Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Mini-Review Article

Potential Therapeutic Application of Local Anesthetics in Cancer Treatment

Author(s): Zhaosheng Jin, William Zhang, Hengrui Liu, Arianna Ding, Yongjian Lin, Shao-Xiong Wu* and Jun Lin*

Volume 17, Issue 4, 2022

Published on: 30 March, 2022

Page: [326 - 342] Pages: 17

DOI: 10.2174/1574892817666220119121204

Price: $65

Abstract

Local anesthetics are voltage-gated sodium channel blockers primarily administered locally or to the innervating nerves for anesthetic or analgesic purposes. In vitro studies have found direct effects of local anesthetics on cancer cells, such as impact on cancer cell proliferation, apoptosis, migration, invasion, and chemosensitivity, by multiple mechanisms. So far, in vivo evidence regarding the effect of local anesthetics on cancer cell lines is relatively lacking. Local and regional anesthesia administration has been reported to reduce postoperative pain and opioid use in cancer treatment. Additionally, regional anesthesia may reduce the perioperative stress response. However, the clinical therapeutic application of local anesthetics in cancer remains exploratory. In this review, we will discuss the direct and indirect effects of local anesthetics on cancer cells, and discuss the current evidence related to the use of local anesthetics in the treatment of cancer.

Keywords: Cancer, immunomodulation, ion channels, local anesthetics, opioids, pain, stress response.

[1]
Pan H, Gray R, Braybrooke J, et al. 20-Year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med 2017; 377(19): 1836-46.
[http://dx.doi.org/10.1056/NEJMoa1701830] [PMID: 29117498]
[2]
Young PE, Womeldorph CM, Johnson EK, et al. Early detection of colorectal cancer recurrence in patients undergoing surgery with curative intent: current status and challenges. J Cancer 2014; 5(4): 262-71.
[http://dx.doi.org/10.7150/jca.7988] [PMID: 24790654]
[3]
Mathias TJ, Chang KT, Martin SS, Vitolo MI. Gauging the impact of cancer treatment modalities on Circulating Tumor Cells (CTCs). Cancers (Basel) 2020; 12(3): E743.
[http://dx.doi.org/10.3390/cancers12030743] [PMID: 32245166]
[4]
Desborough JP. The stress response to trauma and surgery. Br J Anaesth 2000; 85(1): 109-17.
[http://dx.doi.org/10.1093/bja/85.1.109] [PMID: 10927999]
[5]
Sevensma K, Schleichert T, Schwickerath C, Shoemaker A, Miller C. A randomized double blinded study to determine the effectiveness of utilizing intraperitoneal bupivacaine: Does it reduce postoperative opioid use following laparoscopic appendectomy? Am J Surg 2019; 217(3): 479-82.
[http://dx.doi.org/10.1016/j.amjsurg.2018.10.045] [PMID: 30446161]
[6]
Sites BD, Taenzer AH, Herrick MD, et al. Incidence of local anesthetic systemic toxicity and postoperative neurologic symptoms associated with 12,668 ultrasound-guided nerve blocks: an analysis from a prospective clinical registry. Reg Anesth Pain Med 2012; 37(5): 478-82.
[http://dx.doi.org/10.1097/AAP.0b013e31825cb3d6] [PMID: 22705953]
[7]
Moraca RJ, Sheldon DG, Thirlby RC. The role of epidural anesthesia and analgesia in surgical practice. Ann Surg 2003; 238(5): 663-73.
[http://dx.doi.org/10.1097/01.sla.0000094300.36689.ad] [PMID: 14578727]
[8]
Qin Z, Xiang C, Li H, et al. The impact of dexmedetomidine added to ropivicaine for transversus abdominis plane block on stress response in laparoscopic surgery: a randomized controlled trial. BMC Anesthesiol 2019; 19(1): 181.
[http://dx.doi.org/10.1186/s12871-019-0859-7] [PMID: 31604428]
[9]
Klinger RY, Cooter M, Berger M, et al. Effect of intravenous lidocaine on the transcerebral inflammatory response during cardiac surgery: a randomized-controlled trial. Can J Anaesth 2016; 63(11): 1223-32.
[http://dx.doi.org/10.1007/s12630-016-0704-0] [PMID: 27470233]
[10]
Matas M, Sotošek V, Kozmar A, Likić R, Sekulić A. Effect of local anesthesia with lidocaine on perioperative proinflammatory cytokine levels in plasma and cerebrospinal fluid in cerebral aneurysm patients: Study protocol for a randomized clinical trial. Medicine (Baltimore) 2019; 98(42): e17450.
[http://dx.doi.org/10.1097/MD.0000000000017450] [PMID: 31626100]
[11]
Liu H, Dilger JP, Lin J. Effects of local anesthetics on cancer cells. Pharmacol Ther 2020; 212: 107558.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107558] [PMID: 32343985]
[12]
Liu H, Dilger JP, Lin J. Lidocaine suppresses viability and migration of human breast cancer cells: trpm7 as a target for some breast cancer cell lines. Cancers (Basel) 2021; 13(2): 234.
[http://dx.doi.org/10.3390/cancers13020234] [PMID: 33435261]
[13]
Taylor A, McLeod G. Basic pharmacology of local anaesthetics. BJA Educ 2020; 20(2): 34-41.
[http://dx.doi.org/10.1016/j.bjae.2019.10.002] [PMID: 33456928]
[14]
Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 1977; 69(4): 497-515.
[http://dx.doi.org/10.1085/jgp.69.4.497] [PMID: 300786]
[15]
Becker DE, Reed KL. Essentials of local anesthetic pharmacology. Anesth Prog 2006; 53(3): 98-108.
[http://dx.doi.org/10.2344/0003-3006(2006)53[98:EOLAP]2.0.CO;2] [PMID: 17175824]
[16]
Becker DE, Reed KL. Local anesthetics: review of pharmacological considerations. Anesth Prog 2012; 59(2): 90-101.
[http://dx.doi.org/10.2344/0003-3006-59.2.90] [PMID: 22822998]
[17]
Fukuda K, Nakajima T, Viswanathan PC, Balser JR. Compound-specific Na+ channel pore conformational changes induced by local anaesthetics. J Physiol 2005; 564(Pt 1): 21-31.
[http://dx.doi.org/10.1113/jphysiol.2004.081646] [PMID: 15677685]
[18]
Wang Y, Mi J, Lu K, Lu Y, Wang K. Comparison of gating properties and use-dependent block of Nav1.5 and Nav1.7 channels by anti-arrhythmics mexiletine and lidocaine. PLoS One 2015; 10(6): e0128653.
[http://dx.doi.org/10.1371/journal.pone.0128653] [PMID: 26068619]
[19]
Sheets PL, Jarecki BW, Cummins TR. Lidocaine reduces the transition to slow inactivation in Na(v)1.7 voltage-gated sodium channels. Br J Pharmacol 2011; 164(2b): 719-30.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01209.x] [PMID: 21232038]
[20]
Fozzard HA, Sheets MF, Hanck DA. The sodium channel as a target for local anesthetic drugs. Front Pharmacol 2011; 2: 68.
[http://dx.doi.org/10.3389/fphar.2011.00068] [PMID: 22053156]
[21]
Komai H, McDowell TS. Local anesthetic inhibition of voltage-activated potassium currents in rat dorsal root ganglion neurons. Anesthesiology 2001; 94(6): 1089-95.
[http://dx.doi.org/10.1097/00000542-200106000-00025] [PMID: 11465602]
[22]
Gray NW, Zhorov BS, Moczydlowski EG. Interaction of local anesthetics with the K (+) channel pore domain: KcsA as a model for drug-dependent tetramer stability. Channels (Austin) 2013; 7(3): 182-93.
[http://dx.doi.org/10.4161/chan.24455] [PMID: 23545989]
[23]
Kawano T, Oshita S, Takahashi A, et al. Molecular mechanisms of the inhibitory effects of bupivacaine, levobupivacaine, and ropivacaine on sarcolemmal adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Anesthesiology 2004; 101(2): 390-8.
[http://dx.doi.org/10.1097/00000542-200408000-00020] [PMID: 15277922]
[24]
Arsyad A, Dobson GP. Lidocaine relaxation in isolated rat aortic rings is enhanced by endothelial removal: possible role of Kv, KATP channels and A2a receptor crosstalk. BMC Anesthesiol 2016; 16(1): 121.
[http://dx.doi.org/10.1186/s12871-016-0286-y] [PMID: 27914476]
[25]
Sugiyama K, Muteki T. Local anesthetics depress the calcium current of rat sensory neurons in culture. Anesthesiology 1994; 80(6): 1369-78.
[http://dx.doi.org/10.1097/00000542-199406000-00025] [PMID: 8010481]
[26]
Xiong Z, Strichartz GR. Inhibition by local anesthetics of Ca2+ channels in rat anterior pituitary cells. Eur J Pharmacol 1998; 363(1): 81-90.
[http://dx.doi.org/10.1016/S0014-2999(98)00769-9] [PMID: 9877085]
[27]
Jiang Y, Gou H, Zhu J, Tian S, Yu L. Lidocaine inhibits the invasion and migration of TRPV6-expressing cancer cells by TRPV6 downregulation. Oncol Lett 2016; 12(2): 1164-70.
[http://dx.doi.org/10.3892/ol.2016.4709] [PMID: 27446413]
[28]
Leng TD, Lin J, Sun HW, et al. Local anesthetic lidocaine inhibits TRPM7 current and TRPM7-mediated zinc toxicity. CNS Neurosci Ther 2015; 21(1): 32-9.
[http://dx.doi.org/10.1111/cns.12318] [PMID: 25169754]
[29]
Lin J, Chu X, Maysami S, et al. Inhibition of acid sensing ion channel currents by lidocaine in cultured mouse cortical neurons. Anesth Analg 2011; 112(4): 977-81.
[http://dx.doi.org/10.1213/ANE.0b013e31820a511c] [PMID: 21385979]
[30]
Hollmann MW, Herroeder S, Kurz KS, et al. Time-dependent inhibition of G protein-coupled receptor signaling by local anesthetics. Anesthesiology 2004; 100(4): 852-60.
[http://dx.doi.org/10.1097/00000542-200404000-00015] [PMID: 15087620]
[31]
Hollmann MW, Wieczorek KS, Berger A, Durieux ME. Local anesthetic inhibition of G protein-coupled receptor signaling by interference with Galpha(q) protein function. Mol Pharmacol 2001; 59(2): 294-301.
[http://dx.doi.org/10.1124/mol.59.2.294] [PMID: 11160866]
[32]
Benkwitz C, Garrison JC, Linden J, Durieux ME, Hollmann MW. Lidocaine enhances Galphai protein function. Anesthesiology 2003; 99(5): 1093-101.
[http://dx.doi.org/10.1097/00000542-200311000-00015] [PMID: 14576545]
[33]
Liu H. Nav channels in cancers: Nonclassical roles. Global Journal of Cancer Therapy 2020; 6(1): 5.
[34]
Abdul Kadir L, Stacey M, Barrett-Jolley R. Emerging roles of the membrane potential: action beyond the action potential. Front Physiol 2018; 9: 1661.
[http://dx.doi.org/10.3389/fphys.2018.01661] [PMID: 30519193]
[35]
Yang M, Brackenbury WJ. Membrane potential and cancer progression. Front Physiol 2013; 4: 185.
[http://dx.doi.org/10.3389/fphys.2013.00185] [PMID: 23882223]
[36]
Djamgoz MBA, Fraser SP, Brackenbury WJ. In vivo evidence for voltage-gated sodium channel expression in carcinomas and potentiation of metastasis. Cancers (Basel) 2019; 11(11): E1675.
[http://dx.doi.org/10.3390/cancers11111675] [PMID: 31661908]
[37]
Target of vgsc beta-3 protein for prevention, treatment and diagnostic detection of cancers. 2015.WO2016011840A1,
[38]
Liu H, Dilger JP, Lin J. The role of transient receptor potential melastatin 7 (TRPM7) in cell viability: a potential target to suppress breast cancer cell cycle. Cancers (Basel) 2020; 12(1): E131.
[http://dx.doi.org/10.3390/cancers12010131] [PMID: 31947967]
[39]
Zhang Y, Jia J, Jin W, et al. Lidocaine inhibits the proliferation and invasion of hepatocellular carcinoma by downregulating USP14 induced PI3K/Akt pathway. Pathol Res Pract 2020; 216(8): 152963.
[http://dx.doi.org/10.1016/j.prp.2020.152963] [PMID: 32471606]
[40]
Wang Z, Liu Q, Lu J, Cao J, Wang XY, Chen Y. Lidocaine promotes autophagy of SH-SY5Y cells through inhibiting PI3K/AKT/mTOR pathway by upregulating miR-145. Toxicol Res (Camb) 2020; 9(4): 467-73.
[http://dx.doi.org/10.1093/toxres/tfaa049] [PMID: 32905277]
[41]
Zhang X, Gu G, Li X, Zhang C. Lidocaine alleviates cisplatin resistance and inhibits migration of MGC-803/DDP cells through decreasing miR-10b. Cell Cycle 2020; 19(19): 2530-7.
[http://dx.doi.org/10.1080/15384101.2020.1809914] [PMID: 32892697]
[42]
Kwakye AK, Kampo S, Lv J, et al. Levobupivacaine inhibits proliferation and promotes apoptosis of breast cancer cells by suppressing the PI3K/Akt/mTOR signalling pathway. BMC Res Notes 2020; 13(1): 386.
[http://dx.doi.org/10.1186/s13104-020-05191-2] [PMID: 32807213]
[43]
Piegeler T, Schläpfer M, Dull RO, et al. Clinically relevant concentrations of lidocaine and ropivacaine inhibit TNFα-induced invasion of lung adenocarcinoma cells in vitro by blocking the activation of Akt and focal adhesion kinase. Br J Anaesth 2015; 115(5): 784-91.
[http://dx.doi.org/10.1093/bja/aev341] [PMID: 26475807]
[44]
Chen J, Jiao Z, Wang A, Zhong W. Lidocaine inhibits melanoma cell proliferation by regulating ERK phosphorylation. J Cell Biochem 2019; 120(4): 6402-8.
[http://dx.doi.org/10.1002/jcb.27927] [PMID: 30430626]
[45]
Sui H, Lou A, Li Z, Yang J. Lidocaine inhibits growth, migration and invasion of gastric carcinoma cells by up-regulation of miR-145. BMC Cancer 2019; 19(1): 233.
[http://dx.doi.org/10.1186/s12885-019-5431-9] [PMID: 30876463]
[46]
Joo JD, In JH, Jung HS, et al. Lidocaine attenuates the expression of ERK1/2 and CREB in a neuropathic pain model of rats. Korean J Anesthesiol 2009; 56(3): 319-24.
[http://dx.doi.org/10.4097/kjae.2009.56.3.319] [PMID: 30625743]
[47]
Sun H, Sun Y. Lidocaine inhibits proliferation and metastasis of lung cancer cell via regulation of miR-539/EGFR axis. Artif Cells Nanomed Biotechnol 2019; 47(1): 2866-74.
[http://dx.doi.org/10.1080/21691401.2019.1636807] [PMID: 31299862]
[48]
Haller I, Hausott B, Tomaselli B, et al. Neurotoxicity of lidocaine involves specific activation of the p38 mitogen-activated protein kinase, but not extracellular signal-regulated or c-jun N-terminal kinases, and is mediated by arachidonic acid metabolites. Anesthesiology 2006; 105(5): 1024-33.
[http://dx.doi.org/10.1097/00000542-200611000-00025] [PMID: 17065898]
[49]
Lirk P, Haller I, Myers RR, et al. Mitigation of direct neurotoxic effects of lidocaine and amitriptyline by inhibition of p38 mitogen-activated protein kinase in vitro and in vivo. Anesthesiology 2006; 104(6): 1266-73.
[http://dx.doi.org/10.1097/00000542-200606000-00023] [PMID: 16732099]
[50]
Chang YC, Hsu YC, Liu CL, Huang SY, Hu MC, Cheng SP. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway. PLoS One 2014; 9(2): e89563.
[http://dx.doi.org/10.1371/journal.pone.0089563] [PMID: 24586874]
[51]
Kwon Y, Woo M, Kim Y. Lidocaine blocks the proliferation, migration, and epithelial-mesenchymal transition of human retinal epithelial cells. Invest Ophthalmol Vis Sci 2019; 60(9): 5807.
[52]
Zhang M, Zheng J, Nussinov R, Ma B. Release of cytochrome c from bax pores at the mitochondrial membrane. Sci Rep 2017; 7(1): 2635.
[http://dx.doi.org/10.1038/s41598-017-02825-7] [PMID: 28572603]
[53]
De Chiara G, Marcocci ME, Torcia M, et al. Bcl-2 Phosphorylation by p38 MAPK: identification of target sites and biologic consequences. J Biol Chem 2006; 281(30): 21353-61.
[http://dx.doi.org/10.1074/jbc.M511052200] [PMID: 16714293]
[54]
Van Laethem A, Van Kelst S, Lippens S, et al. Activation of p38 MAPK is required for Bax translocation to mitochondria, cytochrome c release and apoptosis induced by UVB irradiation in human keratinocytes. FASEB J 2004; 18(15): 1946-8.
[http://dx.doi.org/10.1096/fj.04-2285fje] [PMID: 15388671]
[55]
Colicelli J. Human RAS superfamily proteins and related GTPases. Sci STKE 2004; 2004(250): RE13.
[http://dx.doi.org/10.1126/stke.2502004re13] [PMID: 15367757]
[56]
Zheng Q, Peng X, Zhang Y. Cytotoxicity of amide-linked local anesthetics on melanoma cells via inhibition of Ras and RhoA signaling independent of sodium channel blockade. BMC Anesthesiol 2020; 20(1): 43.
[http://dx.doi.org/10.1186/s12871-020-00957-4] [PMID: 32085741]
[57]
Dan J, Gong X, Li D, Zhu G, Wang L, Li F. Inhibition of gastric cancer by local anesthetic bupivacaine through multiple mechanisms independent of sodium channel blockade. Biomedi Pharmacotherapy 2018; 103
[http://dx.doi.org/10.1016/j.biopha.2018.04.106]
[58]
Li C, Gao S, Li X, Li C, Ma L. Procaine inhibits the proliferation and migration of colon cancer cells through inactivation of the ERK/MAPK/FAK pathways by regulation of RhoA. Oncol Res 2018; 26(2): 209-17.
[http://dx.doi.org/10.3727/096504017X14944585873622] [PMID: 28492141]
[59]
Xuan W, Zhao H, Hankin J, Chen L, Yao S, Ma D. Local anesthetic bupivacaine induced ovarian and prostate cancer apoptotic cell death and underlying mechanisms in vitro. Sci Rep 2016; 6: 26277.
[http://dx.doi.org/10.1038/srep26277] [PMID: 27195613]
[60]
Zhang X, Pang W, Liu H, Wang J. Lidocine potentiates the cytotoxicity of 5-fluorouracil to choriocarcinoma cells by downregulating ABC transport proteins expression. J Cell Biochem 2019; 120(10): 16533-42.
[http://dx.doi.org/10.1002/jcb.28913] [PMID: 31081972]
[61]
Kawasaki C, Kawasaki T, Ogata M, Sata T, Chaudry IH. Lidocaine enhances apoptosis and suppresses mitochondrial functions of human neutrophil in vitro. J Trauma 2010; 68(2): 401-8.
[http://dx.doi.org/10.1097/TA.0b013e3181af6e56] [PMID: 19996799]
[62]
Grishko V, Xu M, Wilson G, Pearsall AW IV. Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. J Bone Joint Surg Am 2010; 92(3): 609-18.
[http://dx.doi.org/10.2106/JBJS.H.01847] [PMID: 20194319]
[63]
Sztark F, Malgat M, Dabadie P, Mazat JP. Comparison of the effects of bupivacaine and ropivacaine on heart cell mitochondrial bioenergetics. Anesthesiology 1998; 88(5): 1340-9.
[http://dx.doi.org/10.1097/00000542-199805000-00026] [PMID: 9605695]
[64]
Hah JM, Bateman BT, Ratliff J, Curtin C, Sun E. Chronic opioid use after surgery: implications for perioperative management in the face of the opioid epidemic. Anesth Analg 2017; 125(5): 1733-40.
[http://dx.doi.org/10.1213/ANE.0000000000002458] [PMID: 29049117]
[65]
Ali S, Zarin M, Jan Z, Maroof A. Effect of bupivacaine on postoperative pain after laparoscopic cholecystectomy. J Coll Physicians Surg Pak 2018; 28(9): 663-6.
[http://dx.doi.org/10.29271/jcpsp.2018.09.663] [PMID: 30158029]
[66]
Boerboom SL, de Haes A, Vd Wetering L, et al. Preperitoneal bupivacaine infiltration reduces postoperative opioid consumption, acute pain, and chronic postsurgical pain after bariatric surgery: a randomized controlled trial. Obes Surg 2018; 28(10): 3102-10.
[http://dx.doi.org/10.1007/s11695-018-3341-6] [PMID: 29926357]
[67]
Zaretsky M, Wood C, Nivens T, et al. Continuous local bupivacaine wound infusion with neuraxial morphine reduces opioid consumption after cesarean delivery. J Matern Fetal Neonatal Med 2019; 32(23): 3895-902.
[http://dx.doi.org/10.1080/14767058.2018.1474872] [PMID: 29848107]
[68]
Swennen C, Bredin S, Eap C, Mensa C, Ohl X, Girard V. Local infiltration analgesia with ropivacaine in acute fracture of thoracolumbar junction surgery. Orthop Traumatol Surg Res 2017; 103(2): 291-4.
[http://dx.doi.org/10.1016/j.otsr.2016.11.012] [PMID: 28038991]
[69]
Kwack JY, Kwon YS. Immediate postoperative pain control with ropivacaine following laparoscopic-assisted vaginal hysterectomy: A randomized double-blind pilot study. Taiwan J Obstet Gynecol 2018; 57(5): 654-8.
[http://dx.doi.org/10.1016/j.tjog.2018.08.007] [PMID: 30342645]
[70]
Tam KW, Chen SY, Huang TW, et al. Effect of wound infiltration with ropivacaine or bupivacaine analgesia in breast cancer surgery: A meta-analysis of randomized controlled trials. Int J Surg 2015; 22: 79-85.
[http://dx.doi.org/10.1016/j.ijsu.2015.07.715] [PMID: 26277531]
[71]
Ozer A, Yılmazlar A, Oztürk E, Yılmazlar T. Preperitoneal catheter analgesia is an effective method for pain management after colorectal surgery: the results of 100 consecutive patients. Local Reg Anesth 2014; 7: 53-7.
[http://dx.doi.org/10.2147/LRA.S71476] [PMID: 25336988]
[72]
Xin Y, Hong Y, Yong LZ. Efficacy of postoperative continuous wound infiltration with local anesthesia after open hepatectomy. Clin J Pain 2014; 30(7): 571-6.
[http://dx.doi.org/10.1097/AJP.0000000000000032] [PMID: 24281275]
[73]
Liang SS, Ying AJ, Affan ET, et al. Continuous local anaesthetic wound infusion for postoperative pain after midline laparotomy for colorectal resection in adults. Cochrane Database Syst Rev 2019; 10(10): CD012310.
[http://dx.doi.org/10.1002/14651858.CD012310.pub2] [PMID: 31627242]
[74]
Raines S, Hedlund C, Franzon M, Lillieborg S, Kelleher G, Ahlén K. Ropivacaine for continuous wound infusion for postoperative pain management: a systematic review and meta-analysis of randomized controlled trials. Eur Surg Res 2014; 53(1-4): 43-60.
[http://dx.doi.org/10.1159/000363233] [PMID: 25060049]
[75]
Beiranvand S, Moradkhani MR. Bupivacaine versus liposomal bupivacaine for pain control. Drug Res (Stuttg) 2018; 68(7): 365-9.
[http://dx.doi.org/10.1055/s-0043-121142] [PMID: 29108087]
[76]
Mont MA, Beaver WB, Dysart SH, Barrington JW, Del Gaizo DJ. Local infiltration analgesia with liposomal bupivacaine improves pain scores and reduces opioid use after total knee arthroplasty: results of a randomized controlled trial. J Arthroplasty 2018; 33(1): 90-6.
[http://dx.doi.org/10.1016/j.arth.2017.07.024] [PMID: 28802777]
[77]
VanWagner MJ, Krebs NM, Corser W, Johnson CN. Liposomal bupivacaine reduces opioid consumption and length of stay in patients undergoing primary total hip arthroplasty. Hip Int 2019; 29(3): 276-81.
[http://dx.doi.org/10.1177/1120700018778240] [PMID: 29808726]
[78]
Candiotti K. Liposomal bupivacaine: an innovative nonopioid local analgesic for the management of postsurgical pain. Pharmacotherapy 2012; 32(9)(Suppl.): 19S-26S.
[http://dx.doi.org/10.1002/j.1875-9114.2012.01183.x] [PMID: 22956491]
[79]
Ma TT, Wang YH, Jiang YF, et al. Liposomal bupivacaine versus traditional bupivacaine for pain control after total hip arthroplasty: A meta-analysis. Medicine (Baltimore) 2017; 96(25): e7190.
[http://dx.doi.org/10.1097/MD.0000000000007190] [PMID: 28640101]
[80]
Wang X, Xiao L, Wang Z, Zhao G, Ma J. Comparison of peri-articular liposomal bupivacaine and standard bupivacaine for postsurgical analgesia in total knee arthroplasty: A systematic review and meta-analysis. Intern J Surgery (London, England) 392017;
[81]
Carli F, Mayo N, Klubien K, Schricker T, Trudel J, Belliveau P. Epidural analgesia enhances functional exercise capacity and health-related quality of life after colonic surgery: results of a randomized trial. Anesthesiology 2002; 97(3): 540-9.
[http://dx.doi.org/10.1097/00000542-200209000-00005] [PMID: 12218518]
[82]
Guay J, Nishimori M, Kopp SL. Epidural local anesthetics versus opioid-based analgesic regimens for postoperative gastrointestinal paralysis, vomiting, and pain after abdominal surgery: a cochrane review. Anesth Analg 2016; 123(6): 1591-602.
[http://dx.doi.org/10.1213/ANE.0000000000001628] [PMID: 27870743]
[83]
Chan EY, Fransen M, Parker DA, Assam PN, Chua N. Femoral nerve blocks for acute postoperative pain after knee replacement surgery. Cochrane Database Syst Rev 2014; (5): CD009941.
[http://dx.doi.org/10.1002/14651858.CD009941.pub2] [PMID: 24825360]
[84]
Versyck B, van Geffen GJ, Chin KJ. Analgesic efficacy of the Pecs II block: a systematic review and meta-analysis. Anaesthesia 2019; 74(5): 663-73.
[http://dx.doi.org/10.1111/anae.14607] [PMID: 30957884]
[85]
Hussain N, Goldar G, Ragina N, Banfield L, Laffey JG, Abdallah FW. Suprascapular and interscalene nerve block for shoulder surgery: a systematic review and meta-analysis. Anesthesiology 2017; 127(6): 998-1013.
[http://dx.doi.org/10.1097/ALN.0000000000001894] [PMID: 28968280]
[86]
Jendoubi A, Naceur IB, Bouzouita A, et al. A comparison between intravenous lidocaine and ketamine on acute and chronic pain after open nephrectomy: A prospective, double-blind, randomized, placebo-controlled study. Saudi J Anaesth 2017; 11(2): 177-84.
[http://dx.doi.org/10.4103/1658-354X.203027] [PMID: 28442956]
[87]
Song X, Sun Y, Zhang X, Li T, Yang B. Effect of perioperative intravenous lidocaine infusion on postoperative recovery following laparoscopic Cholecystectomy-A randomized controlled trial. Int J Surg 2017; 45: 8-13.
[http://dx.doi.org/10.1016/j.ijsu.2017.07.042] [PMID: 28705592]
[88]
Weibel S, Jokinen J, Pace NL, et al. Efficacy and safety of intravenous lidocaine for postoperative analgesia and recovery after surgery: a systematic review with trial sequential analysis. Br J Anaesth 2016; 116(6): 770-83.
[http://dx.doi.org/10.1093/bja/aew101] [PMID: 27199310]
[89]
Weibel S, Jelting Y, Pace NL, et al. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults. Cochrane Database Syst Rev 2018; 6(6): CD009642.
[http://dx.doi.org/10.1002/14651858.CD009642.pub3] [PMID: 29864216]
[90]
McCarthy GC, Megalla SA, Habib AS. Impact of intravenous lidocaine infusion on postoperative analgesia and recovery from surgery: a systematic review of randomized controlled trials. Drugs 2010; 70(9): 1149-63.
[http://dx.doi.org/10.2165/10898560-000000000-00000] [PMID: 20518581]
[91]
Choi KW, Nam KH, Lee JR, et al. The effects of intravenous lidocaine infusions on the quality of recovery and chronic pain after robotic thyroidectomy: a randomized, double-blinded, controlled study. World J Surg 2017; 41(5): 1305-12.
[http://dx.doi.org/10.1007/s00268-016-3842-1] [PMID: 27896411]
[92]
Finnerty CC, Mabvuure NT, Ali A, Kozar RA, Herndon DN. The surgically induced stress response. JPEN J Parenter Enteral Nutr 2013; 37(5)(Suppl.): 21S-9S.
[http://dx.doi.org/10.1177/0148607113496117] [PMID: 24009246]
[93]
Li Y, Dong H, Tan S, Qian Y, Jin W. Effects of thoracic epidural anesthesia/analgesia on the stress response, pain relief, hospital stay, and treatment costs of patients with esophageal carcinoma undergoing thoracic surgery: A single-center, randomized controlled trial. Medicine (Baltimore) 2019; 98(7): e14362.
[http://dx.doi.org/10.1097/MD.0000000000014362] [PMID: 30762735]
[94]
Edipoglu IS, Celik F. The associations between cognitive dysfunction, stress biomarkers, and administered anesthesia type in total knee arthroplasties: prospective, randomized trial. Pain Physician 2019; 22(5): 495-507.
[http://dx.doi.org/10.36076/ppj/2019.22.495] [PMID: 31561651]
[95]
Liu R, Qin H, Wang M, Li K, Zhao G. Transversus abdominis plane block with general anesthesia blunts the perioperative stress response in patients undergoing radical gastrectomy. BMC Anesthesiol 2019; 19(1): 205.
[http://dx.doi.org/10.1186/s12871-019-0861-0] [PMID: 31699052]
[96]
Raof RA, El Metainy SA, Alia DA, Wahab MA. Dexmedetomidine decreases the required amount of bupivacaine for ultrasound-guided transversus abdominis plane block in pediatrics patients: a randomized study. J Clin Anesth 2017; 37: 55-60.
[http://dx.doi.org/10.1016/j.jclinane.2016.10.041] [PMID: 28235529]
[97]
Sun Q, Liu S, Wu H, et al. Dexmedetomidine as an adjuvant to local anesthetics in transversus abdominis plane block: a systematic review and meta-analysis. Clin J Pain 2019; 35(4): 375-84.
[http://dx.doi.org/10.1097/AJP.0000000000000671] [PMID: 30475260]
[98]
Davenport L, Letson HL, Dobson GP. Immune-inflammatory activation after a single laparotomy in a rat model: effect of adenosine, lidocaine and Mg2+ infusion to dampen the stress response. Innate Immun 2017; 23(5): 482-94.
[http://dx.doi.org/10.1177/1753425917718921] [PMID: 28691873]
[99]
Sridhar P, Sistla SC, Ali SM, Karthikeyan VS, Badhe AS, Ananthanarayanan PH. Effect of intravenous lignocaine on perioperative stress response and post-surgical ileus in elective open abdominal surgeries: a double-blind randomized controlled trial. ANZ J Surg 2015; 85(6): 425-9.
[http://dx.doi.org/10.1111/ans.12783] [PMID: 25078385]
[100]
Kaba A, Laurent SR, Detroz BJ, et al. Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology 2007; 106(1): 11-8.
[http://dx.doi.org/10.1097/00000542-200701000-00007] [PMID: 17197840]
[101]
Tohme S, Simmons RL, Tsung A. Surgery for cancer: a trigger for metastases. Cancer Res 2017; 77(7): 1548-52.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1536] [PMID: 28330928]
[102]
Chen Z, Zhang P, Xu Y, et al. Surgical stress and cancer progression: the twisted tango. Mol Cancer 2019; 18(1): 132.
[http://dx.doi.org/10.1186/s12943-019-1058-3] [PMID: 31477121]
[103]
Angka L, Khan ST, Kilgour MK, Xu R, Kennedy MA, Auer RC. Dysfunctional natural killer cells in the aftermath of cancer surgery. Int J Mol Sci 2017; 18(8): E1787.
[http://dx.doi.org/10.3390/ijms18081787] [PMID: 28817109]
[104]
Ananth AA, Tai LH, Lansdell C, et al. Surgical stress abrogates pre-existing protective T cell mediated anti-tumor immunity leading to postoperative cancer recurrence. PLoS One 2016; 11(5): e0155947.
[http://dx.doi.org/10.1371/journal.pone.0155947] [PMID: 27196057]
[105]
Bakos O, Lawson C, Rouleau S, Tai L-H. Combining surgery and immunotherapy: turning an immunosuppressive effect into a therapeutic opportunity. J Immunother Cancer 2018; 6(1): 86.
[http://dx.doi.org/10.1186/s40425-018-0398-7] [PMID: 30176921]
[106]
Cata JP, Ramirez MF, Velasquez JF, et al. Lidocaine stimulates the function of natural killer cells in different experimental settings. Anticancer Res 2017; 37(9): 4727-32.
[PMID: 28870891]
[107]
Lucchinetti E, Awad AE, Rahman M, et al. Antiproliferative effects of local anesthetics on mesenchymal stem cells: potential implications for tumor spreading and wound healing. Anesthesiology 2012; 116(4): 841-56.
[http://dx.doi.org/10.1097/ALN.0b013e31824babfe] [PMID: 22343474]
[108]
Wang HL, Yan HD, Liu YY, et al. Intraoperative intravenous lidocaine exerts a protective effect on cell-mediated immunity in patients undergoing radical hysterectomy. Mol Med Rep 2015; 12(5): 7039-44.
[http://dx.doi.org/10.3892/mmr.2015.4235] [PMID: 26299324]
[109]
Yardeni IZ, Beilin B, Mayburd E, Levinson Y, Bessler H. The effect of perioperative intravenous lidocaine on postoperative pain and immune function. Anesth Analg 2009; 109(5): 1464-9.
[http://dx.doi.org/10.1213/ANE.0b013e3181bab1bd] [PMID: 19843784]
[110]
Vanni G, Materazzo M, Perretta T, et al. Impact of awake breast cancer surgery on postoperative lymphocyte responses. in vivo 2019; 33(6): 1879-84.
[http://dx.doi.org/10.21873/invivo.11681] [PMID: 31662515]
[111]
Kim SY, Kim NK, Baik SH, et al. Effects of postoperative pain management on immune function after laparoscopic resection of colorectal cancer: a randomized study. Medicine (Baltimore) 2016; 95(19): e3602.
[http://dx.doi.org/10.1097/MD.0000000000003602] [PMID: 27175664]
[112]
Hong JY, Lim KT. Effect of preemptive epidural analgesia on cytokine response and postoperative pain in laparoscopic radical hysterectomy for cervical cancer. Reg Anesth Pain Med 2008; 33(1): 44-51.
[http://dx.doi.org/10.1097/00115550-200801000-00008] [PMID: 18155056]
[113]
Gu CY, Zhang J, Qian YN, Tang QF. Effects of epidural anesthesia and postoperative epidural analgesia on immune function in esophageal carcinoma patients undergoing thoracic surgery. Mol Clin Oncol 2015; 3(1): 190-6.
[http://dx.doi.org/10.3892/mco.2014.405] [PMID: 25469293]
[114]
Ahlers O, Nachtigall I, Lenze J, et al. Intraoperative thoracic epidural anaesthesia attenuates stress-induced immunosuppression in patients undergoing major abdominal surgery. Br J Anaesth 2008; 101(6): 781-7.
[http://dx.doi.org/10.1093/bja/aen287] [PMID: 18922851]
[115]
Wang L, Liang S, Chen H, Xu Y, Wang Y. The effects of epidural anaesthesia and analgesia on T lymphocytes differentiation markers and cytokines in patients after gastric cancer resection. BMC Anesthesiol 2019; 19(1): 102.
[http://dx.doi.org/10.1186/s12871-019-0778-7] [PMID: 31185917]
[116]
Kun L, Tang L, Wang J, Yang H, Ren J. Effect of combined general/epidural anesthesia on postoperative NK cell activity and cytokine response in gastric cancer patients undergoing radical resection. Hepatogastroenterology 2014; 61(132): 1142-7.
[PMID: 26158178]
[117]
Dong H, Zhang Y, Xi H. The effects of epidural anaesthesia and analgesia on natural killer cell cytotoxicity and cytokine response in patients with epithelial ovarian cancer undergoing radical resection. J Int Med Res 2012; 40(5): 1822-9.
[http://dx.doi.org/10.1177/030006051204000520] [PMID: 23206463]
[118]
Volk T, Schenk M, Voigt K, Tohtz S, Putzier M, Kox WJ. Postoperative epidural anesthesia preserves lymphocyte, but not monocyte, immune function after major spine surgery. Anesth Analg 2004; 98(4): 1086-92.
[http://dx.doi.org/10.1213/01.ANE.0000104586.12700.3A] [PMID: 15041604]
[119]
Bortsov AV, Millikan RC, Belfer I, Boortz-Marx RL, Arora H, McLean SA. μ-Opioid receptor gene A118G polymorphism predicts survival in patients with breast cancer. Anesthesiology 2012; 116(4): 896-902.
[http://dx.doi.org/10.1097/ALN.0b013e31824b96a1] [PMID: 22433205]
[120]
Fujioka N, Nguyen J, Chen C, et al. Morphine-induced epidermal growth factor pathway activation in non-small cell lung cancer. Anesth Analg 2011; 113(6): 1353-64.
[http://dx.doi.org/10.1213/ANE.0b013e318232b35a] [PMID: 22003224]
[121]
Grandhi RK, Lee S, Abd-Elsayed A. Does opioid use cause angiogenesis and metastasis? Pain Med 2017; 18(1): 140-51.
[http://dx.doi.org/10.1093/pm/pnw132] [PMID: 27346886]
[122]
Harper P, Hald O, Lwaleed BA, et al. The impact of morphine treatment on bladder cancer cell proliferation and apoptosis: in vitro studies. Exp Oncol 2018; 40(3): 190-3.
[http://dx.doi.org/10.31768/2312-8852.2018.40(3):190-193] [PMID: 30285005]
[123]
Cronin-Fenton D. Opioids and breast cancer recurrence. Curr Opin Support Palliat Care 2019; 13(2): 88-93.
[http://dx.doi.org/10.1097/SPC.0000000000000426] [PMID: 30925533]
[124]
Wigmore T, Farquhar-Smith P. Opioids and cancer: friend or foe? Curr Opin Support Palliat Care 2016; 10(2): 109-18.
[http://dx.doi.org/10.1097/SPC.0000000000000208] [PMID: 26990052]
[125]
Juneja R. Opioids and cancer recurrence. Curr Opin Support Palliat Care 2014; 8(2): 91-101.
[http://dx.doi.org/10.1097/SPC.0000000000000056] [PMID: 24759319]
[126]
Xie N, Matigian N, Vithanage T, et al. Effect of perioperative opioids on cancer-relevant circulating parameters: Mu opioid receptor and toll-like receptor 4 activation potential, and proteolytic profile. Clin Cancer Res 2018; 24(10): 2319-27.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0172] [PMID: 29511031]
[127]
Szczepaniak A, Fichna J, Zielińska M. Opioids in cancer development, progression and metastasis: focus on colorectal cancer. Curr Treat Options Oncol 2020; 21(1): 6.
[http://dx.doi.org/10.1007/s11864-019-0699-1] [PMID: 31970561]
[128]
Ondrovics M, Hoelbl-Kovacic A, Fux DA. Opioids: Modulators of angiogenesis in wound healing and cancer. Oncotarget 2017; 8(15): 25783-96.
[http://dx.doi.org/10.18632/oncotarget.15419] [PMID: 28445930]
[129]
Nguyen J, Luk K, Vang D, Soto W, Vincent L, Robiner S, et al. Morphine stimulates cancer progression and mast cell activation and impairs survival in transgenic mice with breast cancer. Br J Anaesth 2014; 113(Suppl 1): i4-13.
[http://dx.doi.org/10.1093/bja/aeu090]
[130]
Abdel-Majid RM, Marshall JS. Prostaglandin E2 induces degranulation-independent production of vascular endothelial growth factor by human mast cells. J Immunol 2004; 172(2): 1227-36.
[http://dx.doi.org/10.4049/jimmunol.172.2.1227] [PMID: 14707101]
[131]
Farooqui M, Li Y, Rogers T, et al. COX-2 inhibitor celecoxib prevents chronic morphine-induced promotion of angiogenesis, tumour growth, metastasis and mortality, without compromising analgesia. Br J Cancer 2007; 97(11): 1523-31.
[http://dx.doi.org/10.1038/sj.bjc.6604057] [PMID: 17971769]
[132]
Koodie L, Ramakrishnan S, Roy S. Morphine suppresses tumor angiogenesis through a HIF-1alpha/p38MAPK pathway. Am J Pathol 2010; 177(2): 984-97.
[http://dx.doi.org/10.2353/ajpath.2010.090621] [PMID: 20616349]
[133]
Koodie L, Yuan H, Pumper JA, et al. Morphine inhibits migration of tumor-infiltrating leukocytes and suppresses angiogenesis associated with tumor growth in mice. Am J Pathol 2014; 184(4): 1073-84.
[http://dx.doi.org/10.1016/j.ajpath.2013.12.019] [PMID: 24495739]
[134]
Maher DP, Walia D, Heller NM. Suppression of human natural killer cells by different classes of opioids. Anesth Analg 2019; 128(5): 1013-21.
[http://dx.doi.org/10.1213/ANE.0000000000004058] [PMID: 30801358]
[135]
Vassou D, Bakogeorgou E, Kampa M, Dimitriou H, Hatzoglou A, Castanas E. Opioids modulate constitutive B-lymphocyte secretion. Int Immunopharmacol 2008; 8(5): 634-44.
[http://dx.doi.org/10.1016/j.intimp.2008.01.002] [PMID: 18387505]
[136]
Zhang EY, Xiong J, Parker BL, et al. Depletion and recovery of lymphoid subsets following morphine administration. Br J Pharmacol 2011; 164(7): 1829-44.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01475.x] [PMID: 21557737]
[137]
Bayer BM, Daussin S, Hernandez M, Irvin L. Morphine inhibition of lymphocyte activity is mediated by an opioid dependent mechanism. Neuropharmacology 1990; 29(4): 369-74.
[http://dx.doi.org/10.1016/0028-3908(90)90096-A] [PMID: 2160624]
[138]
Pellis NR, Harper C, Dafny N. Suppression of the induction of delayed hypersensitivity in rats by repetitive morphine treatments. Exp Neurol 1986; 93(1): 92-7.
[http://dx.doi.org/10.1016/0014-4886(86)90148-2] [PMID: 3488229]
[139]
Eisenstein TK. The role of opioid receptors in immune system function. Front Immunol 2019; 10: 2904.
[http://dx.doi.org/10.3389/fimmu.2019.02904] [PMID: 31921165]
[140]
Liang X, Liu R, Chen C, Ji F, Li T. Opioid system modulates the immune function: a review. Transl Perioper Pain Med 2016; 1(1): 5-13.
[PMID: 26985446]
[141]
Szabo I, Rojavin M, Bussiere JL, Eisenstein TK, Adler MW, Rogers TJ. Suppression of peritoneal macrophage phagocytosis of Candida albicans by opioids. J Pharmacol Exp Ther 1993; 267(2): 703-6.
[PMID: 8246144]
[142]
Roy S, Ramakrishnan S, Loh HH, Lee NM. Chronic morphine treatment selectively suppresses macrophage colony formation in bone marrow. Eur J Pharmacol 1991; 195(3): 359-63.
[http://dx.doi.org/10.1016/0014-2999(91)90476-7] [PMID: 1831136]
[143]
Pruett SB, Han YC, Fuchs BA. Morphine suppresses primary humoral immune responses by a predominantly indirect mechanism. J Pharmacol Exp Ther 1992; 262(3): 923-8.
[PMID: 1527733]
[144]
Bussiere JL, Adler MW, Rogers TJ, Eisenstein TK. Differential effects of morphine and naltrexone on the antibody response in various mouse strains. Immunopharmacol Immunotoxicol 1992; 14(3): 657-73.
[http://dx.doi.org/10.3109/08923979209005416] [PMID: 1517538]
[145]
Peterson PK, Sharp B, Gekker G, Brummitt C, Keane WF. Opioid-mediated suppression of interferon-gamma production by cultured peripheral blood mononuclear cells. J Clin Invest 1987; 80(3): 824-31.
[http://dx.doi.org/10.1172/JCI113140] [PMID: 3040807]
[146]
Chao CC, Molitor TW, Close K, Hu S, Peterson PK. Morphine inhibits the release of tumor necrosis factor in human peripheral blood mononuclear cell cultures. Int J Immunopharmacol 1993; 15(3): 447-53.
[http://dx.doi.org/10.1016/0192-0561(93)90057-6] [PMID: 8389331]
[147]
Chao CC, Hu S, Molitor TW, et al. Morphine potentiates transforming growth factor-beta release from human peripheral blood mononuclear cell cultures. J Pharmacol Exp Ther 1992; 262(1): 19-24.
[PMID: 1625199]
[148]
Franchi S, Moschetti G, Amodeo G, Sacerdote P. Do all opioid drugs share the same immunomodulatory properties? a review from animal and human studies. Front Immunol 2019; 10(2914): 2914.
[http://dx.doi.org/10.3389/fimmu.2019.02914] [PMID: 31921173]
[149]
Exadaktylos AK, Buggy DJ, Moriarty DC, Mascha E, Sessler DI. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology 2006; 105(4): 660-4.
[http://dx.doi.org/10.1097/00000542-200610000-00008] [PMID: 17006061]
[150]
Biki B, Mascha E, Moriarty DC, Fitzpatrick JM, Sessler DI, Buggy DJ. Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology 2008; 109(2): 180-7.
[http://dx.doi.org/10.1097/ALN.0b013e31817f5b73] [PMID: 18648226]
[151]
Daley MD, Norman PH. Retrospective but not rigorous. Anesthesiology 2009; 111(1): 203.
[http://dx.doi.org/10.1097/ALN.0b013e3181a85e66] [PMID: 19546695]
[152]
Haller G, Myles PS. Regional block and cancer recurrence: too early to tell. Anesthesiology 2007; 107(2): 354.
[http://dx.doi.org/10.1097/01.anes.0000271919.18782.f4] [PMID: 17667583]
[153]
Sun Y, Li T, Gan TJ. The Effects of perioperative regional anesthesia and analgesia on cancer recurrence and survival after oncology surgery: a systematic review and meta-analysis. Reg Anesth Pain Med 2015; 40(5): 589-98.
[http://dx.doi.org/10.1097/AAP.0000000000000273] [PMID: 26263074]
[154]
Macleod LC, Turner RM II, Lopa S, et al. Effect of multimodal analgesia with paravertebral blocks on biochemical recurrence in men undergoing open radical prostatectomy. Urol Oncol 2018; 36(8): 364.e9-364.e14.
[http://dx.doi.org/10.1016/j.urolonc.2018.05.016] [PMID: 29887239]
[155]
Christopher Doiron R, Jaeger M, Booth CM, Wei X, Robert Siemens D. Is there a measurable association of epidural use at cystectomy and postoperative outcomes? A population-based study. Can Urol Assoc J 2016; 10(9-10): 321-7.
[http://dx.doi.org/10.5489/cuaj.3856] [PMID: 27800053]
[156]
Sessler DI, Pei L, Huang Y, et al. Recurrence of breast cancer after regional or general anaesthesia: a randomised controlled trial. Lancet 2019; 394(10211): 1807-15.
[http://dx.doi.org/10.1016/S0140-6736(19)32313-X] [PMID: 31645288]
[157]
Pérez-González O, Cuéllar-Guzmán LF, Soliz J, Cata JP. Impact of regional anesthesia on recurrence, metastasis, and immune response in breast cancer surgery: a systematic review of the literature. Reg Anesth Pain Med 2017; 42(6): 751-6.
[http://dx.doi.org/10.1097/AAP.0000000000000662] [PMID: 28953508]
[158]
Lee Z, Ng K, Ang E, Wang C, Binti Shariffuddin I. Effect of perioperative regional anesthesia on cancer recurrence: A meta-analysis of randomized controlled trials. Intern J Surgery (London, England) 2020; 82
[159]
Jang D, Lim CS, Shin YS, et al. A comparison of regional and general anesthesia effects on 5 year survival and cancer recurrence after transurethral resection of the bladder tumor: a retrospective analysis. BMC Anesthesiol 2016; 16: 16.
[http://dx.doi.org/10.1186/s12871-016-0181-6] [PMID: 26971194]
[160]
Guerrero Orriach JL, Raigon Ponferrada A, Malo Manso A, et al. Anesthesia in combination with propofol increases disease-free survival in bladder cancer patients who undergo radical tumor cystectomy as compared to inhalational anesthetics and opiate-based analgesia. Oncology 2020; 98(3): 161-7.
[http://dx.doi.org/10.1159/000504807] [PMID: 31962315]
[161]
Lee BM, Singh Ghotra V, Karam JA, Hernandez M, Pratt G, Cata JP. Regional anesthesia/analgesia and the risk of cancer recurrence and mortality after prostatectomy: a meta-analysis. Pain Manag (Lond) 2015; 5(5): 387-95.
[http://dx.doi.org/10.2217/pmt.15.30] [PMID: 26250850]
[162]
Izrailtyan I, Qiu J, Overdyk FJ, Erslon M, Gan TJ. Risk factors for cardiopulmonary and respiratory arrest in medical and surgical hospital patients on opioid analgesics and sedatives. PLoS One 2018; 13(3): e0194553.
[http://dx.doi.org/10.1371/journal.pone.0194553] [PMID: 29566020]
[163]
Lee EK, Ahn HJ, Zo JI, Kim K, Jung DM, Park JH. Paravertebral block does not reduce cancer recurrence, but is related to higher overall survival in lung cancer surgery: a retrospective cohort study. Anesth Analg 2017; 125(4): 1322-8.
[http://dx.doi.org/10.1213/ANE.0000000000002342] [PMID: 28857802]
[164]
Chamaraux-Tran TN, Piegeler T. The amide local anesthetic lidocaine in cancer surgery-potential antimetastatic effects and preservation of immune cell function? a narrative review. Front Med (Lausanne) 2017; 4: 235.
[http://dx.doi.org/10.3389/fmed.2017.00235] [PMID: 29326939]
[165]
Yang Q, Zhang Z, Xu H, Ma C. Lidocaine alleviates cytotoxicity-resistance in lung cancer A549/DDP cells via down-regulation of miR-21. Mol Cell Biochem 2019; 456(1-2): 63-72.
[http://dx.doi.org/10.1007/s11010-018-3490-x] [PMID: 30644017]
[166]
Freeman J, Crowley PD, Foley AG, et al. Effect of perioperative lidocaine and cisplatin on metastasis in a murine model of breast cancer surgery. Anticancer Res 2018; 38(10): 5599-606.
[http://dx.doi.org/10.21873/anticanres.12894] [PMID: 30275177]
[167]
Yang X, Zhao L, Li M, et al. Lidocaine enhances the effects of chemotherapeutic drugs against bladder cancer. Sci Rep 2018; 8(1): 598.
[http://dx.doi.org/10.1038/s41598-017-19026-x] [PMID: 29330444]
[168]
Christie LE, Picard J. Local anaesthetic systemic toxicity. BJA Educ 2015; 15(3): 136-42.
[http://dx.doi.org/10.1093/bjaceaccp/mku027]
[169]
Li R, Xiao C, Liu H, Huang Y, Dilger JP, Lin J. Effects of local anesthetics on breast cancer cell viability and migration. BMC Cancer 2018; 18(1): 666.
[http://dx.doi.org/10.1186/s12885-018-4576-2] [PMID: 29914426]
[170]
Grandhi RK, Perona B. Mechanisms of action by which local anesthetics reduce cancer recurrence: a systematic review. Pain Med 2020; 21(2): 401-14.
[PMID: 31282958]
[171]
Sustained-release liposomal anesthetic compositions - Patent US-8834921-B2, 2014.
[172]
Malik O, Kaye AD, Kaye A, Belani K, Urman RD. Emerging roles of liposomal bupivacaine in anesthesia practice. J Anaesthesiol Clin Pharmacol 2017; 33(2): 151-6.
[PMID: 28781438]
[173]
2017.Depot formulations of a local anesthetic and methods for preparation thereof. Patent US9668974B2.
[174]
Ginosar Y, Haroutounian S, Kagan L, Naveh M, Aharon A, Davidson EM. Proliposomal ropivacaine oil: pharmacokinetic and pharmacodynamic data after subcutaneous administration in volunteers. Anesth Analg 2016; 122(5): 1673-80.
[http://dx.doi.org/10.1213/ANE.0000000000001217] [PMID: 27057798]
[175]
2016.10',11'-modified saxitoxins useful for the treatment of pain [patent WO2015157559A3,
[176]
Lu J, Ju Y-T, Li C, Hua F-Z, Xu G-H, Hu Y-H. Effect of TRPV1 combined with lidocaine on cell state and apoptosis of U87-MG glioma cell lines. Asian Pac J Trop Med 2016; 9(3): 288-92.
[http://dx.doi.org/10.1016/j.apjtm.2016.01.030] [PMID: 26972404]
[177]
Byers LA, Rudin CM. Small cell lung cancer: where do we go from here? Cancer 2015; 121(5): 664-72.
[http://dx.doi.org/10.1002/cncr.29098] [PMID: 25336398]
[178]
Lirk P, Berger R, Hollmann MW, Fiegl H. Lidocaine time- and dose-dependently demethylates deoxyribonucleic acid in breast cancer cell lines in vitro. Br J Anaesth 2012; 109(2): 200-7.
[http://dx.doi.org/10.1093/bja/aes128] [PMID: 22542536]
[179]
Le Gac G, Angenard G, Clément B, Laviolle B, Coulouarn C, Beloeil H. Local anesthetics inhibit the growth of human hepatocellular carcinoma cells. Anesth Analg 2017; 125(5): 1600-9.
[http://dx.doi.org/10.1213/ANE.0000000000002429] [PMID: 28857796]
[180]
Tat T, Jurj A, Selicean C, Pasca S, Ionescu D. Antiproliferative effects of propofol and lidocaine on the colon adenocarcinoma microenvironment. J BUON 2019; 24(1): 106-15.
[PMID: 30941958]
[181]
Lu J, Xu SY, Zhang QG, Xu R, Lei HY. Bupivacaine induces apoptosis via mitochondria and p38 MAPK dependent pathways. Eur J Pharmacol 2011; 657(1-3): 51-8.
[http://dx.doi.org/10.1016/j.ejphar.2011.01.055] [PMID: 21315711]
[182]
Wang W, Zhu M, Xu Z, et al. Ropivacaine promotes apoptosis of hepatocellular carcinoma cells through damaging mitochondria and activating caspase-3 activity. Biol Res 2019; 52(1): 36.
[http://dx.doi.org/10.1186/s40659-019-0242-7] [PMID: 31300048]
[183]
Leng T, Lin S, Xiong Z, Lin J. Lidocaine suppresses glioma cell proliferation by inhibiting TRPM7 channels. Int J Physiol Pathophysiol Pharmacol 2017; 9(2): 8-15.
[PMID: 28533887]
[184]
Yang W, Cai J, Zhang H, Wang G, Jiang W. Effects of lidocaine and ropivacaine on gastric cancer cells through down-regulation of ERK1/2 phosphorylation in vitro. Anticancer Res 2018; 38(12): 6729-35.
[http://dx.doi.org/10.21873/anticanres.13042] [PMID: 30504383]
[185]
Alsaloum M, Estacion M, Almomani R, et al. A gain-of-function sodium channel β2-subunit mutation in painful diabetic neuropathy. Mol Pain 2019; 15: 1744806919849802.
[http://dx.doi.org/10.1177/1744806919849802] [PMID: 31041876]
[186]
Qu X, Yang L, Shi Q, Wang X, Wang D, Wu G. Lidocaine inhibits proliferation and induces apoptosis in colorectal cancer cells by upregulating mir-520a-3p and targeting EGFR. Pathol Res Pract 2018; 214(12): 1974-9.
[http://dx.doi.org/10.1016/j.prp.2018.09.012] [PMID: 30262429]
[187]
Zhang L, Hu R, Cheng Y, Wu X, Xi S, Sun Y, et al. Lidocaine inhibits the proliferation of lung cancer by regulating the expression of GOLT 1A. Cell Prolif 2017; 50(5): e12364.
[http://dx.doi.org/10.1111/cpr.12364]
[188]
Sakaguchi M, Kuroda Y, Hirose M. The antiproliferative effect of lidocaine on human tongue cancer cells with inhibition of the activity of epidermal growth factor receptor. Anesth Analg 2006; 102(4): 1103-7.
[http://dx.doi.org/10.1213/01.ane.0000198330.84341.35] [PMID: 16551906]
[189]
Jose C, Hebert-Chatelain E, Dias Amoedo N, et al. Redox mechanism of levobupivacaine cytostatic effect on human prostate cancer cells. Redox Biol 2018; 18: 33-42.
[http://dx.doi.org/10.1016/j.redox.2018.05.014] [PMID: 29935387]
[190]
Castelli V, Piroli A, Marinangeli F, et al. Local anesthetics counteract cell proliferation and migration of human triple-negative breast cancer and melanoma cells. J Cell Physiol 2020; 235(4): 3474-84.
[http://dx.doi.org/10.1002/jcp.29236] [PMID: 31541469]
[191]
Villar-Garea A, Fraga MF, Espada J, Esteller M. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 2003; 63(16): 4984-9.
[PMID: 12941824]
[192]
Li T, Chen L, Zhao H, et al. Both Bupivacaine and Levobupivacaine inhibit colon cancer cell growth but not melanoma cells in vitro. J Anesth 2019; 33(1): 17-25.
[http://dx.doi.org/10.1007/s00540-018-2577-6] [PMID: 30426213]
[193]
Zhu Q, Zhu G, Xu W, Dan J, Xia R, Liu W. Bupivacaine inhibits angiogenesis through oxidative stress-dependent inhibition of Akt/mTOR and activation of AMPK. Fundam Clin Pharmacol 2020; 34(5): 581-90.
[http://dx.doi.org/10.1111/fcp.12554] [PMID: 32145095]
[194]
Ye L, Zhang Y, Chen YJ, Liu Q. Anti-tumor effects of lidocaine on human gastric cancer cells in vitro. Bratisl Lek Listy 2019; 120(3): 212-7.
[http://dx.doi.org/10.4149/BLL_2019_036] [PMID: 31023040]
[195]
D’Agostino G, Saporito A, Cecchinato V, et al. Lidocaine inhibits cytoskeletal remodelling and human breast cancer cell migration. Br J Anaesth 2018; 121(4): 962-8.
[http://dx.doi.org/10.1016/j.bja.2018.07.015] [PMID: 30236259]
[196]
Piegeler T, Votta-Velis EG, Liu G, et al. Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade. Anesthesiology 2012; 117(3): 548-59.
[http://dx.doi.org/10.1097/ALN.0b013e3182661977] [PMID: 22846676]
[197]
Dahl M, Frost L, Søgaard R, Klausen IC, Lorentzen V, Lindholt J. A population-based screening study for cardiovascular diseases and diabetes in Danish postmenopausal women: acceptability and prevalence. BMC Cardiovasc Disord 2018; 18(1): 20.
[http://dx.doi.org/10.1186/s12872-018-0758-8] [PMID: 29402233]
[198]
Zhang Y, Peng X, Zheng Q. Ropivacaine inhibits the migration of esophageal cancer cells via sodium-channel-independent but prenylation-dependent inhibition of Rac1/JNK/paxillin/FAK. Biochem Biophys Res Commun 2018; 501(4): 1074-9.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.110] [PMID: 29777701]
[199]
Ahmed M, Jalily Hasani H, Ganesan A, Houghton M, Barakat K. Modeling the human Nav1.5 sodium channel: structural and mechanistic insights of ion permeation and drug blockade. Drug Des Devel Ther 2017; 11: 2301-24.
[http://dx.doi.org/10.2147/DDDT.S133944] [PMID: 28831242]
[200]
Li GS, Kong GY, Zou Y. Protective role of LRRC3B in preventing breast cancer metastasis and recurrence post-bupivacaine. Oncol Lett 2017; 14(4): 5013-7.
[http://dx.doi.org/10.3892/ol.2017.6773] [PMID: 29085514]
[201]
Ju C, Zhou J, Miao H, Chen X, Zhang Q. Bupivacaine suppresses the progression of gastric cancer through regulating circ_0000376/miR-145-5p axis. BMC Anesthesiol 2020; 20(1): 275.
[http://dx.doi.org/10.1186/s12871-020-01179-4] [PMID: 33126850]
[202]
Izdebska M, Hałas-Wiśniewska M, Zielińska W, Klimaszewska-Wiśniewska A, Grzanka D, Gagat M. Lidocaine induces protective autophagy in rat C6 glioma cell line. Int J Oncol 2019; 54(3): 1099-111.
[PMID: 30569147]
[203]
Liu C, Yu M, Li Y, et al. Lidocaine inhibits the metastatic potential of ovarian cancer by blocking NaV 1.5-mediated EMT and FAK/Paxillin signaling pathway. Cancer Med 2021; 10(1): 337-49.
[http://dx.doi.org/10.1002/cam4.3621] [PMID: 33280262]
[204]
Ni J, Xie T, Xiao M, Xiang W, Wang L. Amide-linked local anesthetics preferentially target leukemia stem cell through inhibition of Wnt/β-catenin. Biochem Biophys Res Commun 2018; 503(2): 956-62.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.102] [PMID: 29932919]
[205]
Chen D, Yan Y, Xie J, et al. Amide-type local anesthetics may suppress tumor cell proliferation and sensitize Human Hepatocellular Carcinoma Cells to Cisplatin via upregulation of RASSF1A expression and demethylation. J Cancer 2020; 11(24): 7312-9.
[http://dx.doi.org/10.7150/jca.46630] [PMID: 33193895]
[206]
Kobayashi K, Ohno S, Uchida S, Amano O, Sakagami H, Nagasaka H. Cytotoxicity and type of cell death induced by local anesthetics in human oral normal and tumor cells. Anticancer Res 2012; 32(7): 2925-33.
[PMID: 22753757]
[207]
Bang S, Yoo J, Gong X, et al. Differential Inhibition of Nav1.7 and Neuropathic Pain by Hybridoma-Produced and Recombinant Monoclonal Antibodies that Target Nav1.7 : Differential activities of Nav1.7-targeting monoclonal antibodies. Neurosci Bull 2018; 34(1): 22-41.
[http://dx.doi.org/10.1007/s12264-018-0203-0] [PMID: 29333591]
[208]
Wang HW, Wang LY, Jiang L, Tian SM, Zhong TD, Fang XM. Amide-linked local anesthetics induce apoptosis in human non-small cell lung cancer. J Thorac Dis 2016; 8(10): 2748-57.
[http://dx.doi.org/10.21037/jtd.2016.09.66] [PMID: 27867550]
[209]
Chen X, Liu W, Guo X, Huang S, Song X. Ropivacaine inhibits cervical cancer cell growth via suppression of the miR‑96/MEG2/pSTAT3 axis. Oncol Rep 2020; 43(5): 1659-68.
[http://dx.doi.org/10.3892/or.2020.7521] [PMID: 32323811]
[210]
Zhao L, Han S, Hou J, Shi W, Zhao Y, Chen Y. The local anesthetic ropivacaine suppresses progression of breast cancer by regulating miR-27b-3p/YAP axis. Aging (Albany NY) 2021; 13(12): 16341-52.
[http://dx.doi.org/10.18632/aging.203160] [PMID: 34126594]
[211]
Wang X, Li T. Ropivacaine inhibits the proliferation and migration of colorectal cancer cells through ITGB1. Bioengineered 2021; 12(1): 44-53.
[http://dx.doi.org/10.1080/21655979.2020.1857120] [PMID: 33345684]
[212]
Qin A, Liu Q, Wang J. Ropivacaine inhibits proliferation, invasion, migration and promotes apoptosis of papillary thyroid cancer cells via regulating ITGA2 expression. Drug Dev Res 2020; 81(6): 700-7.
[http://dx.doi.org/10.1002/ddr.21671] [PMID: 32314406]
[213]
Fan X, Yang H, Zhao C, et al. Local anesthetics impair the growth and self-renewal of glioblastoma stem cells by inhibiting ZDHHC15-mediated GP130 palmitoylation. Stem Cell Res Ther 2021; 12(1): 107.
[http://dx.doi.org/10.1186/s13287-021-02175-2] [PMID: 33541421]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy