Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Analytical Chemistry

Efficient Fluorescent Detection of Mercuric Ions Based on 2-Thienyl benzimidazole/Cucurbit[7]uril Complexes

Author(s): Marieh B. Al-Handawi, John P. Graham, Hany A. Eldeab and Na'il Saleh*

Volume 2, Issue 2, 2022

Published on: 10 March, 2022

Page: [89 - 96] Pages: 8

DOI: 10.2174/2210298102666220126110410

Price: $65

conference banner
Abstract

Aims and objective: 2-Thienylbenzimidazole (TBI)/cucurbit[7]uril (CB7) host/guest complex was used to significantly improve the detection of Hg2+ in water samples.

Methods: The unique mechanism of the sensing process is based on the binding of CB7 host to TBI guest. The host-guest complexation was confirmed by UV-visible absorption, time-resolved fluorescence, and proton NMR spectroscopy. The complexations of TBI and TBI/CB7 with Hg2+ ions in solid-state were confirmed by FTIR, mass, and TGA. The most stable structures were unfolded by DFT calculations.

Results: In an aqueous solution, a five-fold higher stability constant of the protonated TBIH+/CB7 complex was observed when compared to the neutral TBI/CB7 complex as manifested in an increase in pKa values by ~ 0.5 unit in an excited state. The static fluorescence quenching of TBI on binding to Hg2+ ions was significantly enhanced in the presence of CB7.

Conclusion: Macrocycles are useful additives for the highly sensitive recovery of mercury ions in water samples.

Keywords: Mercuric ions recovery, host-guest chemistry, fluorescence, static quenching, DFT calculations, host-induced pKa shifts.

« Previous
Graphical Abstract

[1]
Steed, J.W.; Gale, P.A. Supramolecular chemistry: From molecules to nanomaterials; John Wiley and Sons: Chichester, 2012; 8, pp. 3978
[2]
Saleh, N. New Strategies for the design of inclusion compounds with cucurbituril hosts. In: Non-Covalent Interactions in the Synthesis and Design of New Compounds; Maharramov, A.M.; Mahmudov, K.T.; Kopylovich, M.N.; Pombeiro, A.J.L., Eds.; John Wiley and Sons: Hoboken, 2016; pp. 229-239.
[http://dx.doi.org/10.1002/9781119113874.ch13]
[3]
Wang, W.; Zhang, Y.; Yang, Q.; Sun, M.; Fei, X.; Song, Y.; Zhang, Y.; Li, Y. Fluorescent and colorimetric magnetic microspheres as nanosensors for Hg2+ in aqueous solution prepared by a sol-gel grafting reaction and host-guest interaction. Nanoscale, 2013, 5(11), 4958-4965.
[http://dx.doi.org/10.1039/c3nr00580a] [PMID: 23632769]
[4]
Xu, Y.; Panzner, M.J.; Li, X.; Youngs, W.J.; Pang, Y. Host-guest assembly of squaraine dye in cucurbit[8]uril: Its implication in fluorescent probe for mercury ions. Chem. Commun. (Camb.), 2010, 46(23), 4073-4075.
[http://dx.doi.org/10.1039/c002219p] [PMID: 20407667]
[5]
Koner, A.L.; Ghosh, I.; Saleh, N.; Nau, W.M. Supramolecular encapsulation of benzimidazole derived drugs by cucurbit[7]uril. Can. J. Chem., 2011, 89, 139-147.
[http://dx.doi.org/10.1139/V10-079]
[6]
Barooah, N.; Mohanty, J.; Bhasikuttan, A.C. pH-mediated stoichiometric switching of cucurbit[8]uril-Hoechst-33258 complexes. J. Phys. Chem. B, 2013, 117(43), 13595-13603.
[http://dx.doi.org/10.1021/jp405553g] [PMID: 24090492]
[7]
Wang, Q.; Lü, L.B.; Tao, Z.; Sun, T.; Tang, Q.; Huang, Y. The pH and mercury ion stimuli-responsive supramolecular assemblies of cucurbit[7]uril and Hoechst 33342. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 254, 119656.
[http://dx.doi.org/10.1016/j.saa.2021.119656] [PMID: 33744695]
[8]
Benyettou, F.; Milosevic, I.; Lalatonne, Y.; Warmont, F.; Assah, R.; Olsen, J-C.; Jouaid, M.; Motte, L.; Platas-Iglesias, C.; Trabolsi, A. Toward theranostic nanoparticles: CB[7]-functionalized iron oxide for drug delivery and MRI. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(38), 5076-5082.
[http://dx.doi.org/10.1039/c3tb20852d] [PMID: 32261098]
[9]
Li, Q-L.; Sun, Y.; Sun, Y-L.; Wen, J.; Zhou, Y.; Bing, Q-M.; Isaacs, L.D.; Jin, Y.; Gao, H.; Yang, Y-W. Mesoporous silica nanoparticles coated by layer-by-layer self-assembly using cucurbit[7]uril for in vitro and in vivo anticancer drug release. Chem. Mater., 2014, 26(22), 6418-6431.
[http://dx.doi.org/10.1021/cm503304p] [PMID: 25620848]
[10]
Wu, X.; Bell, T.D.M.; Yeow, E.K.L. Electron transport in the long-range charge-recombination dynamics of single encapsulated dye molecules on TiO2 nanoparticle films. Angew. Chem. Int. Ed. Engl., 2009, 48(40), 7379-7382.
[http://dx.doi.org/10.1002/anie.200902596] [PMID: 19725085]
[11]
Yu, C.J.; Wu, S.M.; Tseng, W.L. Magnetite nanoparticle-induced fluorescence quenching of adenosine triphosphate-BODIPY Conjugates: Application to adenosine triphosphate and pyrophosphate sensing. Anal. Chem., 2013, 85(18), 8559-8565.
[http://dx.doi.org/10.1021/ac400919j] [PMID: 23919280]
[12]
Aliaga, M.; Pavez, P.; Quintero, G.; Droguett, K.; Cañete, Á.; Santos, J. Cucurbit[7]uril limits the binding of coumarin bearing alkyl-acetoacetate with mercury and stimulates the desulphurisation reaction of its sulphur analog. Supramol. Chem., 2020, 32, 605-613.
[http://dx.doi.org/10.1080/10610278.2020.1856845]
[13]
Cátia Esteves, M.; Manuela, M. Raposo; Susana P.G., Costa Costa Recognition of transition metals by benzimidazoles with an optical response. In: Proceedings of the 19th International Electronic Conference on Synthetic Organic Chemistry; 1-30 November 2015, MDPI: Basel, Switzerland.
[14]
Shaikh, M.; Choudhury, S.D.; Mohanty, J.; Bhasikuttan, A.C.; Pal, H. Cucurbit[n]uil based supramolecular assemblies: Tunable physico-chemical properties and their prospects. Phys. Chem. Chem. Phys., 2010, 12, 7050-7055.
[http://dx.doi.org/10.1039/b922778d] [PMID: 20473436]
[15]
Chau, Y-F.C.; Lin, C-J.; Kao, T-S.; Wang, Y-C.; Ming-Lim, C.; Kumara, N.T.R.N.; Chiang, H-P. Enhanced photoluminescence of dcjtb with ordered Ag-SiO2 core–shell nanostructures via nanosphere lithography. Results Phys., 2020, 17, 103168.
[http://dx.doi.org/10.1016/j.rinp.2020.103168]
[16]
Ho, Y.Z.; Chen, W.T.; Huang, Y-W.; Wu, P.C.; Tseng, M.L.; Wang, Y.T.; Chau, Y-F.; Tsai, D.P. Tunable plasmonic resonance arising from broken-symmetric silver nanobeads with dielectric cores. J. Opt., 2012, 14, 114010.
[http://dx.doi.org/10.1088/2040-8978/14/11/114010]
[17]
te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; Van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem., 2001, 22, 931-967.
[http://dx.doi.org/10.1002/jcc.1056]
[18]
Van Lenthe, E.; Baerends, E.J. Optimized slater-type basis sets for the elements 1-118. J. Comput. Chem., 2003, 24(9), 1142-1156.
[http://dx.doi.org/10.1002/jcc.10255] [PMID: 12759913]
[19]
Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18), 3865-3868.
[http://dx.doi.org/10.1103/PhysRevLett.77.3865] [PMID: 10062328]
[20]
Van Lenthe, E.; Ehlers, A.E.; Baerends, E.J. Geometry optimizations in the zero oder regular approximation for relativistic effects. J. Chem. Phys., 1999, 110, 8943-8953.
[http://dx.doi.org/10.1063/1.478813]
[21]
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15), 1787-1799.
[http://dx.doi.org/10.1002/jcc.20495] [PMID: 16955487]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy