Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Synthesis and In Vitro Anticancer Activity of Benzo[c]chromen-6- one-linked 1,2,3-Triazole

Author(s): Mykola A. Tupychak, Nataliya S. Finiuk, Rostyslav S. Stoika, Roman L. Martyak and Nazariy T. Pokhodylo*

Volume 19, Issue 6, 2022

Published on: 08 March, 2022

Page: [490 - 499] Pages: 10

DOI: 10.2174/1570180819666220124112740

Price: $65

conference banner
Abstract

Background: The 1,2,3-triazole hybrids and conjugates containing natural or related compounds motif demonstrate diverse biological activities, including anticancer, antimicrobial, antitubercular, antiviral, antidiabetic, antimalarial, anti-leishmanial, and neuroprotective ones. Among a wide range of pharmacological applications, considerable attention is paid to the study of anticancer activity. In anticancer research, combining 1,2,3-triazole with other motifs, previously demonstrating antiproliferative activity into one hybrid molecule, is a common strategy for the creation of new bioactive molecules. The CuAAC (copper-catalyzed azide–alkyne cycloaddition) is a very convenient reaction for the rapid construction of drug-like 1,2,3-triazoles at room temperature in a short time.

Methods: Based on the pharmacophore strategy, a virtual combinatorial library of benzo[c]chromen-6- one linked 1,2,3-triazole derivatives was designed and lead-likeness and molecular analysis were performed. Selected compounds were synthesized via CuAAC click reaction and the chemical structures of all new 1,2,3-triazole hybrids were proved by 1H, 13C NMR, MS and elemental analyses. Their anticancer activity in the human cancer cell lines was evaluated using the MTT assay.

Results: A virtual in silico screening of novel benzo[c]chromen-6-one linked 1,2,3-triazole was carried out in order to discover potential antitumor agents. The synthesis of promising compounds was carried out via СuAAC reaction, and their antineoplastic action was studied on human tumor cells of HL-60, HCT116, HCT116 p53-/-, Skov3, U251, MDA231 lines. Their cytotoxic effect towards pseudo-normal human cells of HaCaT line was also evaluated. 2-((1H-1,2,3-triazol-4-yl)methoxy)-6H-benzo[c]chromen- 6-one (4c) with pyridin-3-yl substituent demonstrated the highest antiproliferative action in vitro (IC50 79.5 μM) towards human leukemia cells of HL-60 line, while all tested compounds at >100 μM concentration were tolerant for non-tumor human keratinocytes of HaCaT line.

Conclusion: A novel benzo[c]chromen-6-one linked 1,2,3-triazoles exhibiting promising in vitro anticancer activity and low toxicity were designed. This study suggests new scaffolds for the development of anti-cancer drugs, which could be easily further optimized via the convenient synthetic procedure.

Keywords: Benzo[c]chromen-6-one, 1, 2, 3-triazole, СuAAC, cytotoxicity, antitumor effect, synthesis.

Graphical Abstract

[1]
Rani, A.; Singh, G.; Singh, A.; Maqbool, U.; Kaur, G.; Singh, J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery. RSC Adv., 2020, 10, 5610-5635.
[http://dx.doi.org/10.1039/C9RA09510A]
[2]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[3]
Mistry, B.; Patel, R.V.; Keum, Y-S. Access to the substituted benzyl-1,2,3-triazolyl hesperetin derivatives expressing antioxidant and anticancer effects. Arab. J. Chem., 2017, 10(2), 157-166.
[http://dx.doi.org/10.1016/j.arabjc.2015.10.004]
[4]
Gholampour, M.; Ranjbar, S.; Edraki, N.; Mohabbati, M.; Firuzi, O.; Khoshneviszadeh, M. Click chemistry-assisted synthesis of novel aminonaphthoquinone-1,2,3-triazole hybrids and investigation of their cytotoxicity and cancer cell cycle alterations. Bioorg. Chem., 2019, 88, 102967.
[http://dx.doi.org/10.1016/j.bioorg.2019.102967] [PMID: 31078767]
[5]
Singh, H.; Kumar, M.; Nepali, K.; Gupta, M.K.; Saxena, A.K.; Sharma, S.; Bedi, P.M.S. Triazole tethered C5-curcuminoid-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Eur. J. Med. Chem., 2016, 116, 102-115.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.050] [PMID: 27060762]
[6]
Kuntala, N.; Telu, J.R.; Banothu, V.; Nallapati, S.B.; Anireddy, J.S.; Pal, S. Novel benzoxepine-1,2,3-triazole hybrids: Synthesis and pharmacological evaluation as potential antibacterial and anticancer agents. MedChemComm, 2015, 6(9), 1612-1619.
[http://dx.doi.org/10.1039/C5MD00224A]
[7]
Chekir, S.; Debbabi, M.; Regazzetti, A.; Dargère, D.; Laprévote, O.; Ben Jannet, H.; Gharbi, R. Design, synthesis and biological evaluation of novel 1,2,3-triazole linked coumarinopyrazole conjugates as potent anticholinesterase, anti-5-lipoxygenase, anti-tyrosinase and anti-cancer agents. Bioorg. Chem., 2018, 80, 189-194.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.005] [PMID: 29940340]
[8]
Zhang, L.; Xu, Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem., 2019, 181, 111587.
[http://dx.doi.org/10.1016/j.ejmech.2019.111587] [PMID: 31404864]
[9]
Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur. J. Med. Chem., 2016, 119, 141-168.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.087] [PMID: 27155469]
[10]
Pokhodylo, N.; Shyyka, O.; Finiuk, N.; Stoika, R. Selected 5-amino-1-aryl-1H-1,2,3-triazole scaffolds as promising antiproliferative agents. Ukr. Biochem. J., 2020, 92(5), 23-32.
[http://dx.doi.org/10.15407/ubj92.05.023]
[11]
Shyyka, O.Ya.; Pokhodylo, N.T.; Finiuk, N.S. Anticancer activity evaluation of thieno[3,2-e][1,2,3]triazolo[1,5-a]pyrimidines and thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidine derivatives. Biopolymers Cell, 2019, 35(4), 321-330.
[http://dx.doi.org/10.7124/bc.000A0F]
[12]
Shyyka, O.Ya.; Martyak, R.L.; Tupychak, M.A.; Pokhodylo, N.T.; Obushak, M.D. Facile synthetic route to benzo[c]chromenones and thieno[2,3-c]chromenones. Synth. Commun., 2017, 47(24), 2399-2405.
[http://dx.doi.org/10.1080/00397911.2017.1380833]
[13]
Liu, X.; Zu, Y.; Fu, Y.; Yao, L.; Gu, C.; Wang, W.; Efferth, T. Antimicrobial activity and cytotoxicity towards cancer cells of Melaleuca alternifolia (tea tree) oil. Eur. Food Res. Technol., 2009, 229(2), 247-253.
[http://dx.doi.org/10.1007/s00217-009-1057-5]
[14]
Finiuk, N.S.; Ivasechko, I.I.; Klyuchivska, O.Yu.; Ostapiuk, Yu.V.; Hreniukh, V.P.; Shalai, Ya.R.; Matiychuk, V.S.; Obushak, M.D.; Babsky, A.M.; Stoika, R.S. Apoptosis induction in human leukemia cells by novel 2-amino-5-benzylthiazole derivatives. Ukr. Biochem. J., 2019, 91(2), 29-39.
[http://dx.doi.org/10.15407/ubj91.02.029]
[15]
Colomer, I.; Empson, C.J.; Craven, P.; Owen, Z.; Doveston, R.G.; Churcher, I.; Marsden, S.P.; Nelson, A. A divergent synthetic approach to diverse molecular scaffolds: Assessment of lead-likeness using LLAMA, an open-access computational tool. Chem. Commun. (Camb.), 2016, 52(45), 7209-7212.
[http://dx.doi.org/10.1039/C6CC03244C] [PMID: 27145833]
[16]
Liang, L.; Astruc, D. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev., 2011, 255, 2933-2945.
[http://dx.doi.org/10.1016/j.ccr.2011.06.028]
[17]
Pokhodylo, N.T.; Tupychak, M.A.; Shyyka, O.Ya.; Obushak, M.D. Some aspects of the Azide–Alkyne 1,3-Dipolar cycloaddition reaction. Russ. J. Org. Chem., 2019, 55(9), 1310-1321.
[http://dx.doi.org/10.1134/S1070428019090082]
[18]
Pokhodylo, N.T.; Savka, R.D.; Shyyka, O.Y.; Obushak, M.D. One‐pot CuAAC synthesis of (1H‐1,2,3‐triazol‐1‐yl)methyl‐1,3,4/1,2,4‐oxadiazoles starting from available chloromethyl‐1,3,4/1,2,4‐oxadiazoles. J. Heterocycl. Chem., 2020, 57(7), 2969-2976.
[http://dx.doi.org/10.1002/jhet.4008]
[19]
Pokhodylo, N.T.; Shyyka, O.Ya.; Tupychak, M.A.; Slyvka, Yu.I.; Obushak, M.D. Concurrent pathway and unexpected products in the CuAAC reaction of ethyl prop-2-ynyl methylphosphonate with aromatic azides. Chem. Heterocycl. Compd., 2019, 55(4/5), 374-378.
[http://dx.doi.org/10.1007/s10593-019-02467-9]
[20]
Zhou, X.; Hao, Q.; Lu, H. Mutant p53 in cancer therapy-the barrier or the path. J. Mol. Cell Biol., 2019, 11(4), 293-305.
[http://dx.doi.org/10.1093/jmcb/mjy072] [PMID: 30508182]
[21]
Alam, S.K.; Yadav, V.K.; Bajaj, S.; Datta, A.; Dutta, S.K.; Bhattacharyya, M.; Bhattacharya, S.; Debnath, S.; Roy, S.; Boardman, L.A.; Smyrk, T.C.; Molina, J.R.; Chakrabarti, S.; Chowdhury, S.; Mukhopadhyay, D.; Roychoudhury, S. DNA damage-induced ephrin-B2 reverse signaling promotes chemoresistance and drives EMT in colorectal carcinoma harboring mutant p53. Cell Death Differ., 2016, 23(4), 707-722.
[http://dx.doi.org/10.1038/cdd.2015.133] [PMID: 26494468]
[22]
López-Pérez, J.L.; Olmedo, D.A.; Del Olmo, E.; Vásquez, Y.; Solís, P.N.; Gupta, M.P.; San Feliciano, A. Cytotoxic 4-phenylcoumarins from the leaves of Marila pluricostata. J. Nat. Prod., 2005, 68(3), 369-373.
[http://dx.doi.org/10.1021/np049642g] [PMID: 15787438]
[23]
Ashok, D.; Chiranjeevi, P.; Kumar, A.V.; Sarasija, M.; Krishna, V.S.; Sriram, D.; Balasubramanian, S. 1,2,3-Triazole-fused spirochromenes as potential anti-tubercular agents: Synthesis and biological evaluation. RSC Advances, 2018, 8, 16997-17007.
[http://dx.doi.org/10.1039/C8RA03197E]
[24]
Abd-El-Aziz, A.S.; Alsaggaf, A.; Assirey, E.; Naqvi, A.; Okasha, R.M.; Afifi, T.H.; Hagar, M. A new family of Benzo[h]chromene based azo dye: Synthesis, in-silico and dft studies with in vitro antimicrobial and antiproliferative assessment. Int. J. Mol. Sci., 2021, 22(6), 2807.
[http://dx.doi.org/10.3390/ijms22062807] [PMID: 33802075]
[25]
Hu, Q.F.; Zhou, B.; Huang, J.M.; Gao, X.M.; Shu, L.D.; Yang, G.Y.; Che, C.T. Antiviral phenolic compounds from Arundina gramnifolia. J. Nat. Prod., 2013, 76(2), 292-296.
[http://dx.doi.org/10.1021/np300727f] [PMID: 23368966]
[26]
Cheng, S.Y.; Huang, K.J.; Wang, S.K.; Wen, Z.H.; Chen, P.W.; Duh, C.Y. Antiviral and anti-inflammatory metabolites from the soft coral Sinularia capillosa. J. Nat. Prod., 2010, 73(4), 771-775.
[http://dx.doi.org/10.1021/np9008078] [PMID: 20155971]
[27]
Prabuddha, B.; Santi, M. M.; Amit, B. Synthesis of DNAintercalating 6H-Benzo[c]chromen-6-one derivatives through a strategic combination of garratt–braverman and minisci acyloxylation reactions. 2016, 2016, 1439-1448.
[28]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[29]
Xu, Z. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 2020, 206, 112686.
[http://dx.doi.org/10.1016/j.ejmech.2020.112686] [PMID: 32795773]
[30]
Feng, L.S.; Zheng, M.J.; Zhao, F.; Liu, D. 1,2,3-Triazole hybrids with anti-HIV-1 activity. Arch. Pharm. (Weinheim), 2021, 354(1), e2000163.
[http://dx.doi.org/10.1002/ardp.202000163] [PMID: 32960467]
[31]
Allam, M.; Bhavani, A.K.D.; Mudiraj, A.; Ranjan, N.; Thippana, M.; Babu, P.P. Synthesis of pyrazolo[3,4-d]pyrimidin-4(5H)-ones tethered to 1,2,3-triazoles and their evaluation as potential anticancer agents. Eur. J. Med. Chem., 2018, 156, 43-52.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.055] [PMID: 30006173]
[32]
Wang, L.; Xu, S.; Liu, X.; Chen, X.; Xiong, H.; Hou, S.; Zou, W.; Tang, Q.; Zheng, P.; Zhu, W. Discovery of thinopyrimidinetriazole conjugates as c-Met targeting and apoptosis inducing agents. Bioorg. Chem., 2018, 77, 370-380.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.037] [PMID: 29421713]
[33]
Wang, B.; Zhao, B.; Chen, Z-S.; Pang, L.P.; Zhao, Y.D.; Guo, Q.; Zhang, X.H.; Liu, Y.; Liu, G.Y. Hao-Zhang; Zhang, X.Y.; Ma, L.Y.; Liu, H.M. Exploration of 1,2,3-triazole-pyrimidine hybrids as potent reversal agents against ABCB1-mediated multidrug resistance. Eur. J. Med. Chem., 2018, 143, 1535-1542.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.041] [PMID: 29126726]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy