Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Biomedical Applications of Carbohydrate-based Polyurethane: From Biosynthesis to Degradation

Author(s): Jahan Ara Batool, Kanwal Rehman, Abdul Qader and Muhammad Sajid Hamid Akash*

Volume 28, Issue 20, 2022

Published on: 13 May, 2022

Page: [1669 - 1687] Pages: 19

DOI: 10.2174/1573412918666220118113546

Price: $65

Abstract

The foremost common natural polymers are carbohydrate-based polymers or polysaccharides, having a long chain of monosaccharide or disaccharide units linked together via glycosidic linkage to form a complex structure. There are several uses of carbohydrate-based polymers in the biomedical sector due to their attractive features, including less toxicity, biocompatibility, biodegradability, high reactivity, availability, and relative inexpensiveness. The aim of our study was to explore the synthetic approaches for the preparation of numerous carbohydrate-based polyurethanes (PUs) and their wide range of pharmaceutical and biomedical applications. The data summarized in this study show that the addition of carbohydrates in the structural skeleton of PUs not only improves their suitability but also affects their applicability for use in biological applications. Carbohydrate- based units are incorporated into the PUs, which is the most convenient method for the synthesis of novel biocompatible and biodegradable carbohydrate-based PUs for use in various biomedical applications.

Keywords: Polymer, polyurethane, carbohydrates, polysaccharides, biomedical applications, biomaterials.

[1]
Babu RP, O’Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Prog Biomater 2013; 2(1): 8.
[http://dx.doi.org/10.1186/2194-0517-2-8] [PMID: 29470779]
[2]
Galbis JA, García-Martín Mde G, de Paz MV, Galbis E. Synthetic polymers from sugar-based monomers. Chem Rev 2016; 116(3): 1600-36.
[http://dx.doi.org/10.1021/acs.chemrev.5b00242] [PMID: 26291239]
[3]
Sánchez C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnol Adv 2020; 40: 107501.
[http://dx.doi.org/10.1016/j.biotechadv.2019.107501] [PMID: 31870825]
[4]
Barikani M, Mohammadi M. Synthesis and characterization of starch-modified polyurethane. Carbohydr Polym 2007; 68(4): 773-80.
[http://dx.doi.org/10.1016/j.carbpol.2006.08.017]
[5]
Zhang Q, Zhang G, Xu J, Gao C, Wu Y. Recent advances on ligin-derived polyurethane polymers. Rev Adv Mater Sci 2015; 40(2): 146-54.
[6]
Manzano VE, Kolender AA, Varela O. Synthesis and applications of carbohydrate-based polyurethanes. In: Goyanes SN, D’Accorso NB, Eds. a Industrial Applications of Renewable Biomass Products: Past, Present and Future. Cham: Springer International Publishing 2017; pp. 1-43.
[http://dx.doi.org/10.1007/978-3-319-61288-1_1]
[7]
Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci, B, Polym Phys 2011; 49(12): 832-64.
[http://dx.doi.org/10.1002/polb.22259] [PMID: 21769165]
[8]
Chu Z, Fan Z, Zhang X, et al. A comparison of ACQ, AIE and AEE-based polymers loaded on polyurethane foams as sensors for ex-plosives detection. Sensors (Basel) 2018; 18(5): 1565.
[http://dx.doi.org/10.3390/s18051565] [PMID: 29762497]
[9]
Kubota T, de Araújo MVG, Vieira JVF, da Silva TA, Ramos LP, Zawadzki SF. Synthesis of new carbohydrate-based polyurethanes and their application in the purification of methyl esters (biodiesel). J Polym Res 2012; 20(1): 48.
[http://dx.doi.org/10.1007/s10965-012-0048-6]
[10]
Zia F, Zia KM, Zuber M, Tabasum S, Rehman S. Heparin based polyurethanes: A state-of-the-art review. Int J Biol Macromol 2016; 84: 101-11.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.004] [PMID: 26666430]
[11]
Schnabelrauch M. Chemical Bulk Properties of Biomaterials. In: Zivic F, Affatato S, Trajanovic M, Schnabelrauch M, Grujovic N, Choy KL, Eds. Biomaterials in Clinical Practice: Advances in Clinical Research and Medical Devices. Cham: Springer International Publishing 2018; pp. 431-59.
[http://dx.doi.org/10.1007/978-3-319-68025-5_15]
[12]
Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials 1996; 17(2): 103-14.
[http://dx.doi.org/10.1016/0142-9612(96)85755-3] [PMID: 8624387]
[13]
Farhana A, Razali A, Mohd Razelan IS. Utilization of polyethylene terephthalate (PET) in asphalt pavement: A review. IOP Conf Series Mater Sci Eng 2017; 203: 012004.
[http://dx.doi.org/10.1088/1757-899X/203/1/012004]
[14]
Rahman MM, Rabbani MM, Saha JK. Polyurethane and Its Derivatives. In: Jafar Mazumder MA, Sheardown H, Al-Ahmed A, Eds. Functional Polymers. Cham: Springer International Publishing 2018; pp. 1-16.
[15]
Yamanaka C, Hashimoto K. Synthesis of new hydrolyzable polyurethanes from l-gulonic acid-derived diols and diisocyanates. J Polym Sci A Polym Chem 2002; 40(23): 4158-66.
[http://dx.doi.org/10.1002/pola.10496]
[16]
Wibullucksanakul S, Hashimoto K, Okada M. Swelling behavior and controlled release of new hydrolyzable poly (ether urethane) gels derived from saccharide and l-lysine derivatives and poly (ethylene glycol). Macromol Chem Phys 1996; 197(6): 1865-76.
[http://dx.doi.org/10.1002/macp.1996.021970608]
[17]
Aalto-Korte K, Engfeldt M, Estlander T, Jolanki R. Polyurethane Resins. In: John SM, Johansen JD, Rustemeyer T, Elsner P, Maibach HI, Eds. Kanerva’s Occupational Dermatology. Cham: Springer International Publishing 2018; pp. 1-12.
[18]
Galbis JA, de Gracia García-Martín M, de Paz MV, Galbis E. Bio-based polyurethanes from carbohydrate monomers. Aspects Polyure-thanes 2017; pp. 155-92.
[19]
Donovan BR, Patton DL. Step Polyaddition Polymerizations, an Overview. In: Kobayashi S, Müllen K, Eds. Encyclopedia of Polymeric Nanomaterials. Berlin, Heidelberg: Springer Berlin Heidelberg 2015; pp. 2268-73.
[http://dx.doi.org/10.1007/978-3-642-29648-2_412]
[20]
Solanki A, Sanghvi S, Devkar R, Thakore S. β-Cyclodextrin based magnetic nanoconjugates for targeted drug delivery in cancer therapy. RSC Advances 2016; 6(101): 98693-707.
[http://dx.doi.org/10.1039/C6RA18030B]
[21]
Lalwani R, Desai S. Sorption behavior of biodegradable polyurethanes with carbohydrate crosslinkers. J Appl Polym Sci 2010; 115(3): 1296-305.
[http://dx.doi.org/10.1002/app.30214]
[22]
Javaid MA, Zia KM, Iqbal A, et al. Utilization of waxy corn starch as an efficient chain extender for the preparation of polyurethane elastomers. Int J Biol Macromol 2020; 148: 415-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.011] [PMID: 31923497]
[23]
Santamaria-Echart A, Ugarte L, Gonzalez K, et al. The role of cellulose nanocrystals incorporation route in waterborne polyurethane for preparation of electrospun nanocomposites mats. Carbohydr Polym 2017; 166: 146-55.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.073] [PMID: 28385218]
[24]
Solanki A, Das M, Thakore S. A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applica-tions. Carbohydr Polym 2018; 181: 1003-16.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.049] [PMID: 29253925]
[25]
Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 2011; 12(5): 1387-408.
[http://dx.doi.org/10.1021/bm200083n] [PMID: 21388145]
[26]
Shai A, Maibach HI. Dressing materials.Wound Healing and Ulcers of the Skin: Diagnosis and Therapy—The Practical Approach. 2005; pp. 103-17.
[27]
Garçon R, Clerk C, Gesson JP, et al. Synthesis of novel polyurethanes from sugars and 1,6-hexamethylene diisocyanate. Carbohydr Polym 2001; 45(2): 123-7.
[http://dx.doi.org/10.1016/S0144-8617(00)00323-4]
[28]
Paz MVD, Marín R, Zamora F, et al. Linear polyurethanes derived from alditols and diisocyanates. J Polym Sci A Polym Chem 2007; 45(17): 4109-17.
[http://dx.doi.org/10.1002/pola.22127]
[29]
Wang Q, Dordick JS, Linhardt RJ. Synthesis and application of carbohydrate-containing polymers. Chem Mater 2002; 14(8): 3232-44.
[http://dx.doi.org/10.1021/cm0200137]
[30]
Chandra R, Rustgi R. Biodegradable polymers. Prog Polym Sci 1998; 23(7): 1273-335.
[http://dx.doi.org/10.1016/S0079-6700(97)00039-7]
[31]
Dumitriu S. Polysaccharides in medicinal applications. Routledge 2017.
[http://dx.doi.org/10.1201/9780203742815]
[32]
Kucińska-Lipka J, Gubanska I, Janik H. Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives. Polym Bull 2015; 72(9): 2399-419.
[http://dx.doi.org/10.1007/s00289-015-1407-3]
[33]
Carneiro MJ, Fernandes A, Figueiredo CM, Fortes AG, Freitas AM. Synthesis of carbohydrate based polymers. Carbohydr Polym 2001; 45(2): 135-8.
[http://dx.doi.org/10.1016/S0144-8617(00)00322-2]
[34]
Wang J, Ying X, Li X, Zhang W. Preparation, characterization and swelling behaviors of polyurethane-grafted calcium alginate hydrogels. Mater Lett 2014; 126: 263-6.
[http://dx.doi.org/10.1016/j.matlet.2014.03.178]
[35]
Zia KM, Zia F, Zuber M, Rehman S, Ahmad MN. Alginate based polyurethanes: A review of recent advances and perspective. Int J Biol Macromol 2015; 79: 377-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.076] [PMID: 25964178]
[36]
Mostafavi A, Daemi H, Rajabi S, Baharvand H. Highly tough and ultrafast self-healable dual physically crosslinked sulfated alginate-based polyurethane elastomers for vascular tissue engineering. Carbohydr Polym 2021; 257: 117632.
[http://dx.doi.org/10.1016/j.carbpol.2021.117632] [PMID: 33541658]
[37]
Wang X, Zhang Y, Liang H, et al. Synthesis and properties of castor oil-based waterborne polyurethane/sodium alginate composites with tunable properties. Carbohydr Polym 2019; 208: 391-7.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.090] [PMID: 30658815]
[38]
Lu W-C, Chuang FS, Venkatesan M, et al. Synthesis of water resistance and moisture-permeable nanofiber using sodium alginate-functionalized waterborne polyurethane. Polymers (Basel) 2020; 12(12): 2882.
[http://dx.doi.org/10.3390/polym12122882] [PMID: 33271805]
[39]
Daemi H, Barikani M, Barmar M. Highly stretchable nanoalginate based polyurethane elastomers. Carbohydr Polym 2013; 95(2): 630-6.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.039] [PMID: 23648022]
[40]
Chen H-B, Ao Y-Y, Liu D, Song H-T, Shen P. Novel neutron shielding alginate based aerogel with extremely low flammability. Ind Eng Chem Res 2017; 56(30): 8563-7.
[http://dx.doi.org/10.1021/acs.iecr.7b01999]
[41]
Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate-based composite materials for wound dressing application: A mini review. Carbohydr Polym 2020; 236: 116025.
[http://dx.doi.org/10.1016/j.carbpol.2020.116025] [PMID: 32172843]
[42]
Kwon O-J, Oh S-T, Lee S-D, Lee N-R, Shin C-H, Park J-S. Hydrophilic and flexible polyurethane foams using sodium alginate as polyol: effects of PEG molecular weight and cross-linking agent content on water absorbency. Fibers Polym 2007; 8(4): 347-55.
[http://dx.doi.org/10.1007/BF02875822]
[43]
Oh S-T, Kim W-R, Kim S-H, Chung Y-C, Park J-S. The preparation of polyurethane foam combined with pH-sensitive alginate/bentonite hydrogel for wound dressings. Fibers Polym 2011; 12(2): 159.
[http://dx.doi.org/10.1007/s12221-011-0159-4]
[44]
Daemi H, Barikani M, Sardon H. Transition-metal-free synthesis of supramolecular ionic alginate-based polyurethanes. Carbohydr Polym 2017; 157: 1949-54.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.086] [PMID: 27987915]
[45]
Bhattacharyya A, Mukhopadhyay P, Kundu P. Synthesis of a novel pH-sensitive polyurethane–alginate blend with poly (ethylene ter-ephthalate) waste for the oral delivery of protein. J Appl Polym Sci 2014; 131(16): 40650.
[http://dx.doi.org/10.1002/app.40650]
[46]
Chen H, Xing X, Tan H, et al. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater Sci Eng C 2017; 70(Pt 1): 287-95.
[http://dx.doi.org/10.1016/j.msec.2016.08.086] [PMID: 27770893]
[47]
Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu PP. pH-sensitive chitosan/alginate core-shell nanoparticles for effi-cient and safe oral insulin delivery. Int J Biol Macromol 2015; 72: 640-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.040] [PMID: 25239194]
[48]
Yang J, Chen J, Pan D, Wan Y, Wang Z. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr Polym 2013; 92(1): 719-25.
[http://dx.doi.org/10.1016/j.carbpol.2012.09.036] [PMID: 23218359]
[49]
Chen S-C, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 2004; 96(2): 285-300.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.002] [PMID: 15081219]
[50]
Wu C, Wang Y, Gao B, Zhao Y, Yue Q. Coagulation performance and floc characteristics of aluminum sulfate using sodium alginate as coagulant aid for synthetic dying wastewater treatment. Separ Purif Tech 2012; 95: 180-7.
[http://dx.doi.org/10.1016/j.seppur.2012.05.009]
[51]
López-Córdoba A, Deladino L, Martino M. Corn starch-calcium alginate matrices for the simultaneous carrying of zinc and yerba mate antioxidants. Lebensm Wiss Technol 2014; 59(2, Part 1): 641-8.
[http://dx.doi.org/10.1016/j.lwt.2014.06.021]
[52]
Miao T, Rao KS, Spees JL, Oldinski RA. Osteogenic differentiation of human mesenchymal stem cells through alginate-graft-poly(ethylene glycol) microsphere-mediated intracellular growth factor delivery. J Control Release 2014; 192: 57-66.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.029] [PMID: 24979209]
[53]
Fu YC, Ho ML, Wu SC, Hsieh HS, Wang CK. Porous bioceramic bead prepared by calcium phosphate with sodium alginate gel and PE powder. Mater Sci Eng C 2008; 28(7): 1149-58.
[http://dx.doi.org/10.1016/j.msec.2007.09.001]
[54]
Li Y, Jia H, Cheng Q, Pan F, Jiang Z. Sodium alginate–gelatin polyelectrolyte complex membranes with both high water vapor permeance and high permselectivity. J Membr Sci 2011; 375(1): 304-12.
[http://dx.doi.org/10.1016/j.memsci.2011.03.058]
[55]
Prabhu SM, Meenakshi S. Novel one-pot synthesis of dicarboxylic acids mediated alginate-zirconium biopolymeric complex for defluor-idation of water. Carbohydr Polym 2015; 120: 60-8.
[http://dx.doi.org/10.1016/j.carbpol.2014.11.058] [PMID: 25662688]
[56]
Trandafilović LV, Božanić DK, Dimitrijević-Branković S, Luyt AS, Djoković V. Fabrication and antibacterial properties of ZnO–alginate nanocomposites. Carbohydr Polym 2012; 88(1): 263-9.
[http://dx.doi.org/10.1016/j.carbpol.2011.12.005] [PMID: 23465928]
[57]
Barikani M, Honarkar H, Barikani M. Synthesis and characterization of polyurethane elastomers based on chitosan and poly (ε‐caprolactone). J Appl Polym Sci 2009; 112(5): 3157-65.
[http://dx.doi.org/10.1002/app.29711]
[58]
Matsui M, Ono L, Akcelrud L. Chitin/polyurethane networks and blends: Evaluation of biological application. Polym Test 2012; 31(1): 191-6.
[http://dx.doi.org/10.1016/j.polymertesting.2011.09.006]
[59]
Usman A, Zia KM, Zuber M, Tabasum S, Rehman S, Zia F. Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int J Biol Macromol 2016; 86: 630-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.004] [PMID: 26851360]
[60]
Lv W, Luo J, Deng Y, Sun Y. Biomaterials immobilized with chitosan for rechargeable antimicrobial drug delivery. J Biomed Mater Res A 2013; 101(2): 447-55.
[http://dx.doi.org/10.1002/jbm.a.34350] [PMID: 22865542]
[61]
Zia F, Zia KM, Zuber M, Rehman S, Tabasum S, Sultana S. Synthesis and characterization of chitosan/curcumin blends based polyure-thanes. Int J Biol Macromol 2016; 92: 1074-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.005] [PMID: 27497754]
[62]
Irani M, Sadeghi GMM, Haririan I. A novel biocompatible drug delivery system of chitosan/temozolomide nanoparticles loaded PCL-PU nanofibers for sustained delivery of temozolomide. Int J Biol Macromol 2017; 97: 744-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.073] [PMID: 28109815]
[63]
Luo C, Liu W, Luo B, et al. Antibacterial activity and cytocompatibility of chitooligosaccharide-modified polyurethane membrane via polydopamine adhesive layer. Carbohydr Polym 2017; 156: 235-43.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.036] [PMID: 27842818]
[64]
Yuvarani I, Senthilkumar S, Venkatesan J, et al. Chitosan modified alginate-polyurethane scaffold for skeletal muscle tissue engineering. J Biomater Tissue Eng 2015; 5(8): 665-72.
[http://dx.doi.org/10.1166/jbt.2015.1358]
[65]
Madhumathi K, Sudheesh Kumar PT, Abhilash S, et al. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 2010; 21(2): 807-13.
[http://dx.doi.org/10.1007/s10856-009-3877-z] [PMID: 19802687]
[66]
Kumar PS, Abhilash S, Manzoor K, et al. Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr Polym 2010; 80(3): 761-7.
[http://dx.doi.org/10.1016/j.carbpol.2009.12.024]
[67]
Xu D, Wu K, Zhang Q, et al. Synthesis and biocompatibility of anionic polyurethane nanoparticles coated with adsorbed chitosan. Polymer (Guildf) 2010; 51(9): 1926-33.
[http://dx.doi.org/10.1016/j.polymer.2010.03.008]
[68]
Pavaloiu R-D, Stoica-Guzun A, Stroescu M, Jinga SI, Dobre T. Composite films of poly(vinyl alcohol)-chitosan-bacterial cellulose for drug controlled release. Int J Biol Macromol 2014; 68: 117-24.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.04.040] [PMID: 24769089]
[69]
Pavaloiu R-D, Stoica-Guzun A, Stroescu M, et al. Use of bacterial cellulose as reinforcement agent and as coating agent in drug release applications. Revista de Chimie 2014; 65(7): 852-5.
[70]
Jayakumar R, Ramachandran R, Sudheesh Kumar PT, et al. Fabrication of chitin-chitosan/nano ZrO(2) composite scaffolds for tissue engineering applications. Int J Biol Macromol 2011; 49(3): 274-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.04.020] [PMID: 21575656]
[71]
Xu X-G, Gao X-H, Chen H-D, Morganti P, et al. Chitin Nanocomposite Scaffolds for Advanced Medications. Bionanotechnol Save Envi-ron Plant Fishery’s Biomass Alternative Petrol 2019; pp. 260-71.
[72]
Fan M, Ma Y, Mao J, Zhang Z, Tan H. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering. Acta Biomater 2015; 20: 60-8.
[http://dx.doi.org/10.1016/j.actbio.2015.03.033] [PMID: 25839124]
[73]
Zhou Y, Yang H, Liu X, Mao J, Gu S, Xu W. Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings. Int J Biol Macromol 2013; 53: 88-92.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.11.013] [PMID: 23164753]
[74]
Bajpai SK, Chand N, Ahuja S. Investigation of curcumin release from chitosan/cellulose micro crystals (CMC) antimicrobial films. Int J Biol Macromol 2015; 79: 440-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.05.012] [PMID: 26003303]
[75]
Jiang L, Lu Y, Liu X, et al. Layer-by-layer immobilization of quaternized carboxymethyl chitosan/organic rectorite and alginate onto nanofibrous mats and their antibacterial application. Carbohydr Polym 2015; 121: 428-35.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.069] [PMID: 25659718]
[76]
Wang C, Luo W, Li P, et al. Preparation and evaluation of chitosan/alginate porous. Biomaterials 2006; 6: 623-33.
[77]
Shavandi A. Bekhit Ael-D, Sun Z, Ali A, Gould M. A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Mater Sci Eng C 2015; 55: 373-83.
[http://dx.doi.org/10.1016/j.msec.2015.05.029] [PMID: 26117768]
[78]
Nazeer MA, Yilgör E, Yilgör I. Intercalated chitosan/hydroxyapatite nanocomposites: Promising materials for bone tissue engineering applications. Carbohydr Polym 2017; 175: 38-46.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.054] [PMID: 28917880]
[79]
Liu C, Wu Y, Zhao L, Huang X. Preparation of acetylsalicylic acid-acylated chitosan as a novel polymeric drug for drug controlled re-lease. Int J Biol Macromol 2015; 78: 189-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.063] [PMID: 25849997]
[80]
Permadi R, Suk VRE, Misran M. Synthesis and characterization of acylated low molecular weight chitosan and acylated low molecular weight phthaloyl chitosan. Sains Malays 2020; 49(9): 2251-60.
[http://dx.doi.org/10.17576/jsm-2020-4909-22]
[81]
Domach MM. Introduction to biomedical engineering. Pearson Education India 2004.
[82]
Klement P, Du YJ, Berry L, Andrew M, Chan AK. Blood-compatible biomaterials by surface coating with a novel antithrombin-heparin covalent complex. Biomaterials 2002; 23(2): 527-35.
[http://dx.doi.org/10.1016/S0142-9612(01)00135-1] [PMID: 11762330]
[83]
Sun C, Niu Y, Tong F, et al. Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyure-thane-heparin nanoparticles. Electrochim Acta 2013; 97: 349-56.
[http://dx.doi.org/10.1016/j.electacta.2013.02.117]
[84]
Liu X-Y, Zhang CC, Xu WL, et al. Controlled release of heparin from blended polyurethane and silk fibroin film. Mater Lett 2009; 63(2): 263-5.
[http://dx.doi.org/10.1016/j.matlet.2008.10.006]
[85]
Seib FP, Herklotz M, Burke KA, Maitz MF, Werner C, Kaplan DL. Multifunctional silk-heparin biomaterials for vascular tissue engineer-ing applications. Biomaterials 2014; 35(1): 83-91.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.053] [PMID: 24099708]
[86]
Chou C-C, Zeng H-J, Yeh C-H. Blood compatibility and adhesion of collagen/heparin multilayers coated on two titanium surfaces by a layer-by-layer technique. Thin Solid Films 2013; 549: 117-22.
[http://dx.doi.org/10.1016/j.tsf.2013.09.093]
[87]
Chen J, Li QL, Chen JY, et al. Improving blood-compatibility of titanium by coating collagen–heparin multilayers. Appl Surf Sci 2009; 255(15): 6894-900.
[http://dx.doi.org/10.1016/j.apsusc.2009.03.011] [PMID: 20161223]
[88]
Gümüşderelioğlu M, Aday S. Heparin-functionalized chitosan scaffolds for bone tissue engineering. Carbohydr Res 2011; 346(5): 606-13.
[http://dx.doi.org/10.1016/j.carres.2010.12.007] [PMID: 21333274]
[89]
Lee J, Yoo JJ, Atala A, Lee SJ. Controlled heparin conjugation on electrospun poly(ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity. Acta Biomater 2012; 8(7): 2549-58.
[http://dx.doi.org/10.1016/j.actbio.2012.03.030] [PMID: 22465575]
[90]
He Q, Ao Q, Wang A, et al. In vitro cytotoxicity and protein drug release properties of chitosan/heparin microspheres. Tsinghua Sci Technol 2007; 12(4): 361-5.
[http://dx.doi.org/10.1016/S1007-0214(07)70054-8]
[91]
Negishi J, Nam K, Kimura T, Fujisato T, Kishida A. High-hydrostatic pressure technique is an effective method for the preparation of PVA-heparin hybrid gel. Eur J Pharm Sci 2010; 41(5): 617-22.
[http://dx.doi.org/10.1016/j.ejps.2010.09.001] [PMID: 20833248]
[92]
Kastellorizios M, Michanetzis GP, Pistillo BR, et al. Haemocompatibility improvement of metallic surfaces by covalent immobilization of heparin-liposomes. Int J Pharm 2012; 432(1-2): 91-8.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.057] [PMID: 22569232]
[93]
Lin D-J, Lin D-T, Young T-H, et al. Immobilization of heparin on PVDF membranes with microporous structures. J Membr Sci 2004; 245(1): 137-46.
[http://dx.doi.org/10.1016/j.memsci.2004.07.028]
[94]
Shahrousvand E, Shahrousvand M, Ghollasi M, et al. Preparation and evaluation of polyurethane/cellulose nanowhisker bimodal foam nanocomposites for osteogenic differentiation of hMSCs. Carbohydr Polym 2017; 171: 281-91.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.027] [PMID: 28578965]
[95]
Zia F, Zia KM, Zuber M, Kamal S, Aslam N. Starch based polyurethanes: A critical review updating recent literature. Carbohydr Polym 2015; 134: 784-98.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.034] [PMID: 26428186]
[96]
Mahmoudi M, Laurent S. Controlling the burst effect of a drug by introducing starch in the structure of magnetic polyurethane micro-spheres containing super paramagnetic iron oxide nanoparticles. Sci Iran 2010; 17: 43-51.
[97]
Emami SH, Orang F, Mahmoudi M, et al. A study of starch addition on burst effect and diameter of polyurethane microspheres contain-ing theophylline. Polym Adv Technol 2008; 19(3): 167-70.
[http://dx.doi.org/10.1002/pat.987]
[98]
Solanki A, Thakore S. Cellulose crosslinked pH-responsive polyurethanes for drug delivery: α-hydroxy acids as drug release modifiers. Int J Biol Macromol 2015; 80: 683-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.003] [PMID: 26188306]
[99]
Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS. Electrospun antibacterial polyurethane-cellulose acetate-zein compo-site mats for wound dressing. Carbohydr Polym 2014; 102: 884-92.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.070] [PMID: 24507360]
[100]
Hua D, Liu Z, Wang F, et al. pH responsive polyurethane (core) and cellulose acetate phthalate (shell) electrospun fibers for intravaginal drug delivery. Carbohydr Polym 2016; 151: 1240-4.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.066] [PMID: 27474676]
[101]
Gencturk A, Kahraman E, Güngör S, Özhan G, Özsoy Y, Sarac AS. Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: characterization studies and in vitro assays. Artif Cells Nanomed Biotechnol 2017; 45(3): 655-64.
[http://dx.doi.org/10.3109/21691401.2016.1173047] [PMID: 27103498]
[102]
Zabalza C. Priority of Contaminants of Emerging Concern for Water Reuse. Pomona: California State Polytechnic University 2019.
[103]
Hu Y, Li Q, Hong W, et al. Use of novel polyurethane microspheres in a curcumin delivery system. J Spectrosc 2014; 2014: 926268.
[104]
Chen P-H, Liao H-C, Sheng-Hao Hsu et al. A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering. RSC Advances 2015; 5(9): 6932-9.
[http://dx.doi.org/10.1039/C4RA12486C]
[105]
Ghavimi SAA, Ebrahimzadeh MH, Shokrgozar MA, et al. Effect of starch content on the biodegradation of polycaprolactone/starch composite for fabricating in situ pore-forming scaffolds. Polym Test 2015; 43: 94-102.
[http://dx.doi.org/10.1016/j.polymertesting.2015.02.012]
[106]
Shalviri A, Raval G, Prasad P, et al. pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells. Eur J Pharm Biopharm 2012; 82(3): 587-97.
[http://dx.doi.org/10.1016/j.ejpb.2012.09.001] [PMID: 22995704]
[107]
Subramanian SB, Francis AP, Devasena T. Chitosan-starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog. Carbohydr Polym 2014; 114: 170-8.
[http://dx.doi.org/10.1016/j.carbpol.2014.07.053] [PMID: 25263878]
[108]
Arockianathan PM, Sekar S, Kumaran B, Sastry TP. Preparation, characterization and evaluation of biocomposite films containing chi-tosan and sago starch impregnated with silver nanoparticles. Int J Biol Macromol 2012; 50(4): 939-46.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.02.022] [PMID: 22390849]
[109]
Assaad E, Wang YJ, Zhu XX, et al. Polyelectrolyte complex of carboxymethyl starch and chitosan as drug carrier for oral administration. Carbohydr Polym 2011; 84(4): 1399-407.
[http://dx.doi.org/10.1016/j.carbpol.2011.01.048]
[110]
Pereira JD, Camargo RC, Filho JC, Alves N, Rodriguez-Perez MA, Constantino CJ. Biomaterials from blends of fluoropolymers and corn starch-implant and structural aspects. Mater Sci Eng C 2014; 36: 226-36.
[http://dx.doi.org/10.1016/j.msec.2013.12.008] [PMID: 24433908]
[111]
Ozkaynak M, Atalay-Oral C, Birg S, et al. Polyurethane films for wound dressing applications. Macromol Symp 2005; 228: 177-84.
[112]
Sirvio LM, Grussing DM. The effect of gas permeability of film dressings on wound environment and healing. J Invest Dermatol 1989; 93(4): 528-31.
[http://dx.doi.org/10.1111/1523-1747.ep12284076] [PMID: 2506289]
[113]
Liu J, Ye L, Sun Y, et al. Elastic superhydrophobic and photocatalytic active films used as blood repellent dressing. Adv Mater 2020; 32(11): e1908008.
[http://dx.doi.org/10.1002/adma.201908008] [PMID: 32009264]
[114]
Powers JG, Morton LM, Phillips TJ. Dressings for chronic wounds. Dermatol Ther 2013; 26(3): 197-206.
[http://dx.doi.org/10.1111/dth.12055] [PMID: 23742280]
[115]
Lee OJ, Kim JH, Moon BM, et al. Fabrication and characterization of hydrocolloid dressing with silk fibroin nanoparticles for wound healing. Tissue Eng Regen Med 2016; 13(3): 218-26.
[http://dx.doi.org/10.1007/s13770-016-9058-5] [PMID: 30603402]
[116]
Sung K-Y, Lee S-Y. Nonoperative management of extravasation injuries associated with neonatal parenteral nutrition using multiple punctures and a hydrocolloid dressing. Wounds 2016; 28(5): 145-51.
[PMID: 27191172]
[117]
Ghomi ER, Khalili S, Khorasani SN, et al. Wound dressings: Current advances and future directions. J Appl Polym Sci 2019; 136(27): 47738.
[http://dx.doi.org/10.1002/app.47738]
[118]
Purdon CH, Haigh JM, Surber C, et al. Foam drug delivery in dermatology. Am J Drug Deliv 2003; 1(1): 71-5.
[http://dx.doi.org/10.2165/00137696-200301010-00006]
[119]
Shinde NG, Aloorkar NH, Bangar B, et al. Pharmaceutical foam drug delivery system: General considerations. Indo Am J Pharm Res 2013; 3: 1322-7.
[120]
Hoc D, Haznar-Garbacz D. Foams as unique drug delivery systems. Eur J Pharm Biopharm 2021; 167: 73-82.
[http://dx.doi.org/10.1016/j.ejpb.2021.07.012] [PMID: 34325002]
[121]
Maimouni I, Cejas CM, Cossy J, Tabeling P, Russo M. Microfluidics mediated production of foams for biomedical applications. Micromachines (Basel) 2020; 11(1): 83.
[http://dx.doi.org/10.3390/mi11010083] [PMID: 31940876]
[122]
Peppas NA, Van Blarcom DS. Hydrogel-based biosensors and sensing devices for drug delivery. J Control Release 2016; 240: 142-50.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.022] [PMID: 26611939]
[123]
Wen J, Jia Z, Zhang X, et al. Tough, thermo-responsive, biodegradable and fast self-healing polyurethane hydrogel based on microdo-main-closed dynamic bonds design. Mater Today Commun 2020; 25: 101569.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101569]
[124]
Chassenieux C, Tsitsilianis C. Recent trends in pH/thermo-responsive self-assembling hydrogels: from polyions to peptide-based poly-meric gelators. Soft Matter 2016; 12(5): 1344-59.
[http://dx.doi.org/10.1039/C5SM02710A] [PMID: 26781351]
[125]
Shrimali H, Mandal UK, Nivsarkar M, et al. Fabrication and evaluation of a medicated hydrogel film with embelin from Embelia ribes for wound healing activity. Future J Pharm Sci 2019; 5(1): 12.
[http://dx.doi.org/10.1186/s43094-019-0011-z]
[126]
Naficy S, Dehghani F, Chew YV, Hawthorne WJ, Le TYL. Engineering a porous hydrogel-based device for cell transplantation. ACS Appl Bio Mater 2020; 3(4): 1986-94.
[http://dx.doi.org/10.1021/acsabm.9b01144]
[127]
Yu J, Xu X, Yao F, et al. in situ covalently cross-linked PEG hydrogel for ocular drug delivery applications. Int J Pharm 2014; 470(1-2): 151-7.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.053] [PMID: 24768405]
[128]
Nimmo CM, Owen SC, Shoichet MS. Diels-Alder Click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules 2011; 12(3): 824-30.
[http://dx.doi.org/10.1021/bm101446k] [PMID: 21314111]
[129]
Yilgör I, Yilgör E, Wilkes GL. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer (Guildf) 2015; 58: A1-A36.
[http://dx.doi.org/10.1016/j.polymer.2014.12.014]
[130]
Keleş E, Hazer B. Synthesis of segmented polyurethane based on polymeric soybean oil polyol and poly (ethylene glycol). J Polym Environ 2009; 17(3): 153-8.
[http://dx.doi.org/10.1007/s10924-009-0132-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy