Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

用于将阿霉素和/或顺铂有效递送至乳腺癌细胞的改性壳聚糖纳米粒子的制备

卷 22, 期 2, 2022

发表于: 25 February, 2022

页: [133 - 141] 页: 9

弟呕挨: 10.2174/1568009622666220126100532

价格: $65

摘要

目的:目的是开发一种新型的 pH 响应改性壳聚糖纳米粒子系统,用于主动加载阿霉素 (DOX) 并触发细胞内释放。 方法:在水性介质中通过带负电的壳聚糖衍生物和带正电的 DOX 在中性 pH 下的离子相互作用形成纳米颗粒,然后通过形成的胶束之间的螯合相互作用将形成的胶束原位转化为顺铂 (CIS) 交联纳米颗粒。带负电荷的聚合物载体和顺铂。使用 DLS 和 TEM 对纳米粒子的粒径和 zeta 电位进行表征。根据聚合物的理化性质和交联剂的量确定载药效率和包封效率。使用透析方法在不同的 pH 值下进行体外释放研究。最后,这些纳米颗粒的细胞毒性作用在不同 pH 值下对 MCF-7 BrCA 细胞系进行。 结果:聚合物单独和 DOX 纳米粒子的平均粒径分别为 277.401 } 13.50 nm 和 290.20 } 17.43 nm。 zeta 电位分别为 -14.6 } 1.02 mV 和 -13.2 } 0.55 mV,具有低多分散指数。取决于交联剂的量,确定载药和包封缺陷。体外释放研究表明,DOX 从这些纳米颗粒中的释放是 pH 依赖性的。此外,结果表明,与游离 DOX 相比,负载 DOX 的纳米颗粒对 MCF-7 BrCA 细胞的细胞毒性幅度更高。 结论:这些新型 pH 敏感纳米颗粒被证明是一种有前途的纳米药物递送,用于 DOX 的肿瘤靶向递送。

关键词: pH响应纳米粒子,改性壳聚糖,交联纳米粒子,药物控释,顺铂,乳腺癌细胞

图形摘要

[1]
Patnaik, J.L.; Byers, T.; DiGuiseppi, C.; Dabelea, D.; Denberg, T.D.; Patnaik, J.L.; Byers, T.; DiGuiseppi, C.; Dabelea, D. Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: A retrospective cohort study. Breast Cancer Res., 2011, 13(3), R64.
[http://dx.doi.org/10.1186/bcr2901] [PMID: 21689398]
[2]
Khader, Y.S.; Sharkas, G.F.; Arkoub, K.H.; Alfaqih, M.A.; Nimri, O.F.; Khader, A.M. The epidemiology and trend of cancer in Jordan, 2000-2013. J. Cancer Epidemiol., 2018, 20182937067
[http://dx.doi.org/10.1155/2018/2937067] [PMID: 30416523]
[3]
Gradishar, W.; Moran, M.S. NCCN guidelines: Breast cancer,Version 1.2021. 2021. Available from:. https://www.nccn.org/profe ssionals/physician_gls/pdf/breast.pdf(accessed March 5th, 2021)
[4]
Deli, T.; Orosz, M.; Jakab, A. Hormone replacement therapy in cancer survivors - review of the literature. Pathol. Oncol. Res., 2020, 26(1), 63-78.
[http://dx.doi.org/10.1007/s12253-018-00569-x] [PMID: 30617760]
[5]
Masoud, V.; Pagès, G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J. Clin. Oncol., 2017, 8(2), 120-134.
[http://dx.doi.org/10.5306/wjco.v8.i2.120] [PMID: 28439493]
[6]
Chidambaram, M.; Manavalan, R.; Kathiresan, K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci., 2011, 14(1), 67-77.
[http://dx.doi.org/10.18433/J30C7D] [PMID: 21501554]
[7]
Simşek, S.; Eroglu, H.; Kurum, B.; Ulubayram, K. Brain targeting of atorvastatin loaded amphiphilic PLGA-b-PEG nanoparticles. J. Microencapsul., 2012, 30(1), 10-20.
[PMID: 22734433]
[8]
Dass, C.R.; Choong, P.F. The use of chitosan formulations in cancer therapy. J. Microencapsul., 2008, 25(4), 275-279.
[http://dx.doi.org/10.1080/02652040801970461] [PMID: 18465306]
[9]
Prabaharan, M. Review paper: Chitosan derivatives as promising materials for controlled drug delivery. J. Biomater. Appl., 2008, 23(1), 5-36.
[http://dx.doi.org/10.1177/0885328208091562] [PMID: 18593819]
[10]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[11]
Lomovskaya, N.; Otten, S.L.; Doi-Katayama, Y.; Fonstein, L.; Liu, X.C.; Takatsu, T.; Inventi-Solari, A.; Filippini, S.; Torti, F.; Colombo, A.L.; Hutchinson, C.R. Doxorubicin overproduction in Streptomyces peucetius: Cloning and characterization of the dnrU ketoreductase and dnrV genes and the doxA cytochrome P-450 hydroxylase gene. J. Bacteriol., 1999, 181(1), 305-318.
[http://dx.doi.org/10.1128/JB.181.1.305-318.1999] [PMID: 9864344]
[12]
Keizer, H.G.; Pinedo, H.M.; Schuurhuis, G.J.; Joenje, H. Doxorubicin (adriamycin): A critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacol. Ther., 1990, 47(2), 219-231.
[http://dx.doi.org/10.1016/0163-7258(90)90088-J] [PMID: 2203071]
[13]
Hajra, S.; Patra, A.R.; Basu, A.; Bhattacharya, S. Prevention of doxorubicin (DOX)-induced genotoxicity and cardiotoxicity: Effect of plant derived small molecule indole-3-carbinol (I3C) on oxidative stress and inflammation. Biomed. Pharmacother., 2018, 101, 228-243.
[http://dx.doi.org/10.1016/j.biopha.2018.02.088] [PMID: 29494960]
[14]
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88102925
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[15]
Xiao, H.; Song, H.; Yang, Q.; Cai, H.; Qi, R.; Yan, L.; Liu, S.; Zheng, Y.; Huang, Y.; Liu, T.; Jing, X. A prodrug strategy to deliver cisplatin(IV) and paclitaxel in nanomicelles to improve efficacy and tolerance. Biomaterials, 2012, 33(27), 6507-6519.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.049] [PMID: 22727463]
[16]
Lee, S.M.; O’Halloran, T.V.; Nguyen, S.T. Polymer-caged nanobins for synergistic cisplatin-doxorubicin combination chemotherapy. J. Am. Chem. Soc., 2010, 132(48), 17130-17138.
[http://dx.doi.org/10.1021/ja107333g] [PMID: 21077673]
[17]
Yang, C.; Tan, J.; Cheng, W.; Attia, A.; Ting, C.; Nelson, A.; Hedrick, J.; Yang, Y-Y. Supramolecular nanostructures designed for high cargo loading capacity and kinetic stability. Nano Today, 2010, 5, 515-523.
[http://dx.doi.org/10.1016/j.nantod.2010.10.006]
[18]
Attia, A.B.; Yang, C.; Tan, J.P.; Gao, S.; Williams, D.F.; Hedrick, J.L.; Yang, Y-Y. The effect of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles. Biomaterials, 2013, 34(12), 3132-3140.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.042] [PMID: 23380357]
[19]
Inamdar, N.; Mourya, V.K.; Tiwari, A. Carboxymethyl chitosan and its applications. Adv. Mater. Lett., 2010, 1, 11-33.
[http://dx.doi.org/10.5185/amlett.2010.3108]
[20]
Aiedeh, K.; Taha, M.O. Synthesis of chitosan succinate and chitosan phthalate and their evaluation as suggested matrices in orally administered, colon-specific drug delivery systems. Arch. Pharm. (Weinheim), 1999, 332(3), 103-107.
[http://dx.doi.org/10.1002/(SICI)1521-4184(19993)332:3<103:AID-ARDP103>3.0.CO;2-U] [PMID: 10228455]
[21]
Calvo, P.; Remuñan-López, C.; Vila-Jato, J.L.; Alonso, M.J. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res., 1997, 14(10), 1431-1436.
[http://dx.doi.org/10.1023/A:1012128907225] [PMID: 9358557]
[22]
Park, J.; Fong, P.M.; Lu, J.; Russell, K.S.; Booth, C.J.; Saltzman, W.M.; Fahmy, T.M. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine, 2009, 5(4), 410-418.
[http://dx.doi.org/10.1016/j.nano.2009.02.002] [PMID: 19341815]
[23]
Na, K.; Lee, E.S.; Bae, Y.H. Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH-dependent cell interaction, internalization and cytotoxicity in vitro. J. Control. Release, 2003, 87(1-3), 3-13.
[http://dx.doi.org/10.1016/S0168-3659(02)00345-0] [PMID: 12618018]
[24]
Al Joudi, F.; Alias, I.; Samsudin, A. The effects of chemotherapeutic drugs on viabilty, apoptosis, and survivin expression in MCF7 cells. Acta Histochem. Cytochem., 2005, 38, 323-330.
[25]
Kumirska, J.; Czerwicka, M.; Kaczyński, Z.; Bychowska, A.; Brzozowski, K.; Thöming, J.; Stepnowski, P. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar. Drugs, 2010, 8(5), 1567-1636.
[http://dx.doi.org/10.3390/md8051567] [PMID: 20559489]
[26]
Nunthanid, J.; Laungtana-Anan, M.; Sriamornsak, P.; Limmatvapirat, S.; Puttipipatkhachorn, S.; Lim, L.Y.; Khor, E. Characterization of chitosan acetate as a binder for sustained release tablets. J. Control. Release, 2004, 99(1), 15-26.
[http://dx.doi.org/10.1016/j.jconrel.2004.06.008] [PMID: 15342177]
[27]
Nallamuthu, I.; Devi, A.; Khanum, F. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J. Pharm. Sci., 2015, 10(3), 203-211.
[http://dx.doi.org/10.1016/j.ajps.2014.09.005]
[28]
Jain, D.; Banerjee, R. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 86(1), 105-112.
[http://dx.doi.org/10.1002/jbm.b.30994] [PMID: 18098198]
[29]
Xiao, K.; Li, Y.; Luo, J.; Lee, J.S.; Xiao, W.; Gonik, A.M.; Agarwal, R.G.; Lam, K.S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials, 2011, 32(13), 3435-3446.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.021] [PMID: 21295849]
[30]
Huang, W-C.; Chiang, W-H.; Huang, Y-F.; Lin, S-C.; Shih, Z-F.; Chern, C-S.; Chiang, C-S.; Chiu, H-C. Nano-scaled pH-responsive polymeric vesicles for intracellular release of doxorubicin. J. Drug Target., 2011, 19(10), 944-953.
[http://dx.doi.org/10.3109/1061186X.2011.632012] [PMID: 22050402]
[31]
Sanson, C.; Schatz, C.; Le Meins, J.F.; Soum, A.; Thévenot, J.; Garanger, E.; Lecommandoux, S. A simple method to achieve high doxorubicin loading in biodegradable polymersomes. J. Control. Release, 2010, 147(3), 428-435.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.123] [PMID: 20692308]
[32]
Dai, J.; Lin, S.; Cheng, D.; Zou, S.; Shuai, X. Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew. Chem. Int. Ed. Engl., 2011, 50(40), 9404-9408..
[http://dx.doi.org/10.1002/anie.201103806] [PMID: 21898731]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy