.; Vasiee, M.; Tabatabaee Yazdi, F. Chemical composition and antioxidant, antimicrobial, and antiproliferative activities of Cinnamomum zeylanicum bark essential oil. Evid. Based Complement. Alternat. Med., 2020, 2020, 5190603.
[http://dx.doi.org/10.1155/2020/5190603] [PMID: 32419807]
[89]
Ngadino, S. Setiawan; Koerniasari; Ernawati; Sudjarwo, S.A. Evaluation of antimycobacterial activity of Curcuma xanthorrhiza ethanol-ic extract against Mycobacterium tuberculosis H37Rv in vitro. Vet. World, 2018, 11(3), 368-372.
[http://dx.doi.org/10.14202/vetworld.2018.368-372] [PMID: 29657431]
[90]
Yusook, K.; Weeranantanapan, O.; Hua, Y.; Kumkrai, P.; Chudapongse, N. Lupinifolin from Derris reticulata possesses bactericidal activity on Staphylococcus aureus by disrupting bacterial cell membrane. J. Nat. Med., 2017, 71(2), 357-366.
[http://dx.doi.org/10.1007/s11418-016-1065-2] [PMID: 28039567]
[91]
Luthfi, M.; Rachmadi, P.; Cida, B.P.; Wijayanti, E.H. Potency of Okra Fruit Extract (Abelmoschus esculentus) Against Porphyromonas Gingivalis as the Cause of Chronic Periodontitis. J. Int. Dent. Medical Res, 2020, 13(2), 519-524.
[92]
Hsu, W.Y.; Simonne, A.; Weissman, A.; Kim, J.M. Antimicrobial activity of greater galangal [Alpinia galanga (Linn.) Swartz. flowers. Food Sci. Biotechnol., 2010, 19(4), 873-880.
[http://dx.doi.org/10.1007/s10068-010-0124-9]
[93]
Oonmetta-aree, J.; Suzuki, T.; Gasaluck, P.; Eumkeb, G. Antimicrobial properties and action of galangal (Alpinia galanga Linn.) on Staphy-lococcus aureus. Lebensm. Wiss. Technol., 2006, 39(10), 1214-1220.
[http://dx.doi.org/10.1016/j.lwt.2005.06.015]
[94]
Ibrahim, M.; Tarrannum, T.; Ahsan, Q.; Kuddus, M.R.; Rashid, R.B.; Rashid, M.A. Anti-diarrheal, antimicrobial and membrane stabilizing activity of Sarcochlamys pulcherrima Gaudich. Caribb. J. Sci., 2014, 2, 263-269.
[95]
Nag, S.; Mandal, R.; Dastidar, D.G. A study on antimicrobial activity and phytochemical screening of methanolic extract from barks of Aegle marmelos. European J. Biotechnol., 2015, 3, 28-32.
[96]
Parekh, J.; Chanda, S. In vitro antibacterial activity of the crude methanol extract of Woodfordia fruticosa Kurz. Flower (Lythraceae). Braz. J. Microbiol., 2007, 38, 204-207.
[http://dx.doi.org/10.1590/S1517-83822007000200004]
[97]
Adeyemi, S.B.; Ogunsola, O.; Chijindu, P.; Afonja, I.; Odebisi-Omokanye, M.B.; Ahmed, O.; Krishnamurthy, R. In-vitro Antibacterial activ-ity of methanolic extract of Perquetina nigrescens (Afzel.) Bullock. leaves and Thevetia peruviana (Pers) Schums. roots. J. Appl. Pharm. Sci., 2019, 6(2), 11.
[98]
Sundaram, S.; Dwivedi, P.; Purwar, S. Antibacterial activities of crude extracts of Chlorophytum borivilianum to bacterial pathogens. Res. J. Med. Plant, 2011, 5(3), 343-347.
[http://dx.doi.org/10.3923/rjmp.2011.343.347]
[99]
Dhale, D.A.; Mogle, U.P. Phytochemical screening and antibacterial activity of Phyllanthus emblica (L.). Sci. Res. Repot, 2011, 1(3), 138-142.
[100]
Kumari, P.; Khatkar, B.S. Assessment of total polyphenols, antioxidants and antimicrobial properties of aonla varieties. J. Food Sci. Technol., 2016, 53(7), 3093-3103.
[http://dx.doi.org/10.1007/s13197-016-2282-0] [PMID: 27765980]
[101]
Halawani, E.M. Antimicrobial activity of Rosa damascena petals extracts and chemical composition by gas chromatography-mass spec-trometry (GC/MS) analysis. Afr. J. Microbiol. Res., 2014, 8(24), 2359-2367.
[http://dx.doi.org/10.5897/AJMR2014.6829]
[102]
Okmen, A.S.; Okmen, G.; Arslan, A.; Vurkun, M. Antibacterial activities of Mentha piperita L. extracts against bacteria isolated from soccer player’s shoes and its antioxidant activities. Indian J. Pharm. Educ. Res, 2017, 51(3), 163-169.
[http://dx.doi.org/10.5530/ijper.51.3s.5]
[103]
Arumugam, I.; Krishnan, C.; Ramachandran, S.; Krishnan, D.; Das, D.; Thamankar, V. Phytochemical investigation and in-vitro antimicro-bial activity of the essential oil from rhizomes of hedychium spicatum. Int. J. Pharm. Sci. Res., 2020, 6(2), 25-29.
[104]
Radhika, B.; Murthy, J.V.V.S.N.; Grace, D.N. Preliminary phytochemical analysis & antibacterial activity against clinical pathogens of me-dicinally important orchid cymbidium aloifolium (l) sw. Int. J. Pharm. Sci. Res., 2013, 4(10), 3925.
[105]
Salih, N.A. Antibacterial effect of nettle (Urtica dioica). Al-Qadisiyah. J. Vet. Med. Sci., 2014, 13(1), 1-6.
[106]
Pinto, N.C.C.; Silva, J.B.; Menegati, L.M.; Guedes, M.C.M.R.; Marques, L.B.; Silva, T.P.D.; Melo, R.C.N.; Souza-Fagundes, E.M.; Salvador, M.J.; Scio, E.; Fabri, R.L. Cytotoxicity and bacterial membrane destabilization induced by Annona squamosa L. extracts. An. Acad. Bras. Cienc., 2017, 89(3)(Suppl.), 2053-2073.
[http://dx.doi.org/10.1590/0001-3765201720150702] [PMID: 28813096]
[107]
Sánchez, E.; García, S.; Heredia, N. Extracts of edible and medicinal plants damage membranes of Vibrio cholerae. Appl. Environ. Microbiol., 2010, 76(20), 6888-6894.
[http://dx.doi.org/10.1128/AEM.03052-09] [PMID: 20802077]
[108]
Moyo, B.; Mukanganyama, S. Antibacterial Effects of Cissus welwitschii and Triumfetta welwitschii Extracts against Escherichia coli and Bacillus cereus. Int. J. Bacteriol., 2015, 2015, 162028.
[http://dx.doi.org/10.1155/2015/162028] [PMID: 26904744]
[109]
Ray, A.; Bharali, P.; Konwar, B.K. Mode of antibacterial activity of Eclalbasaponin isolated from Eclipta alba. Appl. Biochem. Biotechnol., 2013, 171(8), 2003-2019.
[http://dx.doi.org/10.1007/s12010-013-0452-3] [PMID: 24013881]
[110]
Benevides Bahiense, J.; Marques, F.M.; Figueira, M.M.; Vargas, T.S.; Kondratyuk, T.P.; Endringer, D.C.; Scherer, R.; Fronza, M. Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis. Pharm. Biol., 2017, 55(1), 991-997.
[http://dx.doi.org/10.1080/13880209.2017.1285324] [PMID: 28166708]
[111]
Lee, D.G.; Kim, H.K.; Park, Y.; Park, S.C.; Woo, E.R.; Jeong, H.G.; Hahm, K.S. Gram-positive bacteria specific properties of silybin de-rived from Silybum marianum. Arch. Pharm. Res., 2003, 26(8), 597-600.
[http://dx.doi.org/10.1007/BF02976707] [PMID: 12967193]
[112]
Mierza, V. Rosidah, Rosidah.; Haro, G.; Suryanto, Dwi. Antibacterial activity and mechanism of action of rarugadong (Dioscorea pyrifolia kunth.) tuber extracts on Escherichia coli and staphylococcus aureus cell leakage. Rasayan J. Chem., 2015, 13, 1894-1903.
[http://dx.doi.org/10.31788/RJC.2020.1335864]
[113]
Gupta, V.K.; Fatima, A.; Faridi, U.; Negi, A.S.; Shanker, K.; Kumar, J.K.; Rahuja, N.; Luqman, S.; Sisodia, B.S.; Saikia, D.; Darokar, M.P.; Khanuja, S.P. Antimicrobial potential of Glycyrrhiza glabra roots. J. Ethnopharmacol., 2008, 116(2), 377-380.
[http://dx.doi.org/10.1016/j.jep.2007.11.037] [PMID: 18182260]
[114]
Zhang, N.; Lan, W.; Wang, Q.; Sun, X.; Xie, J. Antibacterial mechanism of Ginkgo biloba leaf extract when applied to Shewanella putrefa-ciens and Saprophytic staphylococcus. Aquac. Fish., 2018, 3(4), 163-169.
[http://dx.doi.org/10.1016/j.aaf.2018.05.005]
[115]
Di Lodovico, S.; Menghini, L.; Ferrante, C.; Recchia, E.; Castro-Amorim, J.; Gameiro, P.; Cellini, L.; Bessa, L.J. Hop Extract: An efficacious antimicrobial and anti-biofilm agent against Multidrug-Resistant Staphylococci strains and Cutibacterium acnes. Front. Microbiol., 2020, 11, 1852.
[http://dx.doi.org/10.3389/fmicb.2020.01852] [PMID: 32903686]
[116]
Li, X-M.; Luo, X-G.; Si, C-L.; Wang, N.; Zhou, H.; He, J-F.; Zhang, T.C. Antibacterial active compounds from Hypericum ascyron L. in-duce bacterial cell death through apoptosis pathway. Eur. J. Med. Chem., 2015, 96, 436-444.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.035] [PMID: 25916905]
[117]
Vaghasiya, Y.; Dave, R.; Chanda, S. Phytochemical analysis of some medicinal plants from western region of India. Res. J. Med. Plant, 2011, 5(5), 567-576.
[http://dx.doi.org/10.3923/rjmp.2011.567.576]
[118]
Ohemeng, K.A.; Schwender, C.F.; Fu, K.P.; Barrett, J.F. DNA gyrase inhibitory and antibacterial activity of some flavones (1). Bioorg. Med. Chem. Lett., 1993, 3, 225-230.
[http://dx.doi.org/10.1016/S0960-894X(01)80881-7]
[119]
Mori, A.; Nishino, C.; Enoki, N.; Tawata, S. Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry, 1987, 26, 2231-2234.
[http://dx.doi.org/10.1016/S0031-9422(00)84689-0]
[120]
Verdrengh, M.; Collins, L.V.; Bergin, P.; Tarkowski, A. Phytoestrogen genistein as an anti-staphylococcal agent. Microbes Infect., 2004, 6(1), 86-92.
[http://dx.doi.org/10.1016/j.micinf.2003.10.005] [PMID: 14738897]
[121]
Xu, J.; Zhou, F.; Ji, B.P.; Pei, R.S.; Xu, N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol., 2008, 47(3), 174-179.
[http://dx.doi.org/10.1111/j.1472-765X.2008.02407.x] [PMID: 19552781]
[122]
Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist., 2013, 19(4), 256-265.
[http://dx.doi.org/10.1089/mdr.2012.0244] [PMID: 23480526]
[123]
Sirk, T.W.; Brown, E.F.; Friedman, M.; Sum, A.K. Molecular binding of catechins to biomembranes: relationship to biological activity. J. Agric. Food Chem., 2009, 57(15), 6720-6728.
[http://dx.doi.org/10.1021/jf900951w] [PMID: 19572638]
[124]
Cai, R.; Miao, M.; Yue, T.; Zhang, Y.; Cui, L.; Wang, Z.; Yuan, Y. Antibacterial activity and mechanism of cinnamic acid and chlorogenic acid against Alicyclobacillus acidoterrestris vegetative cells in apple juice. J. Food Sci. Technol., 2019, 54(5), 1697-1705.
[http://dx.doi.org/10.1111/ijfs.14051]
[125]
Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control, 2012, 25(2), 550-554.
[http://dx.doi.org/10.1016/j.foodcont.2011.11.022]
[126]
Müller, M.B.; Dausend, C.; Weins, C.; Frimmel, F.H. A new bioautographic screening method for the detection of estrogenic compounds. Chromatographia, 2004, 60(3), 207-211.
[127]
Hostettmann, K.; Terreaux, C.; Marston, A.; Potterat, O. The role of planar chromatography in the rapid screening and isolation of bioactive compounds from medicinal plants. JPC. J. Planar Chromatogr. Mod. TLC, 1997, 10(4), 251-257.
[128]
Goodall, R.R.; Levi, A.A. A microchromatographic method for the detection and approximate determination of the different penicillins in a mixture. Nature, 1946, 158(4019), 675-676.
[http://dx.doi.org/10.1038/158675a0] [PMID: 20274358]
[129]
Fischer, R.; Lautner, H. On the paper chromatographic detection of penicillin preparations Arch. Pharm. Ber. Dtsch. Pharm. Ges., 1961, 294(66), 1-7.
[http://dx.doi.org/10.1002/ardp.19612940102] [PMID: 13699864]
[130]
Betina, V. Bioautography in paper and thin-layer chromatography and its scope in the antibiotic field. J. Chromatogr. A, 1973, 78(1), 41-51.
[http://dx.doi.org/10.1016/S0021-9673(01)99035-1] [PMID: 4196856]
[131]
Heinemann, B.; Howard, A.J.; Hollister, Z.J. Application of paper chromatograms to the study of inducers of λ bacteriophage in Escherichia coli. Appl. Microbiol., 1967, 15(4), 723-725.
[http://dx.doi.org/10.1128/am.15.4.723-725.1967] [PMID: 4860524]
[132]
Choma, I.M.; Grzelak, E.M. Bioautography detection in thin-layer chromatography. J. Chromatogr. A, 2011, 1218(19), 2684-2691.
[133]
Houghton, P.J. Use of small scale bioassays in the discovery of novel drugs from natural sources. Phytother. Res., 2000, 14(6), 419-423.
[PMID: 10960894]
[134]
Rios, J.L.; Recio, M.C.; Villar, A. Screening methods for natural products with antimicrobial activity: a review of the literature. J. Ethnopharmacol., 1988, 23(2-3), 127-149.
[http://dx.doi.org/10.1016/0378-8741(88)90001-3] [PMID: 3057288]
[135]
Dewanjee, S.; Gangopadhyay, M.; Bhattacharya, N.; Khanra, R.; Dua, T.K. Bioautography and its scope in the field of natural product chemistry. J. Pharm. Anal., 2015, 5(2), 75-84.
[http://dx.doi.org/10.1016/j.jpha.2014.06.002] [PMID: 29403918]
[136]
Marston, A. Thin-layer chromatography with biological detection in phytochemistry. J. Chromatogr. A, 2011, 1218(19), 2676-2683.
[http://dx.doi.org/10.1016/j.chroma.2010.12.068] [PMID: 21236438]
[137]
Sun, Z-L.; Liu, T.; Wang, S-Y.; Ji, X-Y.; Mu, Q. TLC-bioautography directed isolation of antibacterial compounds from active fractionation of Ferula ferulioides. Nat. Prod. Res., 2019, 33(12), 1761-1764.
[PMID: 29378434]
[138]
Balázs, V.L.; Horváth, B.; Kerekes, E.; Ács, K.; Kocsis, B.; Varga, A.; Böszörményi, A.; Nagy, D.U.; Krisch, J.; Széchenyi, A.; Horváth, G. Anti-Haemophilus activity of selected essential oils detected by TLC-direct bioautography and biofilm inhibition. Molecules, 2019, 24(18), 3301.
[http://dx.doi.org/10.3390/molecules24183301] [PMID: 31514307]
[139]
Fahim, M.; Ibrahim, M.; Zahiruddin, S.; Parveen, R.; Khan, W.; Ahmad, S.; Shrivastava, B.; Shrivastava, A.K. TLC-bioautography identifi-cation and GC-MS analysis of antimicrobial and antioxidant active compounds in Musa × paradisiaca L. fruit pulp essential oil. Phytochem. Anal., 2019, 30(3), 332-345.
[http://dx.doi.org/10.1002/pca.2816] [PMID: 30609101]
[140]
Jesionek, W.; Móricz, Á.M.; Alberti, Á.; Ott, P.G.; Kocsis, B.; Horváth, G.; Choma, I.M. TLC-Direct Bioautography as a Bioassay Guided Method for Investigation of Antibacterial Compounds in Hypericum perforatum L. J. AOAC Int., 2015, 98(4), 1013-1020.
[http://dx.doi.org/10.5740/jaoacint.14-233] [PMID: 26268984]
[141]
Jesionek, W.; Móricz, Á.M.; Ott, P.G.; Kocsis, B.; Horváth, G.; Choma, I.M. TLC-Direct Bioautography and LC/MS as Complementary Methods in Identification of Antibacterial Agents in Plant Tinctures from the Asteraceae Family. J. AOAC Int., 2015, 98(4), 857-861.
[http://dx.doi.org/10.5740/jaoacint.SGE2-Choma] [PMID: 26268962]
[142]
Wongkattiya, N.; Sanguansermsri, P.; Fraser, I.H.; Sanguansermsri, D. Antibacterial activity of cuminaldehyde on food-borne pathogens, the bioactive component of essential oil from Cuminum cyminum L. collected in Thailand. J. Complement. Integr. Med., 2019, 16(4)
[http://dx.doi.org/10.1515/jcim-2018-0195] [PMID: 31129652]
[143]
Horváth, G.; Ács, K.; Kocsis, B. TLC-direct bioautography for determination of antibacterial activity of Artemisia adamsii essential oil. J. AOAC Int., 2013, 96(6), 1209-1213.
[http://dx.doi.org/10.5740/jaoacint.SGEHorvath] [PMID: 24645495]
[144]
Móricz, Á.M.; Szeremeta, D.; Knaś, M.; Długosz, E.; Ott, P.G.; Kowalska, T.; Sajewicz, M. Antibacterial potential of the Cistus incanus L. phenolics as studied with use of thin-layer chromatography combined with direct bioautography and in situ hydrolysis. J. Chromatogr. A, 2018, 1534, 170-178.
[http://dx.doi.org/10.1016/j.chroma.2017.12.056] [PMID: 29290397]
[145]
Costa, D.C.M.; Azevedo, M.M.B.; Silva, D.O.E.; Romanos, M.T.V.; Souto-Padrón, T.C.B.S.; Alviano, C.S.; Alviano, D.S. In vitro anti-MRSA activity of Couroupita guianensis extract and its component Tryptanthrin. Nat. Prod. Res., 2017, 31(17), 2077-2080.
[http://dx.doi.org/10.1080/14786419.2016.1272110] [PMID: 28013553]
[146]
Das, S.; Das, M.K.; Das, R.; Gehlot, V.; Mahant, S.; Mazumder, P.M.; Das, S. Falls, N.; Kumar, V. Isolation, characterization of Berberine from Berberis aristata DC for eradication of resistant Helicobacter pylori. Biocatal. Agric. Biotechnol., 2020, 26, 101622.
[http://dx.doi.org/10.1016/j.bcab.2020.101622]
[147]
González-Lamothe, R.; Mitchell, G.; Gattuso, M.; Diarra, M.S.; Malouin, F.; Bouarab, K. Plant antimicrobial agents and their effects on plant and human pathogens. Int. J. Mol. Sci., 2009, 10(8), 3400-3419.
[http://dx.doi.org/10.3390/ijms10083400] [PMID: 20111686]
[148]
Chanda, S.; Rakholiya, K. Combination therapy: Synergism between natural plant extracts and antibiotics against infectious diseases. Mi-crobiol Book Series, 2011, 1, 520-529.
[149]
Sibanda, T.; Okoh, A.I. The challenges of overcoming antibiotic resistance: Plant extracts as potential sources of antimicrobial and re-sistance modifying agents. Afr. J. Biotechnol., 2007, 6(25), 2886-2896.
[150]
Aburjai, T.; Darwish, R.M.; Al-Khalil, S.; Mahafzah, A.; Al-Abbadi, A. Screening of antibiotic resistant inhibitors from local plant materials against two different strains of Pseudomonas aeruginosa. J. Ethnopharmacol., 2001, 76(1), 39-44.
[http://dx.doi.org/10.1016/S0378-8741(01)00206-9] [PMID: 11378279]
[151]
Gupta, P.D.; Daswani, P.G.; Birdi, T.J. Approaches in fostering quality parameters for medicinal botanicals in the Indian context. Indian J. Pharmacol., 2014, 46(4), 363-371.
[http://dx.doi.org/10.4103/0253-7613.135946] [PMID: 25097272]
[152]
Wagner, H.; Ulrich-Merzenich, G. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine, 2009, 16(2-3), 97-110.
[http://dx.doi.org/10.1016/j.phymed.2008.12.018] [PMID: 19211237]
[153]
Manoraj, A.; Thevanesam, V.; Bandara, B.M.R.; Ekanayake, A.; Liyanapathirana, V. Synergistic activity between Triphala and selected antibiotics against drug resistant clinical isolates. BMC Complement. Altern. Med., 2019, 19(1), 199.
[http://dx.doi.org/10.1186/s12906-019-2618-1] [PMID: 31375093]
[154]
Kali, A.; Bhuvaneshwar, D.; Charles, P.M.; Seetha, K.S. Antibacterial synergy of curcumin with antibiotics against biofilm producing clini-cal bacterial isolates. J. Basic Clin. Pharm., 2016, 7(3), 93-96.
[http://dx.doi.org/10.4103/0976-0105.183265] [PMID: 27330262]
[155]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Singh, V.; Khan, F.; Gupta, M.K.; Singh, M.; Darokar, M.P.; Srivastava, S.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli. J. Biomol. Struct. Dyn., 2019, 37(5), 1307-1325.
[http://dx.doi.org/10.1080/07391102.2018.1458654] [PMID: 29595093]
[156]
Taukoorah, U.; Lall, N.; Mahomoodally, F. Piper betle L. (betel quid) shows bacteriostatic, additive, and synergistic antimicrobial action when combined with conventional antibiotics. S. Afr. J. Bot., 2016, 105, 133-140.
[http://dx.doi.org/10.1016/j.sajb.2016.01.006]
[157]
Subramaniam, S.; Keerthiraja, M.; Sivasubramanian, A. Synergistic antibacterial action of β-sitosterol-D-glucopyranoside isolated from Desmostachya bipinnata leaves with antibiotics against common human pathogens. Revista. Rev. Bras. Farmacogn., 2014, 24(1), 44-50.
[http://dx.doi.org/10.1590/0102-695X20142413348]
[158]
Braga, L.C.; Leite, A.A.; Xavier, K.G.; Takahashi, J.A.; Bemquerer, M.P.; Chartone-Souza, E.; Nascimento, A.M. Synergic interaction be-tween pomegranate extract and antibiotics against Staphylococcus aureus. Can. J. Microbiol., 2005, 51(7), 541-547.
[http://dx.doi.org/10.1139/w05-022] [PMID: 16175202]
[159]
Betoni, J.E.C.; Mantovani, R.P.; Barbosa, L.N.; Di Stasi, L.C.; Fernandes, Junior, A. Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Mem. Inst. Oswaldo Cruz, 2006, 101(4), 387-390.
[PMID: 16951808]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy