Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Perspective

Nanostructured Hybrid Materials Based on Semiconductor Quantum Dots and Graphene, Graphene Oxide, or Reduced Graphene Oxide

Author(s): Domingo I. Garcia-Gutierrez*

Volume 18, Issue 6, 2022

Published on: 10 March, 2022

Page: [655 - 658] Pages: 4

DOI: 10.2174/1573413718666220119103724

Abstract

Nanostructured hybrid materials (NHMs) based on nanostructures, such as graphene or graphene-related materials and semiconductor quantum dots (QDs) or nanoparticles, have attracted a great deal of attention from the scientific community in the last decade. Their potential applications range from more conventional optoelectronic uses (e.g., photodetectors and solar cells), passing through the field of photocatalysis and spanning to the biotechnology arena, as they have been used in bioimaging applications. In this perspective paper, a summary of the developments achieved in this type of NHM is presented, along with an outlook on the main challenges that are still needed to be overcome.

Next »
[1]
Hines, M.A.; Scholes, G.D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater., 2003, 15, 1844-1849.
[http://dx.doi.org/10.1002/adma.200305395]
[2]
Beard, M.C.; Luther, J.M.; Nozik, A.J. Multiple exciton generation in semiconductor quantum dots and electronically coupled quantum dot arrays for application to third- generation photovoltaic solar cells. Colloid. Quantum Dot Optoelectron. Photovoltaics, 2010, 9780521198, 112-147.
[3]
Brown, P.R.; Kim, D.; Lunt, R.R.; Zhao, N.; Bawendi, M.G.; Grossman, J.C. Bulović V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano, 2014, 8(6), 5863-5872.
[http://dx.doi.org/10.1021/nn500897c] [PMID: 24824726]
[4]
Garcia-Gutierrez, D.F.; Hernandez-Casillas, L.P.; Cappellari, M.V.; Fungo, F.; Martínez-Guerra, E.; García-Gutiérrez, D.I. Influence of the capping ligand on the band gap and electronic levels of pbs nanoparticles through surface atomistic arrangement determination. ACS Omega, 2018, 3(1), 393-405.
[http://dx.doi.org/10.1021/acsomega.7b01451] [PMID: 31457900]
[5]
Torres-Gomez, N. Absorption and emission in the visible range by ultra-small PbS quantum dots in the strong quantum confinement regime with S-terminated surfaces capped with diphenylphosphine. J. Alloys Compd., 2021, 860, 158443.
[http://dx.doi.org/10.1016/j.jallcom.2020.158443]
[6]
Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater., 2010, 22(35), 3906-3924.
[http://dx.doi.org/10.1002/adma.201001068] [PMID: 20706983]
[7]
Guo, C.X.; Yang, H.B.; Sheng, Z.M.; Lu, Z.S.; Song, Q.L.; Li, C.M. Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. Engl., 2010, 49(17), 3014-3017.
[http://dx.doi.org/10.1002/anie.200906291] [PMID: 20349480]
[8]
Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F.P.; Gatti, F.; Koppens, F.H.L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol., 2012, 7(6), 363-368.
[http://dx.doi.org/10.1038/nnano.2012.60] [PMID: 22562036]
[9]
Kim, B.S.; Neo, D.C.; Hou, B.; Park, J.B.; Cho, Y.; Zhang, N.; Hong, J.; Pak, S.; Lee, S.; Sohn, J.I.; Assender, H.E.; Watt, A.A.; Cha, S.; Kim, J.M. High performance PbS quantum Dot/graphene hybrid solar cell with efficient charge extraction. ACS Appl. Mater. Interfaces, 2016, 8(22), 13902-13908.
[http://dx.doi.org/10.1021/acsami.6b02544] [PMID: 27213219]
[10]
Jeong, H.; Song, J.H.; Jeong, S.; Chang, W.S. Graphene/PbS quantum dot hybrid structure for application in near-infrared photodetectors. Sci. Rep., 2020, 10(1), 12475.
[http://dx.doi.org/10.1038/s41598-020-69302-6] [PMID: 32719367]
[11]
Sun, Z.; Liu, Z.; Li, J.; Tai, G.A.; Lau, S-P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater., 2012, 24(43), 5878-5883.
[http://dx.doi.org/10.1002/adma.201202220] [PMID: 22936561]
[12]
Zhang, D.; Gan, L.; Cao, Y.; Wang, Q.; Qi, L.; Guo, X. Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor. Adv. Mater., 2012, 24(20), 2715-2720.
[http://dx.doi.org/10.1002/adma.201104597] [PMID: 22505476]
[13]
Ghosh, S.; Pal, T.; Joung, D.; Khondaker, S.I. One pot synthesis of RGO/PbS nanocomposite and its near infrared photoresponse study. Appl. Phys., A Mater. Sci. Process., 2012, 107, 995-1001.
[http://dx.doi.org/10.1007/s00339-012-6863-0]
[14]
Martín-García, B.; Polovitsyn, A.; Prato, M.; Moreels, I. Efficient charge transfer in solution-processed PbS quantum dot – reduced graphene oxide hybrid. J. Mater. Chem., 2015, 3, 7088-7095.
[15]
Yousefi, R.; Mahmoudian, M.R.; Sa’aedi, A.; Cheraghizade, M.; Jamali-Sheini, F.; Azarang, M. Effect of annealing temperature and graphene concentrations on photovoltaic and NIR-detector applications of PbS/rGO nanocomposites. Ceram. Int., 2016, 42(14), 15209-15216.
[http://dx.doi.org/10.1016/j.ceramint.2016.06.155]
[16]
Lara-Canche, A.R.; Garcia-Gutierrez, D.F.; Torres-Gomez, N.; Reyes-Gonzalez, J.E.; Bahena-Uribe, D.; Sepulveda-Guzman, S.; Hernandez-Calderon, I.; García Gutierrez, D.I. Solution processed nanostructured hybrid materials based on PbS quantum dots and reduced graphene oxide with tunable optoelectronic properties. Nanotechnology, 2021, 32(5), 055604.
[http://dx.doi.org/10.1088/1361-6528/abc209] [PMID: 33065556]
[17]
Ahn, S.; Chung, H.; Chen, W.; Moreno-Gonzalez, M.A.; Vazquez-Mena, O. Optoelectronic response of hybrid PbS-QD/graphene photodetectors. J. Chem. Phys., 2019, 151(23), 234705.
[http://dx.doi.org/10.1063/1.5132562] [PMID: 31864279]
[18]
Sygellou, L.; Paterakis, G.; Galiotis, C.; Tasis, D. Work function tuning of reduced graphene oxide thin films. J. Phys. Chem. C, 2016, 120, 281-290.
[http://dx.doi.org/10.1021/acs.jpcc.5b09234]
[19]
Tu, N.D.K.; Choi, J.; Park, C.H.; Kim, H. Remarkable conversion between n- and p-type reduced graphene oxide on varying the thermal annealing temperature. Chem. Mater., 2015, 27, 7362-7369.
[http://dx.doi.org/10.1021/acs.chemmater.5b02999]
[20]
Zhang, Y.; Wu, G.; Ding, C.; Liu, F.; Liu, D.; Masuda, T.; Yoshino, K.; Hayase, S.; Wang, R.; Shen, Q. Surface-modified graphene oxide/lead sulfide hybrid film-forming ink for high-efficiency bulk nano-heterojunction colloidal quantum dot solar cells. Nano-Micro Lett., 2020, 12(1), 111.
[http://dx.doi.org/10.1007/s40820-020-00448-8] [PMID: 34138103]
[21]
Fan, W.; Lai, Q.; Zhang, Q.; Wang, Y. Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J. Phys. Chem. C, 2011, 115, 10694-10701.
[http://dx.doi.org/10.1021/jp2008804]
[22]
Han, N.; Race, M.; Zhang, W.; Marotta, R.; Zhang, C.; Bokhari, A.; Klemeš, J.J. Perovskite and related oxide-based electrodes for water splitting. J. Clean. Prod., 2021, 318, 128544.
[http://dx.doi.org/10.1016/j.jclepro.2021.128544]
[23]
Han, N.; Liu, P.; Jiang, J.; Ai, L.; Shaob, Z.; Liu, S. Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6, 19912-19933.
[http://dx.doi.org/10.1039/C8TA06529B]
[24]
Iwase, A.; Ng, Y.H.; Ishiguro, Y.; Kudo, A.; Amal, R. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc., 2011, 133(29), 11054-11057.
[http://dx.doi.org/10.1021/ja203296z] [PMID: 21711031]
[25]
Ramesh, K.; Gnanavel, B. Mohd.Shkir. Enhanced visible light photocatalytic degradation of bisphenol A (BPA) by reduced graphene oxide (RGO)–metal oxide (TiO2, ZnO and WO3) based nanocomposites. Diamond Related Materials, 2021, 118, 108514.
[http://dx.doi.org/10.1016/j.diamond.2021.108514]
[26]
Martín-García, B.; Bi, Y.; Prato, M.; Spirito, D.; Krahne, R.; Konstantatos, G.; Moreels, I. Reduction of moisture sensitivity of PbS quantum dot solar cells by incorporation of reduced graphene oxide. Sol. Energy Mater. Sol. Cells, 2018, 183, 1-7.
[http://dx.doi.org/10.1016/j.solmat.2018.04.005]
[27]
Ayoubi, M.; Naserzadeh, P.; Hashemi, M.T.; Reza Rostami, M.; Tamjid, E.; Tavakoli, M.M.; Simchi, A. Biochemical mechanisms of dose-dependent cytotoxicity and ROS-mediated apoptosis induced by lead sulfide/graphene oxide quantum dots for potential bioimaging applications. Sci. Rep., 2017, 7(1), 12896.
[http://dx.doi.org/10.1038/s41598-017-13396-y] [PMID: 29018231]

© 2024 Bentham Science Publishers | Privacy Policy