Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

The Neuropharmacological Potential of Piperazine Derivatives: A Mini- Review

Author(s): Saad Alghamdi, Mohammed M. Alshehri and Mohammad Asif*

Volume 19, Issue 7, 2022

Published on: 10 March, 2022

Page: [798 - 810] Pages: 13

DOI: 10.2174/1570193X19666220119120211

Price: $65

conference banner
Abstract

Piperazine is a six-membered heterocyclic ring with two nitrogen atoms at positions one and four. This piperazine moiety can be present in a slew of well-known medicines that have pharmacophoric effects on a variety of receptors. Various piperazine analogs have core biological activities involving the activation of monoamine pathways, primarily on neurotransmitter receptors. As a result, piperazine analogs have a wide range of central clinical uses, including anxiolytic, antipsychotic, and antidepressant. Due to its stimulant and euphoric effects, benzyl-piperazine is the prototype of piperazine analogs, and this molecule is the main substance of recreational drugs. This review focuses on the activity of piperazine pharmacophore on diverse neurotransmitter receptors used therapeutically as anxiolytics (buspirone), antidepressants (vortioxetine), antipsychotics (clozapine), and other drugs.

Keywords: Piperazine, heterocyclic ring, pharmacophore, pharmacological activities, neurotransmitter receptors, derivatives.

Graphical Abstract

[1]
Duarte, C.D.; Barreiro, E.J.; Fraga, C.A.M. Privileged structures: A useful concept for the rational design of new lead drug candidates. Mini Rev. Med. Chem., 2007, 7(11), 1108-1119.
[http://dx.doi.org/10.2174/138955707782331722] [PMID: 18045214]
[2]
Jalageri, M.D.; Nagaraja, A.; Puttaiahgowda, Y.M. Piperazine based antimicrobial polymers: A review. RSC Advances, 2021, 11, 15213-15230.
[http://dx.doi.org/10.1039/D1RA00341K]
[3]
Sajadikhah, S.S.; Nassiri, M. Recent developments in the synthesis of piperazines (microreview). Chem. Heterocycl. Compd., 2021, 57, 905-907.
[http://dx.doi.org/10.1007/s10593-021-02998-0]
[4]
DeSimone, R.W.; Currie, K.S.; Mitchell, S.A.; Darrow, J.W.; Pippin, D.A. Privileged structures: Applications in drug discovery. Comb. Chem. High Throughput Screen., 2004, 7(5), 473-494.
[http://dx.doi.org/10.2174/1386207043328544] [PMID: 15320713]
[5]
Arbo, M.D.; Bastos, M.L.; Carmo, H.F. Piperazine compounds as drugs of abuse. Drug Alc. Deped., 2012, 122(3), 174-185.
[http://dx.doi.org/10.1016/j.drugalcdep.2011.10.007] [PMID: 22071119]
[6]
Asif, M. Piperazine and pyrazine containing molecules and their diverse pharmacological activities. Int. J. Adv. Sci. Res., 2015, 1, 5-11.
[http://dx.doi.org/10.7439/ijasr.v1i1.1766]
[7]
Kharb, R.; Bansal, K.; Sharma, A.K. A valuable insight into recent advances on antimicrobial activity of piperazine derivatives. Pharma Chem., 2012, 4(6), 2470-2488.
[8]
Singh, K.; Siddiqui, H.H.; Shakya, P.; Kumar, A.; Khalid, M.; Arif, M.; Alok, S. Piperazine-A biologically active scaffold. Int. J. Pharm. Sci. Res., 2015, 6, 4145.
[9]
Stephenson, F.A.; Hawkins, L.M. Neurotransmitter receptors in the postsynpaptic neuron. Encycloped. Life Sci., 2001, 1-7.
[10]
Nardo, M.; Casarotto, P.C.; Gomes, F.V.; Guimarães, F.S. Cannabidiol reverses the mCPP-induced increase in marble-burying behavior. Fundam. Clin. Pharmacol., 2014, 28(5), 544-550.
[http://dx.doi.org/10.1111/fcp.12051] [PMID: 24118015]
[11]
Brito, A.F.; Braga, P.C.C.S.; Moreira, L.K.S.; Silva, D.M.; Silva, D.P.B.; Sanz, G.; Vaz, B.G.; de Carvalho, F.S.; Lião, L.M.; Silva, R.R.; Noël, F.; Neri, H.F.S.; Ghedini, P.C.; de Carvalho, M.F. de S Gil, E.; Costa, E.A.; Menegatti, R. A new piperazine derivative: 1-(4-(3,5-di-tert-butyl-4-hydroxybenzyl) piperazin-1-yl)-2-methoxyethan-1-one with antioxidant and central activity. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(3), 255-269.
[http://dx.doi.org/10.1007/s00210-017-1451-7] [PMID: 29260264]
[12]
Brito, A.F.; Fajemiroye, J.O.; Neri, H.F.S.; Silva, D.M.; Silva, D.P.B.; Sanz, G.; Vaz, B.G.; de Carvalho, F.S.; Ghedini, P.C.; Lião, L.M.; Menegatti, R.; Costa, E.A. Anxiolytic-like effect of 2-(4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethan-1-ol is mediated through the benzodiazepine and nicotinic pathways. Chem. Biol. Drug Des., 2017, 90(3), 432-442.
[http://dx.doi.org/10.1111/cbdd.12961] [PMID: 28160425]
[13]
de Brito, A.F.; Martins, J.L.R.; Fajemiroye, J.O.; Galdino, P.M.; De Lima, T.C.M.; Menegatti, R.; Costa, E.A. Central pharmacological activity of a new piperazine derivative: 4-(1-phenyl-1h-pyrazol-4-ylmethyl)-piperazine-1-carboxylic acid ethyl ester. Life Sci., 2012, 90(23-24), 910-916.
[http://dx.doi.org/10.1016/j.lfs.2012.04.037] [PMID: 22564406]
[14]
Galdino, P.M.; de Oliveira, D.R.; Florentino, I.F.; Fajemiroye, J.O.; Valadares, M.C.; de Moura, S.S.; da Rocha, F.F.; de Lima, T.C.; Costa, E.A.; Menegatti, R. Involvement of the monoamine system in antidepressant-like properties of 4-(1-phenyl-1h-pyrazol-4-ylmethyl)-piperazine-1-carboxylic acid ethyl ester. Life Sci., 2015, 143, 187-193.
[http://dx.doi.org/10.1016/j.lfs.2015.11.009] [PMID: 26569034]
[15]
Johnstone, A.C.; Lea, R.A.; Brennan, K.A.; Schenk, S.; Kennedy, M.A.; Fitzmaurice, P.S. Benzylpiperazine: A drug of abuse? J. Psychopharmacol., 2007, 21(8), 888-894.
[http://dx.doi.org/10.1177/0269881107077260] [PMID: 17606471]
[16]
Monteiro, M.S.; Bastos, M.L.; Guedes de Pinho, P.; Carvalho, M. Update on 1-benzylpiperazine (BZP) party pills. Arch. Toxicol., 2013, 87(6), 929-947.
[http://dx.doi.org/10.1007/s00204-013-1057-x] [PMID: 23685794]
[17]
Herbert, C.E.; Hughes, R.N. A comparison of 1-benzylpiperazine and methamphetamine in their acute effects on anxiety-related behavior of hooded rats. Pharmacol. Biochem. Behav., 2009, 92(2), 243-250.
[http://dx.doi.org/10.1016/j.pbb.2008.12.003] [PMID: 19111568]
[18]
Biney, R.P.; Benneh, C.K.; Ameyaw, E.O.; Boakye-Gyasi, E.; Woode, E. Xylopia aethiopica fruit extract exhibits antidepressant-like effect via interaction with serotonergic neurotransmission in mice. J. Ethnopharmacol., 2016, 184, 49-57.
[http://dx.doi.org/10.1016/j.jep.2016.02.023] [PMID: 26902831]
[19]
NIMH-National Institute of Mental Health. Anxiety Disorders., 2016. Available from: https://www.nimh.nih.gov/health/topics/anxiety-disorders/index.shtml#part_145338
[20]
Gilhotra, N.; Dhingra, D. GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res., 2010, 1352, 167-175.
[http://dx.doi.org/10.1016/j.brainres.2010.07.007] [PMID: 20633542]
[21]
Bockaert, J.; Dumuis, A.; Bouhelal, R.; Sebben, M.; Cory, R.N. Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn Schmiedebergs Arch. Pharmacol., 1987, 335(5), 588-592.
[http://dx.doi.org/10.1007/BF00169129] [PMID: 2886925]
[22]
Mokrosz, J.L.; Pietrasiewicz, M.; Duszyńska, B.; Cegła, M.T. Structure-activity relationship studies of central nervous system agents. 5. Effect of the hydrocarbon chain on the affinity of 4-substituted 1-(3-chlorophenyl)piperazines for 5-HT1A receptor site. J. Med. Chem., 1992, 35(13), 2369-2374.
[http://dx.doi.org/10.1021/jm00091a004] [PMID: 1535661]
[23]
Hasler, G. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians? World Psychiatry, 2010, 9(3), 155-161.
[http://dx.doi.org/10.1002/j.2051-5545.2010.tb00298.x] [PMID: 20975857]
[24]
Villanueva, R. Neurobiology of major depressive disorder. Neural Plast., 2013, 2013, 873278.
[http://dx.doi.org/10.1155/2013/873278] [PMID: 24222865]
[25]
Locke, A.B.; Kirst, N.; Shultz, C.G. Diagnosis and management of generalized anxiety disorder and panic disorder in adults. Am. Fam. Physician, 2015, 91(9), 617-624.
[PMID: 25955736]
[26]
Yevich, J.P.; New, J.S.; Smith, D.W.; Lobeck, W.G.; Catt, J.D.; Minielli, J.L.; Eison, M.S.; Taylor, D.P.; Riblet, L.A.; Temple, D.L., Jr. Synthesis and biological evaluation of 1-(1,2-benzisothiazol-3-yl)- and (1,2-benzisoxazol-3-yl)piperazine derivatives as potential antipsychotic agents. J. Med. Chem., 1986, 29(3), 359-369.
[http://dx.doi.org/10.1021/jm00153a010] [PMID: 2869146]
[27]
Warnez, S.; Alessi-Severini, S. Clozapine: A review of clinical practice guidelines and prescribing trends. BMC Psychiatry, 2014, 14, 102.
[http://dx.doi.org/10.1186/1471-244X-14-102] [PMID: 24708834]
[28]
Kimura, M.; Masuda, T.; Yamada, K.; Kawakatsu, N.; Kubota, N.; Mitani, M.; Kishii, K.; Inazu, M.; Kiuchi, Y.; Oguchi, K.; Namiki, T. Antioxidative activities of novel diphenylalkyl piperazine derivatives with high affinities for the dopamine transporter. Bioorg. Med. Chem. Lett., 2004, 14(16), 4287-4290.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.091] [PMID: 15261288]
[29]
Gomes, T.F.; Pompeu, T.E.T.; Rodrigues, D.A.; Noël, F.; Menegatti, R.; Andrade, C.H.; Sabino, J.R.; Gil, E.S.; Dalla Costa, T.; Betti, A.H.; Antonio, C.B.; Rates, S.M.; Fraga, C.A.; Barreiro, E.J.; de Oliveira, V. Biotransformation of LASSBio-579 and pharmacological evaluation of p-hydroxylated metabolite a N-phenylpiperazine antipsychotic lead compound. Eur. J. Med. Chem., 2013, 62, 214-221.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.011] [PMID: 23353740]
[30]
Neves, G.; Antonio, C.B.; Betti, A.H.; Pranke, M.A.; Fraga, C.A.M.; Barreiro, E.J.; Noël, F.; Rates, S.M. New insights into pharmacological profile of LASSBio-579, a multi-target N-phenylpiperazine derivative active on animal models of schizophrenia. Behav. Brain Res., 2013, 237, 86-95.
[http://dx.doi.org/10.1016/j.bbr.2012.09.016] [PMID: 23000351]
[31]
NIH. Daily Med., Current Medication Information for Clozapine (clozapine tablet) Available from: http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=d5c8a456-6f3c-4963-b321-4ed746f690e4 Accessed on January 2015
[32]
Siskind, D.; McCartney, L.; Goldschlager, R.; Kisely, S. Clozapine v. first- and second-generation antipsychotics in treatment-refractory schizophrenia: Systematic review and meta-analysis. Br. J. Psychiatry, 2016, 209(5), 385-392.
[http://dx.doi.org/10.1192/bjp.bp.115.177261] [PMID: 27388573]
[33]
Montastruc, F.; Benevent, J.; Touafchia, A.; Chebane, L.; Araujo, M.; Guitton-Bondon, E.; Durrieu, G.; Arbus, C.; Schmitt, L.; Begaud, B.; Montastruc, J.L. Atropinic (anticholinergic) burden in antipsychotic-treated patients. Fundam. Clin. Pharmacol., 2018, 32(1), 114-119.
[http://dx.doi.org/10.1111/fcp.12321] [PMID: 28887902]
[34]
Seba, M.C.; Sandhya, S.M.; Prasobh, G.R. Piperazine derivatives: A review of activity on neurotransmitter receptors. Inter. J. Res. Rev., 2019, 6(11), 570-580.
[35]
Clark, R.B.; Lamppu, D.; Libertine, L.; McDonough, A.; Kumar, A.; LaRosa, G.; Rush, R.; Elbaum, D. Discovery of novel 2-((pyridin-3-yloxy)methyl)piperazines as α7 nicotinic acetylcholine receptor modulators for the treatment of inflammatory disorders. J. Med. Chem., 2014, 57(10), 3966-3983.
[http://dx.doi.org/10.1021/jm5004599] [PMID: 24814197]
[36]
He, Y.-Q.; Li, Y.; Wang, X.-Y.; He, X.-D.; Jun, L.; Chuai, M.; Lee, K.K.H.; Wang, J.; Wang, L.-J.; Yang, X. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis. Exp. Cell Res., 2014, 320(2), 354-364.
[http://dx.doi.org/10.1016/j.yexcr.2013.10.009] [PMID: 24162003]
[37]
Chen, J.; Norrholm, S.; Dwoskin, L.P.; Crooks, P.A.; Bai, D. N N disubstituted piperazines: synthesis and affinities at alpha4beta2(*) and alpha7(*) neuronal nicotinic acetylcholine receptors. Bioorg. Med. Chem. Lett., 2003, 13(1), 97-100.
[http://dx.doi.org/10.1016/S0960-894X(02)00849-1] [PMID: 12467625]
[38]
Post-Munson, D.J.; Pieschl, R.L.; Molski, T.F.; Graef, J.D.; Hendricson, A.W.; Knox, R.J.; McDonald, I.M.; Olson, R.E.; Macor, J.E.; Weed, M.R.; Bristow, L.J.; Kiss, L.; Ahlijanian, M.K.; Herrington, J. B-973, a novel piperazine positive allosteric modulator of the α7 nicotinic acetylcholine receptor. Eur. J. Pharmacol., 2017, 799, 16-25.
[http://dx.doi.org/10.1016/j.ejphar.2017.01.037] [PMID: 28132910]
[39]
McCreary, A.C.; Glennon, J.C.; Ashby, C.R., Jr.; Meltzer, H.Y.; Li, Z.; Reinders, J.-H.; Hesselink, M.B.; Long, S.K.; Herremans, A.H.; van Stuivenberg, H.; Eenstra, R.W.; Kruse, C.G. SLV313 (1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4[5-(4-fluoro-phenyl)-pyridin-3-ylmethyl]-piperazine monohydrochloride): A novel dopamine D2 receptor antagonist and 5-HT1A receptor agonist potential antipsychotic. Neuropsychopharmacol, 2007, 32, 78-94.
[http://dx.doi.org/10.1038/sj.npp.1301098] [PMID: 16710314]
[40]
Szalai, G.B.; Csongor, E.A.; Domany, G.; Gyertyan, I.; Kiss, B.; Laszy, J.; Saghy, K.; Schmidt, E.; Farkas, S.; Komlodi, Z. Pyrimidnyl-piperazines useful as D3/D2 receptor ligands. United States Patent., Patent No. US 7, 875, 610 B2, 2011.
[41]
Squires, R.F.; Saederup, E. Mono N-aryl ethylenediamine and piperazine derivatives are GABAA receptor blockers: Implications for psychiatry. Neurochem. Res., 1993, 18(7), 787-793.
[http://dx.doi.org/10.1007/BF00966774] [PMID: 8103578]
[42]
Nicolay, F.; Harder, A.; von Samson-Himmelstjerna, G.; Mehlhorn, H. Synergistic action of a cyclic depsipeptide and piperazine on nematodes. Parasitol. Res., 2000, 86(12), 982-992.
[http://dx.doi.org/10.1007/PL00008530] [PMID: 11133114]
[43]
Feng, B.; Tse, H.W.; Skifter, D.A.; Morley, R.; Jane, D.E.; Monaghan, D.T. Structure-activity analysis of a novel NR2C/NR2D-preferring NMDA receptor antagonist: 1-(phenanthrene-2-carbonyl) piperazine-2,3-dicarboxylic acid. Br. J. Pharmacol., 2004, 141(3), 508-516.
[http://dx.doi.org/10.1038/sj.bjp.0705644] [PMID: 14718249]
[44]
Irvine, M.W.; Costa, B.M.; Dlaboga, D.; Culley, G.R.; Hulse, R.; Scholefield, C.L.; Atlason, P.; Fang, G.; Eaves, R.; Morley, R.; Mayo-Martin, M.B.; Amici, M.; Bortolotto, Z.A.; Donaldson, L.; Collingridge, G.L.; Molnár, E.; Monaghan, D.T.; Jane, D.E. Piperazine-2,3-dicarboxylic acid derivatives as dual antagonists of NMDA and GluK1-containing kainate receptors. J. Med. Chem., 2012, 55(1), 327-341.
[http://dx.doi.org/10.1021/jm201230z] [PMID: 22111545]
[45]
Gregory, K.J.; Herman, E.J.; Ramsey, A.J.; Hammond, A.S.; Byun, N.E.; Stauffer, S.R.; Manka, J.T.; Jadhav, S.; Bridges, T.M.; Weaver, C.D.; Niswender, C.M.; Steckler, T.; Drinkenburg, W.H.; Ahnaou, A.; Lavreysen, H.; Macdonald, G.J.; Bartolomé, J.M.; Mackie, C.; Hrupka, B.J.; Caron, M.G.; Daigle, T.L.; Lindsley, C.W.; Conn, P.J.; Jones, C.K. N-aryl piperazine metabotropic glutamate receptor 5 positive allosteric modulators possess efficacy in preclinical models of NMDA hypofunction and cognitive enhancement. J. Pharmacol. Exp. Ther., 2013, 347(2), 438-457.
[http://dx.doi.org/10.1124/jpet.113.206623] [PMID: 23965381]
[46]
Harvey, R.J.; Yee, B.K. Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat. Rev. Drug Discov., 2013, 12(11), 866-885.
[http://dx.doi.org/10.1038/nrd3893] [PMID: 24172334]
[47]
Orjales, A.; Gil-Sánchez, J.; Alonso-Cires, L.; Labeaga, L.; Mosquera, R.; Berisa, A.; Ucelay, M.; Innerárity, A.; Corcóstegui, R. Synthesis and histamine H(1)-receptor antagonist activity of 4-(diphenylmethyl)-1-piperazine derivatives with a terminal heteroaryl or cycloalkyl amide fragment. Eur. J. Med. Chem., 1996, 31(10), 813-818.
[http://dx.doi.org/10.1016/0223-5234(96)83975-4] [PMID: 22026937]
[48]
Terzioglu, N.; van Rijn, R.M.; Bakker, R.A.; De Esch, I.J.; Leurs, R. Synthesis and structure-activity relationships of indole and benzimidazole piperazines as histamine H(4) receptor antagonists. Bioorg. Med. Chem. Lett., 2004, 14(21), 5251-5256.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.035] [PMID: 15454206]
[49]
Venable, J.D.; Cai, H.; Chai, W.; Dvorak, C.A.; Grice, C.A.; Jablonowski, J.A.; Shah, C.R.; Kwok, A.K.; Ly, K.S.; Pio, B.; Wei, J.; Desai, P.J.; Jiang, W.; Nguyen, S.; Ling, P.; Wilson, S.J.; Dunford, P.J.; Thurmond, R.L.; Lovenberg, T.W.; Karlsson, L.; Carruthers, N.I.; Edwards, J.P. Preparation and biological evaluation of indole, benzimidazole, and thienopyrrole piperazine carboxamides: potent human histamine h(4) antagonists. J. Med. Chem., 2005, 48(26), 8289-8298.
[http://dx.doi.org/10.1021/jm0502081] [PMID: 16366610]
[50]
Arlette, J.P. Cetirizine: A piperazine antihistamine. Clin. Dermatol., 1991, 9(4), 511-513.
[http://dx.doi.org/10.1016/0738-081X(91)90080-5] [PMID: 1688018]
[51]
Plobeck, N.; Delorme, D.; Wei, Z.-Y.; Yang, H.; Zhou, F.; Schwarz, P.; Gawell, L.; Gagnon, H.; Pelcman, B.; Schmidt, R.; Yue, S.Y.; Walpole, C.; Brown, W.; Zhou, E.; Labarre, M.; Payza, K.; St-Onge, S.; Kamassah, A.; Morin, P.-E.; Projean, D.; Ducharme, J.; Roberts, E. New diarylmethylpiperazines as potent and selective nonpeptidic δ opioid receptor agonists with increased in vitro metabolic stability. J. Med. Chem., 2000, 43(21), 3878-3894.
[http://dx.doi.org/10.1021/jm000228x] [PMID: 11052793]
[52]
Bender, A.M.; Clark, M.J.; Agius, M.P.; Traynor, J.R.; Mosberg, H.I. Synthesis and evaluation of 4-substituted piperidines and piperazines as balanced affinity μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist ligands. Bioorg. Med. Chem. Lett., 2014, 24(2), 548-551.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.021] [PMID: 24365161]
[53]
McCauley, J.P., Jr; Dantzman, C.L.; King, M.M.; Ernst, G.E.; Wang, X.; Brush, K.; Palmer, W.E.; Frietze, W.; Andisik, D.W.; Hoesch, V.; Doring, K.; Hulsizer, J.; Bui, K.H.; Liu, J.; Hudzik, T.J.; Wesolowski, S.S. Multiparameter exploration of piperazine derivatives as δ-opioid receptor agonists for CNS indications. Bioorg. Med. Chem. Lett., 2012, 22(2), 1169-1173.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.088] [PMID: 22197139]
[54]
Carroll, F.I.; Cueva, J.P.; Thomas, J.B.; Mascarella, S.W.; Runyon, S.P.; Navarro, H.A. 1-substituted 4-(3-hydroxyphenyl)piperazines are pure opioid receptor antagonists. ACS Med. Chem. Lett., 2010, 1(7), 365-369.
[http://dx.doi.org/10.1021/ml100126b] [PMID: 21116435]
[55]
McMillen, B.A.; Scott, S.M.; Williams, H.L.; Sanghera, M.K. Effects of gepirone, an aryl-piperazine anxiolytic drug, on aggressive behavior and brain monoaminergic neurotransmission. Naunyn Schmiedebergs Arch. Pharmacol., 1987, 335(4), 454-464.
[http://dx.doi.org/10.1007/BF00165563] [PMID: 2439924]
[56]
Orjales, A.; Alonso-Cires, L.; Labeaga, L.; Corcóstegui, R. New (2-methoxyphenyl)piperazine derivatives as 5-HT1A receptor ligands with reduced α 1-adrenergic activity. Synthesis and structure-affinity relationships. J. Med. Chem., 1995, 38(8), 1273-1277.
[http://dx.doi.org/10.1021/jm00008a005] [PMID: 7731013]
[57]
Frances, H. Psychopharmacological profile of 1-(m-(trifluoromethyl) phenyl) piperazine (TFMPP). Pharmacol. Biochem. Behav., 1988, 31(1), 37-41.
[http://dx.doi.org/10.1016/0091-3057(88)90308-5] [PMID: 3252258]
[58]
Pettibone, D.J.; Williams, M. Serotonin-releasing effects of substituted piperazines in vitro. Biochem. Pharmacol., 1984, 33(9), 1531-1535.
[http://dx.doi.org/10.1016/0006-2952(84)90424-6] [PMID: 6610423]
[59]
Simmler, L.D.; Rickli, A.; Schramm, Y.; Hoener, M.C.; Liechti, M.E. Pharmacological profiles of aminoindanes, piperazines, and pipradrol derivatives. Biochem. Pharmacol., 2014, 88(2), 237-244.
[http://dx.doi.org/10.1016/j.bcp.2014.01.024] [PMID: 24486525]
[60]
Song, L.; Liu, Y.; Liu, F.; Zhang, R.; Ji, H.; Jia, Y. Vilazodone for major depressive disorder in adults. Cochrane Database Syst. Rev., 2016, 2016(9), CD012350.
[http://dx.doi.org/10.1002/14651858.CD012350]
[61]
Nishitsuji, K.; To, H.; Murakami, Y.; Kodama, K.; Kobayashi, D.; Yamada, T.; Kubo, C.; Mine, K. Tandospirone in the treatment of generalised anxiety disorder and mixed anxiety-depression: Results of a comparatively high dosage trial. Clin. Drug Investig., 2004, 24(2), 121-126.
[http://dx.doi.org/10.2165/00044011-200424020-00007] [PMID: 17516698]
[62]
Schep, L.J.; Slaughter, R.J.; Vale, J.A.; Beasley, D.M.G.; Gee, P. The clinical toxicology of the designer “party pills” benzylpiperazine and trifluoromethylphenylpiperazine. Clin. Toxicol. (Phila.), 2011, 49(3), 131-141.
[http://dx.doi.org/10.3109/15563650.2011.572076] [PMID: 21495881]
[63]
Prochlorperazine Monograph for Professionals. American Society of Health-System Pharmacists, 2019.
[64]
Bawa, R.; Scarff, J.R. Lurasidone: A new treatment option for bipolar depression-a review. Innov. Clin. Neurosci., 2015, 12(1-2), 21-23.
[PMID: 25852975]
[65]
Brito, A.F.; Moreira, L.K.S.; Menegatti, R.; Costa, E.A. Piperazine derivatives with central pharmacological activity used as therapeutic tools. Fundam. Clin. Pharmacol., 2019, 33(1), 13-24.
[http://dx.doi.org/10.1111/fcp.12408] [PMID: 30151922]
[66]
Amita, T.; Mridula, M.; Manju, V. Piperazine: The molecule of diverse pharmacological importance. Int. J. Res. Ayurveda Pharm., 2011, 2, 1547-1548.
[67]
Rathi, A.K.; Syed, R.; Shin, H.S.; Patel, R.V. Piperazine derivatives for therapeutic use: A patent review (2010-present). Expert Opin. Ther. Pat., 2016, 26(7), 777-797.
[http://dx.doi.org/10.1080/13543776.2016.1189902] [PMID: 27177234]
[68]
Rathore, A.; Asati, V.; Kashaw, S.K.; Agarwal, S.; Parwani, D.; Bhattacharya, S.; Mallick, C. The Recent Development of Piperazine and Piperidine Derivatives as Antipsychotic Agents. Mini Rev. Med. Chem., 2021, 21(3), 362-379.
[http://dx.doi.org/10.2174/1389557520666200910092327]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy