Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Kinase Inhibitors Involved in the Regulation of Autophagy: Molecular Concepts and Clinical Implications

Author(s): Isehaq Al-Huseini, Srinivasa Rao Sirasanagandla, Kondaveeti Suresh Babu, Ramakrishna Gopala Sumesh Sofin and Srijit Das*

Volume 30, Issue 13, 2023

Published on: 18 February, 2022

Page: [1502 - 1528] Pages: 27

DOI: 10.2174/0929867329666220117114306

Price: $65

Abstract

All cells and intracellular components are remodeled and recycled in order to replace the old and damaged cells. Autophagy is a process by which damaged, and unwanted cells are degraded in the lysosomes. There are three different types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy has an effect on adaptive and innate immunity, suppression of any tumour, and the elimination of various microbial pathogens. The process of autophagy has both positive and negative effects, and this pertains to any specific disease or its stage of progression. Autophagy involves various processes which are controlled by various signaling pathways, such as Jun N-terminal kinase, GSK3, ERK1, Leucine-rich repeat kinase 2, and PTEN-induced putative kinase 1 and parkin RBR E3. Protein kinases are also important for the regulation of autophagy as they regulate the process of autophagy either by activation or inhibition. The present review discusses the kinase catalyzed phosphorylated reactions, the kinase inhibitors, types of protein kinase inhibitors and their binding properties to protein kinase domains, the structures of active and inactive kinases, and the hydrophobic spine structures in active and inactive protein kinase domains. The intervention of autophagy by targeting specific kinases may form the mainstay of treatment of many diseases and lead the road to future drug discovery.

Keywords: Autophagy, signaling pathways, kinase inhibitors, drug delivery, cellular degradation, molecular concepts.

[1]
Reggiori, F.; Klionsky, D.J. Autophagy in the eukaryotic cell. Eukaryot. Cell, 2002, 1(1), 11-21.
[http://dx.doi.org/10.1128/EC.01.1.11-21.2002] [PMID: 12455967]
[2]
Levine, B.; Klionsky, D.J. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev. Cell, 2004, 6(4), 463-477.
[http://dx.doi.org/10.1016/S1534-5807(04)00099-1] [PMID: 15068787]
[3]
Mijaljica, D.; Prescott, M.; Devenish, R.J. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy, 2011, 7(7), 673-682.
[http://dx.doi.org/10.4161/auto.7.7.14733] [PMID: 21646866]
[4]
Massey, A.; Kiffin, R.; Cuervo, A.M. Pathophysiology of chaperone-mediated autophagy. Int. J. Biochem. Cell Biol., 2004, 36(12), 2420-2434.
[http://dx.doi.org/10.1016/j.biocel.2004.04.010] [PMID: 15325582]
[5]
Yorimitsu, T.; Klionsky, D.J. Autophagy: Molecular machinery for self-eating. Cell Death Differ., 2005, 12(Suppl 2), 1542-1552.
[http://dx.doi.org/10.1038/sj.cdd.4401765]
[6]
Parzych, K.R.; Klionsky, D.J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox Signal., 2014, 20(3), 460-473.
[http://dx.doi.org/10.1089/ars.2013.5371] [PMID: 23725295]
[7]
Yang, Z.; Klionsky, D.J. Mammalian autophagy: Core molecular machinery and signaling regulation. Curr. Opin. Cell Biol., 2010, 22(2), 124-131.
[http://dx.doi.org/10.1016/j.ceb.2009.11.014] [PMID: 20034776]
[8]
Mizushima, N. Autophagy: Process and function. Genes Dev., 2007, 21(22), 2861-2873.
[http://dx.doi.org/10.1101/gad.1599207] [PMID: 18006683]
[9]
Wang, L.; Ye, X.; Zhao, T. The physiological roles of autophagy in the mammalian life cycle. Biol. Rev. Camb. Philos. Soc., 2019, 94(2), 503-516.
[http://dx.doi.org/10.1111/brv.12464] [PMID: 30239126]
[10]
Huang, J.; Klionsky, D.J. Autophagy and human disease. Cell Cycle, 2007, 6(15), 1837-1849.
[http://dx.doi.org/10.4161/cc.6.15.4511] [PMID: 17671424]
[11]
Wirawan, E.; Vanden Berghe, T.; Lippens, S.; Agostinis, P.; Vandenabeele, P. Autophagy: for better or for worse. Cell Res., 2012, 22(1), 43-61.
[http://dx.doi.org/10.1038/cr.2011.152] [PMID: 21912435]
[12]
Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182), 1069-1075.
[http://dx.doi.org/10.1038/nature06639] [PMID: 18305538]
[13]
Shintani, T.; Klionsky, D.J. Autophagy in health and disease: A double-edged sword. Science, 2004, 306(5698), 990-995.
[http://dx.doi.org/10.1126/science.1099993] [PMID: 15528435]
[14]
Levine, B.; Deretic, V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat. Rev. Immunol., 2007, 7(10), 767-777.
[http://dx.doi.org/10.1038/nri2161] [PMID: 17767194]
[15]
Levine, B.; Yuan, J. Autophagy in cell death: An innocent convict? J. Clin. Invest., 2005, 115(10), 2679-2688.
[http://dx.doi.org/10.1172/JCI26390] [PMID: 16200202]
[16]
Yang, Z.; Klionsky, D.J. An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol., 2009, 335, 1-32.
[http://dx.doi.org/10.1007/978-3-642-00302-8_1] [PMID: 19802558]
[17]
Chen, Y.; Klionsky, D.J. The regulation of autophagy - unanswered questions. J. Cell Sci., 2011, 124(Pt 2), 161-170.
[http://dx.doi.org/10.1242/jcs.064576] [PMID: 21187343]
[18]
Itakura, E.; Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy, 2010, 6(6), 764-776.
[http://dx.doi.org/10.4161/auto.6.6.12709] [PMID: 20639694]
[19]
Hayashi-Nishino, M.; Fujita, N.; Noda, T.; Yamaguchi, A.; Yoshimori, T.; Yamamoto, A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol., 2009, 11(12), 1433-1437.
[http://dx.doi.org/10.1038/ncb1991] [PMID: 19898463]
[20]
Ylä-Anttila, P.; Vihinen, H.; Jokitalo, E.; Eskelinen, E.L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy, 2009, 5(8), 1180-1185.
[http://dx.doi.org/10.4161/auto.5.8.10274] [PMID: 19855179]
[21]
He, C.; Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet., 2009, 43, 67-93.
[http://dx.doi.org/10.1146/annurev-genet-102808-114910] [PMID: 19653858]
[22]
Hailey, D.W.; Rambold, A.S.; Satpute-Krishnan, P.; Mitra, K.; Sougrat, R.; Kim, P.K.; Lippincott-Schwartz, J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 2010, 141(4), 656-667.
[http://dx.doi.org/10.1016/j.cell.2010.04.009] [PMID: 20478256]
[23]
Takahashi, Y.; Meyerkord, C.L.; Hori, T.; Runkle, K.; Fox, T.E.; Kester, M.; Loughran, T.P.; Wang, H.G. Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy, 2011, 7(1), 61-73.
[http://dx.doi.org/10.4161/auto.7.1.14015] [PMID: 21068542]
[24]
Ravikumar, B.; Moreau, K.; Jahreiss, L.; Puri, C.; Rubinsztein, D.C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol., 2010, 12(8), 747-757.
[http://dx.doi.org/10.1038/ncb2078] [PMID: 20639872]
[25]
Ravikumar, B.; Moreau, K.; Rubinsztein, D.C. Plasma membrane helps autophagosomes grow. Autophagy, 2010, 6(8), 1184-1186.
[http://dx.doi.org/10.4161/auto.6.8.13428] [PMID: 20861674]
[26]
Mijaljica, D.; Prescott, M.; Devenish, R.J. The intriguing life of autophagosomes. Int. J. Mol. Sci., 2012, 13(3), 3618-3635.
[http://dx.doi.org/10.3390/ijms13033618] [PMID: 22489171]
[27]
Pfeifer, U. Inhibition by insulin of the formation of autophagic vacuoles in rat liver. A morphometric approach to the kinetics of intracellular degradation by autophagy. J. Cell Biol., 1978, 78(1), 152-167.
[http://dx.doi.org/10.1083/jcb.78.1.152] [PMID: 670291]
[28]
Schworer, C.M.; Shiffer, K.A.; Mortimore, G.E. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J. Biol. Chem., 1981, 256(14), 7652-7658.
[http://dx.doi.org/10.1016/S0021-9258(19)69010-1] [PMID: 7019210]
[29]
Berg, T.O.; Fengsrud, M.; Strømhaug, P.E.; Berg, T.; Seglen, P.O. Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J. Biol. Chem., 1998, 273(34), 21883-21892.
[http://dx.doi.org/10.1074/jbc.273.34.21883] [PMID: 9705327]
[30]
Tooze, J.; Hollinshead, M.; Ludwig, T.; Howell, K.; Hoflack, B.; Kern, H. In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J. Cell Biol., 1990, 111(2), 329-345.
[http://dx.doi.org/10.1083/jcb.111.2.329] [PMID: 2166050]
[31]
Ganley, I.G.; Lam, H.; Wang, J.; Ding, X.; Chen, S.; Jiang, X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem., 2009, 284(18), 12297-12305.
[http://dx.doi.org/10.1074/jbc.M900573200] [PMID: 19258318]
[32]
Hara, T.; Takamura, A.; Kishi, C.; Iemura, S.; Natsume, T.; Guan, J.L.; Mizushima, N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol., 2008, 181(3), 497-510.
[http://dx.doi.org/10.1083/jcb.200712064] [PMID: 18443221]
[33]
Hosokawa, N.; Sasaki, T.; Iemura, S.; Natsume, T.; Hara, T.; Mizushima, N. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy, 2009, 5(7), 973-979.
[http://dx.doi.org/10.4161/auto.5.7.9296] [PMID: 19597335]
[34]
Jung, C.H.; Jun, C.B.; Ro, S.H.; Kim, Y.M.; Otto, N.M.; Cao, J.; Kundu, M.; Kim, D.H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell, 2009, 20(7), 1992-2003.
[http://dx.doi.org/10.1091/mbc.e08-12-1249] [PMID: 19225151]
[35]
Mercer, C.A.; Kaliappan, A.; Dennis, P.B. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 2009, 5(5), 649-662.
[http://dx.doi.org/10.4161/auto.5.5.8249] [PMID: 19287211]
[36]
Mizushima, N.; Sugita, H.; Yoshimori, T.; Ohsumi, Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem., 1998, 273(51), 33889-33892.
[http://dx.doi.org/10.1074/jbc.273.51.33889] [PMID: 9852036]
[37]
Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J., 2000, 19(21), 5720-5728.
[http://dx.doi.org/10.1093/emboj/19.21.5720] [PMID: 11060023]
[38]
Stolz, A.; Ernst, A.; Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol., 2014, 16(6), 495-501.
[http://dx.doi.org/10.1038/ncb2979] [PMID: 24875736]
[39]
Wild, P.; McEwan, D.G.; Dikic, I. The LC3 interactome at a glance. J. Cell Sci., 2014, 127(Pt 1), 3-9.
[PMID: 24345374]
[40]
Pankiv, S.; Clausen, T.H.; Lamark, T.; Brech, A.; Bruun, J.A.; Outzen, H.; Øvervatn, A.; Bjørkøy, G.; Johansen, T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem., 2007, 282(33), 24131-24145.
[http://dx.doi.org/10.1074/jbc.M702824200] [PMID: 17580304]
[41]
Young, A.R.; Chan, E.Y.; Hu, X.W.; Köchl, R.; Crawshaw, S.G.; High, S.; Hailey, D.W.; Lippincott-Schwartz, J.; Tooze, S.A. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci., 2006, 119(Pt 18), 3888-3900.
[http://dx.doi.org/10.1242/jcs.03172] [PMID: 16940348]
[42]
Wang, Y.; Li, L.; Hou, C.; Lai, Y.; Long, J.; Liu, J.; Zhong, Q.; Diao, J. SNARE-mediated membrane fusion in autophagy. Semin. Cell Dev. Biol., 2016, 60, 97-104.
[http://dx.doi.org/10.1016/j.semcdb.2016.07.009] [PMID: 27422330]
[43]
Bento, C.F.; Renna, M.; Ghislat, G.; Puri, C.; Ashkenazi, A.; Vicinanza, M.; Menzies, F.M.; Rubinsztein, D.C. Mammalian autophagy: How does it work? Annu. Rev. Biochem., 2016, 85, 685-713.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014556] [PMID: 26865532]
[44]
Itakura, E.; Kishi-Itakura, C.; Mizushima, N. The hairpin- type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell, 2012, 151(6), 1256-1269.
[http://dx.doi.org/10.1016/j.cell.2012.11.001] [PMID: 23217709]
[45]
Di Paolo, G.; De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature, 2006, 443(7112), 651-657.
[http://dx.doi.org/10.1038/nature05185] [PMID: 17035995]
[46]
Cebollero, E.; van der Vaart, A.; Reggiori, F. Understanding phosphatidylinositol-3-phosphate dynamics during autophagosome biogenesis. Autophagy, 2012, 8(12), 1868-1870.
[http://dx.doi.org/10.4161/auto.22162] [PMID: 22992453]
[47]
Lee, X.C.; Werner, E.; Falasca, M. Molecular mechanism of autophagy and its regulation by cannabinoids in cancer. Cancers (Basel), 2021, 13(6), 1211.
[http://dx.doi.org/10.3390/cancers13061211] [PMID: 33802014]
[48]
Egan, D.F.; Shackelford, D.B.; Mihaylova, M.M.; Gelino, S.; Kohnz, R.A.; Mair, W.; Vasquez, D.S.; Joshi, A.; Gwinn, D.M.; Taylor, R.; Asara, J.M.; Fitzpatrick, J.; Dillin, A.; Viollet, B.; Kundu, M.; Hansen, M.; Shaw, R.J. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 2011, 331(6016), 456-461.
[http://dx.doi.org/10.1126/science.1196371] [PMID: 21205641]
[49]
Jang, M.; Park, R.; Kim, H.; Namkoong, S.; Jo, D.; Huh, Y.H.; Jang, I.S.; Lee, J.I.; Park, J. AMPK contributes to autophagosome maturation and lysosomal fusion. Sci. Rep., 2018, 8(1), 12637.
[http://dx.doi.org/10.1038/s41598-018-30977-7] [PMID: 30140075]
[50]
Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res., 2002, 12(1), 9-18.
[http://dx.doi.org/10.1038/sj.cr.7290105] [PMID: 11942415]
[51]
Dhanasekaran, D.N.; Reddy, E.P. JNK-signaling: A multiplexing hub in programmed cell death. Genes Cancer, 2017, 8(9-10), 682-694.
[http://dx.doi.org/10.18632/genesandcancer.155] [PMID: 29234486]
[52]
Cui, J.; Zhang, M.; Zhang, Y.Q.; Xu, Z.H. JNK pathway: diseases and therapeutic potential. Acta Pharmacol. Sin., 2007, 28(5), 601-608.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00579.x] [PMID: 17439715]
[53]
Weston, C.R.; Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Cell Biol., 2007, 19(2), 142-149.
[http://dx.doi.org/10.1016/j.ceb.2007.02.001] [PMID: 17303404]
[54]
Jia, G.; Kong, R.; Ma, Z-B.; Han, B.; Wang, Y-W.; Pan, S-H.; Li, Y-H.; Sun, B. The activation of c-Jun NH2-terminal kinase is required for dihydroartemisinin-induced autophagy in pancreatic cancer cells. J. Exp. Clin. Cancer Res., 2014, 33(1), 8.
[http://dx.doi.org/10.1186/1756-9966-33-8] [PMID: 24438216]
[55]
Wu, Q.; Wu, W.; Fu, B.; Shi, L.; Wang, X.; Kuca, K. JNK signaling in cancer cell survival. Med. Res. Rev., 2019, 39(6), 2082-2104.
[http://dx.doi.org/10.1002/med.21574] [PMID: 30912203]
[56]
Shimizu, S.; Konishi, A.; Nishida, Y.; Mizuta, T.; Nishina, H.; Yamamoto, A.; Tsujimoto, Y. Involvement of JNK in the regulation of autophagic cell death. Oncogene, 2010, 29(14), 2070-2082.
[http://dx.doi.org/10.1038/onc.2009.487] [PMID: 20101227]
[57]
Zhang, Y.; Chen, P.; Hong, H.; Wang, L.; Zhou, Y.; Lang, Y. JNK pathway mediates curcumin-induced apoptosis and autophagy in osteosarcoma MG63 cells. Exp. Ther. Med., 2017, 14(1), 593-599.
[http://dx.doi.org/10.3892/etm.2017.4529] [PMID: 28672972]
[58]
Bogoyevitch, M.A.; Kobe, B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol. Mol. Biol. Rev., 2006, 70(4), 1061-1095.
[http://dx.doi.org/10.1128/MMBR.00025-06] [PMID: 17158707]
[59]
Pattingre, S.; Tassa, A.; Qu, X.; Garuti, R.; Liang, X.H.; Mizushima, N.; Packer, M.; Schneider, M.D.; Levine, B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 2005, 122(6), 927-939.
[http://dx.doi.org/10.1016/j.cell.2005.07.002] [PMID: 16179260]
[60]
Wei, Y.; Pattingre, S.; Sinha, S.; Bassik, M.; Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell, 2008, 30(6), 678-688.
[http://dx.doi.org/10.1016/j.molcel.2008.06.001] [PMID: 18570871]
[61]
Xu, P.; Das, M.; Reilly, J.; Davis, R.J. JNK regulates FoxO-dependent autophagy in neurons. Genes Dev., 2011, 25(4), 310-322.
[http://dx.doi.org/10.1101/gad.1984311] [PMID: 21325132]
[62]
Mancinelli, R.; Carpino, G.; Petrungaro, S.; Mammola, C.L.; Tomaipitinca, L.; Filippini, A.; Facchiano, A.; Ziparo, E.; Giampietri, C. Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxid. Med. Cell. Longev., 2017, 2017, 4629495.
[http://dx.doi.org/10.1155/2017/4629495] [PMID: 29379583]
[63]
Suzuki, T.; Bridges, D.; Nakada, D.; Skiniotis, G.; Morrison, S.J.; Lin, J.D.; Saltiel, A.R.; Inoki, K. Inhibition of AMPK catabolic action by GSK3. Mol. Cell, 2013, 50(3), 407-419.
[http://dx.doi.org/10.1016/j.molcel.2013.03.022] [PMID: 23623684]
[64]
Azoulay-Alfaguter, I.; Elya, R.; Avrahami, L.; Katz, A.; Eldar-Finkelman, H. Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene, 2015, 34(35), 4613-4623.
[http://dx.doi.org/10.1038/onc.2014.390] [PMID: 25500539]
[65]
Rippin, I.; Eldar-Finkelman, H. Mechanisms and therapeutic implications of gsk-3 in treating neurodegeneration. Cells, 2021, 10(2), 262.
[http://dx.doi.org/10.3390/cells10020262] [PMID: 33572709]
[66]
Marchand, B.; Arsenault, D.; Raymond-Fleury, A.; Boisvert, F.M.; Boucher, M.J. Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells. J. Biol. Chem., 2015, 290(9), 5592-5605.
[http://dx.doi.org/10.1074/jbc.M114.616714] [PMID: 25561726]
[67]
Ryu, H.Y.; Kim, L.E.; Jeong, H.; Yeo, B.K.; Lee, J.W.; Nam, H.; Ha, S.; An, H.K.; Park, H.; Jung, S.; Chung, K.M.; Kim, J.; Lee, B.H.; Cheong, H.; Kim, E.K.; Yu, S.W. GSK3B induces autophagy by phosphorylating ULK1. Exp. Mol. Med., 2021, 53(3), 369-383.
[http://dx.doi.org/10.1038/s12276-021-00570-6] [PMID: 33654220]
[68]
Owens, D.M.; Keyse, S.M. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene, 2007, 26(22), 3203-3213.
[http://dx.doi.org/10.1038/sj.onc.1210412] [PMID: 17496916]
[69]
Kyriakis, J.M.; Avruch, J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol. Rev., 2012, 92(2), 689-737.
[http://dx.doi.org/10.1152/physrev.00028.2011] [PMID: 22535895]
[70]
Pattingre, S.; Bauvy, C.; Codogno, P. Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J. Biol. Chem., 2003, 278(19), 16667-16674.
[http://dx.doi.org/10.1074/jbc.M210998200] [PMID: 12609989]
[71]
Ogier-Denis, E.; Pattingre, S.; El Benna, J.; Codogno, P. Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J. Biol. Chem., 2000, 275(50), 39090-39095.
[http://dx.doi.org/10.1074/jbc.M006198200] [PMID: 10993892]
[72]
Corcelle, E.; Nebout, M.; Bekri, S.; Gauthier, N.; Hofman, P.; Poujeol, P.; Fénichel, P.; Mograbi, B. Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. Cancer Res., 2006, 66(13), 6861-6870.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3557] [PMID: 16818664]
[73]
Wang, J.; Whiteman, M.W.; Lian, H.; Wang, G.; Singh, A.; Huang, D.; Denmark, T. A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J. Biol. Chem., 2009, 284(32), 21412-21424.
[http://dx.doi.org/10.1074/jbc.M109.026013] [PMID: 19520853]
[74]
Wauson, E.M.; Dbouk, H.A.; Ghosh, A.B.; Cobb, M.H. G protein-coupled receptors and the regulation of autophagy. Trends Endocrinol. Metab., 2014, 25(5), 274-282.
[http://dx.doi.org/10.1016/j.tem.2014.03.006] [PMID: 24751357]
[75]
Bravo-San Pedro, J.M.; Gómez-Sánchez, R.; Pizarro-Estrella, E.; Niso-Santano, M.; González-Polo, R.A.; Fuentes Rodríguez, J.M. Parkinson’s disease: Leucine-rich repeat kinase 2 and autophagy, intimate enemies. Parkinsons Dis., 2012, 2012, 151039.
[http://dx.doi.org/10.1155/2012/151039] [PMID: 22970411]
[76]
Wallings, R.; Manzoni, C.; Bandopadhyay, R. Cellular processes associated with LRRK2 function and dysfunction. FEBS J., 2015, 282(15), 2806-2826.
[http://dx.doi.org/10.1111/febs.13305] [PMID: 25899482]
[77]
Greggio, E.; Zambrano, I.; Kaganovich, A.; Beilina, A.; Taymans, J.M.; Daniëls, V.; Lewis, P.; Jain, S.; Ding, J.; Syed, A.; Thomas, K.J.; Baekelandt, V.; Cookson, M.R. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J. Biol. Chem., 2008, 283(24), 16906-16914.
[http://dx.doi.org/10.1074/jbc.M708718200] [PMID: 18397888]
[78]
Weiss, B. ROCO kinase activity is controlled by internal GTPase function. Sci. Signal., 2008, 1(23), pe27.
[http://dx.doi.org/10.1126/scisignal.123pe27] [PMID: 18544747]
[79]
Cogo, S.; Manzoni, C.; Lewis, P.A.; Greggio, E. Leucine-rich repeat kinase 2 and lysosomal dyshomeostasis in Parkinson disease. J. Neurochem., 2020, 152(3), 273-283.
[http://dx.doi.org/10.1111/jnc.14908] [PMID: 31693760]
[80]
Manzoni, C.; Lewis, P.A. LRRK2 and autophagy. Adv. Neurobiol., 2017, 14, 89-105.
[http://dx.doi.org/10.1007/978-3-319-49969-7_5] [PMID: 28353280]
[81]
Madureira, M.; Connor-Robson, N.; Wade-Martins, R. LRRK2: Autophagy and lysosomal activity. Front. Neurosci., 2020, 14, 498.
[http://dx.doi.org/10.3389/fnins.2020.00498] [PMID: 32523507]
[82]
Olanow, C.W.; McNaught, K. Parkinson’s disease, proteins, and prions: milestones. Mov. Disord., 2011, 26(6), 1056-1071.
[http://dx.doi.org/10.1002/mds.23767] [PMID: 21626551]
[83]
Gómez-Suaga, P.; Luzón-Toro, B.; Churamani, D.; Zhang, L.; Bloor-Young, D.; Patel, S.; Woodman, P.G.; Churchill, G.C.; Hilfiker, S. Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum. Mol. Genet., 2012, 21(3), 511-525.
[http://dx.doi.org/10.1093/hmg/ddr481] [PMID: 22012985]
[84]
Gómez-Suaga, P.; Churchill, G.C.; Patel, S.; Hilfiker, S. A link between LRRK2, autophagy and NAADP-mediated endolysosomal calcium signalling. Biochem. Soc. Trans., 2012, 40(5), 1140-1146.
[http://dx.doi.org/10.1042/BST20120138] [PMID: 22988879]
[85]
Araya, J.; Tsubouchi, K.; Sato, N.; Ito, S.; Minagawa, S.; Hara, H.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T.; Yoshida, M.; Fujita, Y.; Utsumi, H.; Kobayashi, K.; Yanagisawa, H.; Hashimoto, M.; Wakui, H.; Ishikawa, T.; Numata, T.; Kaneko, Y.; Asano, H.; Yamashita, M.; Odaka, M.; Morikawa, T.; Nishimura, S.L.; Nakayama, K.; Kuwano, K. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy, 2019, 15(3), 510-526.
[http://dx.doi.org/10.1080/15548627.2018.1532259] [PMID: 30290714]
[86]
Quinn, P.M.J.; Moreira, P.I.; Ambrósio, A.F.; Alves, C.H. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol. Commun., 2020, 8(1), 189.
[http://dx.doi.org/10.1186/s40478-020-01062-w] [PMID: 33168089]
[87]
Matsuda, N.; Sato, S.; Shiba, K.; Okatsu, K.; Saisho, K.; Gautier, C.A.; Sou, Y.S.; Saiki, S.; Kawajiri, S.; Sato, F.; Kimura, M.; Komatsu, M.; Hattori, N.; Tanaka, K. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol., 2010, 189(2), 211-221.
[http://dx.doi.org/10.1083/jcb.200910140] [PMID: 20404107]
[88]
Kane, L.A.; Lazarou, M.; Fogel, A.I.; Li, Y.; Yamano, K.; Sarraf, S.A.; Banerjee, S.; Youle, R.J. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol., 2014, 205(2), 143-153.
[http://dx.doi.org/10.1083/jcb.201402104] [PMID: 24751536]
[89]
Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet., 2010, 19(24), 4861-4870.
[http://dx.doi.org/10.1093/hmg/ddq419] [PMID: 20871098]
[90]
Wong, Y.C.; Holzbaur, E.L. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl. Acad. Sci. USA, 2014, 111(42), E4439-E4448.
[http://dx.doi.org/10.1073/pnas.1405752111] [PMID: 25294927]
[91]
U.S. Food & Drugs. New drugs at FDA: CDER’s new molecular entities and new therapeutic biological products. Available from: https://www.fda.gov/drugs/development-approval-process-drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products.
[92]
Roskoski, R., Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res., 2021, 165, 105463.
[http://dx.doi.org/10.1016/j.phrs.2021.105463] [PMID: 33513356]
[93]
Cohen, P.; Alessi, D.R. Kinase drug discovery-what’s next in the field? ACS Chem. Biol., 2013, 8(1), 96-104.
[http://dx.doi.org/10.1021/cb300610s] [PMID: 23276252]
[94]
Ficarro, S.B.; McCleland, M.L.; Stukenberg, P.T.; Burke, D.J.; Ross, M.M.; Shabanowitz, J.; Hunt, D.F.; White, F.M. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol., 2002, 20(3), 301-305.
[http://dx.doi.org/10.1038/nbt0302-301] [PMID: 11875433]
[95]
Cohen, P. The regulation of protein function by multisite phosphorylation-a 25 year update. Trends Biochem. Sci., 2000, 25(12), 596-601.
[http://dx.doi.org/10.1016/S0968-0004(00)01712-6] [PMID: 11116185]
[96]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[97]
Müller, S.; Chaikuad, A.; Gray, N.S.; Knapp, S. The ins and outs of selective kinase inhibitor development. Nat. Chem. Biol., 2015, 11(11), 818-821.
[http://dx.doi.org/10.1038/nchembio.1938] [PMID: 26485069]
[98]
Levitzki, A. Protein kinase inhibitors as a therapeutic modality. Acc. Chem. Res., 2003, 36(6), 462-469.
[http://dx.doi.org/10.1021/ar0201207] [PMID: 12809533]
[99]
National Institute of Health. Understudied Proteins. Available from:https://commonfund.nih.gov/idg/understudiedproteins
[100]
Fedorov, O.; Müller, S.; Knapp, S. The (un)targeted cancer kinome. Nat. Chem. Biol., 2010, 6(3), 166-169.
[http://dx.doi.org/10.1038/nchembio.297] [PMID: 20154661]
[101]
Botta, M. New frontiers in kinases: Special issue. ACS Med. Chem. Lett., 2014, 5(4), 270.
[http://dx.doi.org/10.1021/ml500071m] [PMID: 24900819]
[102]
Roskoski Jr, R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res., 2021, 165, 105463. doi: 10.1016/j.phrs.2021.105463. Epub 2021 Jan 26.
[PMID: 33513356]
[103]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[104]
Force, T.; Kolaja, K.L. Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat. Rev. Drug Discov., 2011, 10(2), 111-126.
[http://dx.doi.org/10.1038/nrd3252] [PMID: 21283106]
[105]
Yang, B.; Papoian, T. Tyrosine kinase inhibitor (TKI)-induced cardiotoxicity: Approaches to narrow the gaps between preclinical safety evaluation and clinical outcome. Journal of applied toxicology : JAT, 2012, 32(12), 945-951.
[http://dx.doi.org/10.1002/jat.2813] [PMID: 22961481]
[106]
Hasinoff, B.B. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicol. Appl. Pharmacol., 2010, 244(2), 190-195.
[http://dx.doi.org/10.1016/j.taap.2009.12.032] [PMID: 20045709]
[107]
Dar, A.C.; Shokat, K.M. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu. Rev. Biochem., 2011, 80, 769-795.
[http://dx.doi.org/10.1146/annurev-biochem-090308-173656] [PMID: 21548788]
[108]
Zuccotto, F.; Ardini, E.; Casale, E.; Angiolini, M. Through the “gatekeeper door”: exploiting the active kinase conformation. J. Med. Chem., 2010, 53(7), 2681-2694.
[http://dx.doi.org/10.1021/jm901443h] [PMID: 20000735]
[109]
Coussens, L.; Parker, P.J.; Rhee, L.; Yang-Feng, T.L.; Chen, E.; Waterfield, M.D.; Francke, U.; Ullrich, A. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science, 1986, 233(4766), 859-866.
[http://dx.doi.org/10.1126/science.3755548] [PMID: 3755548]
[110]
Fabbro, D.; Cowan-Jacob, S.W.; Moebitz, H. Ten things you should know about protein kinases: IUPHAR review 14. Br. J. Pharmacol., 2015, 172(11), 2675-2700.
[http://dx.doi.org/10.1111/bph.13096] [PMID: 25630872]
[111]
Theivendren, P., Kunjiappan, S., Hegde, Y. M., Vellaichamy, S., Gopal, M., Dhramalingam, S. R., and Kumar, S. Importance of Protein Kinase and Its Inhibitor: A Review. Protein Kinase-New Opportunities, Challenges and Future Perspectives, 2021. Website: https://www.intechopen.com/chapters/77646. Retrieved on 25.1.2022
[http://dx.doi.org/10.5772/intechopen.98552]
[112]
Pende, M.; Um, S.H.; Mieulet, V.; Sticker, M.; Goss, V.L.; Mestan, J.; Mueller, M.; Fumagalli, S.; Kozma, S.C.; Thomas, G. S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol. Cell. Biol., 2004, 24(8), 3112-3124.
[http://dx.doi.org/10.1128/MCB.24.8.3112-3124.2004] [PMID: 15060135]
[113]
Ferrer, I.; Blanco, R.; Carmona, M.; Puig, B.; Domínguez, I.; Viñals, F. Active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates are differentially expressed following systemic administration of kainic acid to the adult rat. Acta. Neuropathol., 2002, 103(4), 391-407.
[http://dx.doi.org/10.1007/s00401-001-0481-9] [PMID: 11904760]
[114]
Senderowicz, A.M. Small molecule modulators of cyclin-dependent kinases for cancer therapy. Oncogene, 2000, 19(56), 6600-6606.
[http://dx.doi.org/10.1038/sj.onc.1204085] [PMID: 11426645]
[115]
Hoessel, R.; Leclerc, S.; Endicott, J.A.; Nobel, M.E.; Lawrie, A.; Tunnah, P.; Leost, M.; Damiens, E.; Marie, D.; Marko, D.; Niederberger, E.; Tang, W.; Eisenbrand, G.; Meijer, L. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat. Cell Biol., 1999, 1(1), 60-67.
[http://dx.doi.org/10.1038/9035] [PMID: 10559866]
[116]
Roskoski Jr, R. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Research.,2016, 103, 26-48
[117]
Bienz, M.; Clevers, H. Linking colorectal cancer to Wnt signaling. Cell, 2000, 103(2), 311-320.
[http://dx.doi.org/10.1016/S0092-8674(00)00122-7] [PMID: 11057903]
[118]
Cross, D.A.; Culbert, A.A.; Chalmers, K.A.; Facci, L.; Skaper, S.D.; Reith, A.D. Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J. Neurochem., 2001, 77(1), 94-102.
[http://dx.doi.org/10.1046/j.1471-4159.2001.t01-1-00251.x] [PMID: 11279265]
[119]
Finn, R.S.; Aleshin, A.; Slamon, D.J. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast. Cancer. Res., 2016, 18(1), 17.
[http://dx.doi.org/10.1186/s13058-015-0661-5] [PMID: 26857361]
[120]
Qin, A.; Reddy, H.G.; Weinberg, F.D.; Kalemkerian, G.P. Cyclin-dependent kinase inhibitors for the treatment of lung cancer. Expert. Opin. Pharmacother., 2020, 21(8), 941-952.
[http://dx.doi.org/10.1080/14656566.2020.1738385] [PMID: 32164461]
[121]
Chen, L.; Wang, Y.; Jiang, W.; Ni, R.; Wang, Y.; Ni, S. CDK14 involvement in proliferation migration and invasion of esophageal cancer. Ann. Transl. Med., 2019, 7(22), 681.
[http://dx.doi.org/10.21037/atm.2019.11.105] [PMID: 31930082]
[122]
Feng, F.Y.; Kothari, V. Driven to metastasize: Kinases as potential therapeutic targets in prostate cancer. Proc. Natl. Acad. Sci. USA, 2016, 113(3), 473-475.
[http://dx.doi.org/10.1073/pnas.1522938113] [PMID: 26747602]
[123]
Cicenas, J.; Račienė, A. Anti-cancer drugs targeting protein kinases approved by FDA in 2020. Cancers (Basel), 2021, 13(5), 947.
[http://dx.doi.org/10.3390/cancers13050947] [PMID: 33668248]
[124]
Hanks, S.K.; Quinn, A.M.; Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science, 1988, 241(4861), 42-52.
[http://dx.doi.org/10.1126/science.3291115] [PMID: 3291115]
[125]
Hanks, S.K.; Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification. FASEB J., 1995, 9(8), 576-596.
[http://dx.doi.org/10.1096/fasebj.9.8.7768349] [PMID: 7768349]
[126]
Roskoski, R. Jr. A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol. Res., 2015, 100, 1-23.
[http://dx.doi.org/10.1016/j.phrs.2015.07.010] [PMID: 26207888]
[127]
Nandipati, K.C.; Subramanian, S.; Agrawal, D.K. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol. Cell. Biochem., 2017, 426(1-2), 27-45.
[http://dx.doi.org/10.1007/s11010-016-2878-8] [PMID: 27868170]
[128]
Levitzki, A.; Klein, S. My journey from tyrosine phosphorylation inhibitors to targeted immune therapy as strategies to combat cancer. Proc. Natl. Acad. Sci. USA, 2019, 116(24), 11579-11586.
[http://dx.doi.org/10.1073/pnas.1816012116] [PMID: 31076554]
[129]
Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y.S. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer, 2018, 17(1), 36.
[http://dx.doi.org/10.1186/s12943-018-0801-5] [PMID: 29455664]
[130]
Shibuya, M.; Suzuki, Y. Treatment of cerebral vasospasm by a protein kinase inhibitor AT 877. No To Shinkei, 1993, 45(9), 819-824.
[PMID: 8217408]
[131]
Doggrell, S.A. Rho-kinase inhibitors show promise in pulmonary hypertension. Expert Opin. Investig. Drugs, 2005, 14(9), 1157-1159.
[http://dx.doi.org/10.1517/13543784.14.9.1157] [PMID: 16144499]
[132]
Nagumo, H.; Sasaki, Y.; Ono, Y.; Okamoto, H.; Seto, M.; Takuwa, Y. Rho kinase inhibitor HA-1077 prevents Rho- mediated myosin phosphatase inhibition in smooth muscle cells. Am. J. Physiol. Cell Physiol., 2000, 278(1), C57-C65.
[http://dx.doi.org/10.1152/ajpcell.2000.278.1.C57] [PMID: 10644512]
[133]
Heitman, J.; Movva, N.R.; Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science, 1991, 253(5022), 905-909.
[http://dx.doi.org/10.1126/science.1715094] [PMID: 1715094]
[134]
Lee, J.C.; Laydon, J.T.; McDonnell, P.C.; Gallagher, T.F.; Kumar, S.; Green, D.; McNulty, D.; Blumenthal, M.J.; Heys, J.R.; Landvatter, S.W.; Strickler, J.E.; McLaughlin, M.M.; Siemens, I.R.; Fisher, S.M.; Livi, G.P.; White, J.R.; Adams, J.L.; Young, P.R. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature, 1994, 372(6508), 739-746.
[http://dx.doi.org/10.1038/372739a0] [PMID: 7997261]
[135]
Cuenda, A.; Rouse, J.; Doza, Y.N.; Meier, R.; Cohen, P.; Gallagher, T.F.; Young, P.R.; Lee, J.C. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett., 1995, 364(2), 229-233.
[http://dx.doi.org/10.1016/0014-5793(95)00357-F] [PMID: 7750577]
[136]
Eyers, P.A.; van den IJssel, P.; Quinlan, R.A.; Goedert, M.; Cohen, P. Use of a drug-resistant mutant of stress-activated protein kinase 2a/p38 to validate the in vivo specificity of SB 203580. FEBS Lett., 1999, 451(2), 191-196.
[http://dx.doi.org/10.1016/S0014-5793(99)00552-9] [PMID: 10371163]
[137]
Hammaker, D.; Firestein, G.S. Go upstream, young man: Lessons learned from the p38 saga. Ann. Rheumatic Dis., 2010, 69(Suppl 1), i77-82.
[138]
Alam, J.J. Selective brain-targeted antagonism of p38 mapkα reduces hippocampal il-1β levels and improves morris water maze performance in aged rats. J. Alzheimers Dis., 2015, 48(1), 219-227.
[http://dx.doi.org/10.3233/JAD-150277] [PMID: 26401942]
[139]
Paisán-Ruiz, C.; Lewis, P.A.; Singleton, A.B. LRRK2: Cause, risk, and mechanism. J. Parkinsons Dis., 2013, 3(2), 85-103.
[http://dx.doi.org/10.3233/JPD-130192] [PMID: 23938341]
[140]
Alessi, D.R.; Sammler, E. LRRK2 kinase in Parkinson’s disease. Science, 2018, 360(6384), 36-37.
[http://dx.doi.org/10.1126/science.aar5683] [PMID: 29622645]
[141]
Wong, M.M.K.; Hoekstra, S.D.; Vowles, J.; Watson, L.M.; Fuller, G.; Németh, A.H.; Cowley, S.A.; Ansorge, O.; Talbot, K.; Becker, E.B.E. Neurodegeneration in SCA14 is associated with increased PKCγ kinase activity, mislocalization and aggregation. Acta Neuropathol. Commun., 2018, 6(1), 99.
[http://dx.doi.org/10.1186/s40478-018-0600-7] [PMID: 30249303]
[142]
Mabillard, H.; Sayer, J.A. The molecular genetics of gordon syndrome. Genes (Basel), 2019, 10(12), E986.
[http://dx.doi.org/10.3390/genes10120986] [PMID: 31795491]
[143]
Ubersax, J.A.; Ferrell, J.E., Jr. Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol., 2007, 8(7), 530-541.
[http://dx.doi.org/10.1038/nrm2203] [PMID: 17585314]
[144]
Turk, B.E. Understanding and exploiting substrate recognition by protein kinases. Curr. Opin. Chem. Biol., 2008, 12(1), 4-10.
[http://dx.doi.org/10.1016/j.cbpa.2008.01.018] [PMID: 18282484]
[145]
Hutti, J.E.; Jarrell, E.T.; Chang, J.D.; Abbott, D.W.; Storz, P.; Toker, A.; Cantley, L.C.; Turk, B.E. A rapid method for determining protein kinase phosphorylation specificity. Nat. Methods, 2004, 1(1), 27-29.
[http://dx.doi.org/10.1038/nmeth708] [PMID: 15782149]
[146]
Songyang, Z.; Cantley, L.C. The use of peptide library for the determination of kinase peptide substrates. Methods Mol. Biol., 1998, 87, 87-98.
[PMID: 9523263]
[147]
Mok, J.; Kim, P.M.; Lam, H.Y.; Piccirillo, S.; Zhou, X.; Jeschke, G.R.; Sheridan, D.L.; Parker, S.A.; Desai, V.; Jwa, M.; Cameroni, E.; Niu, H.; Good, M.; Remenyi, A.; Ma, J.L.; Sheu, Y.J.; Sassi, H.E.; Sopko, R.; Chan, C.S.; De Virgilio, C.; Hollingsworth, N.M.; Lim, W.A.; Stern, D.F.; Stillman, B.; Andrews, B.J.; Gerstein, M.B.; Snyder, M.; Turk, B.E. Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci. Signal., 2010, 3(109), ra12.
[http://dx.doi.org/10.1126/scisignal.2000482] [PMID: 20159853]
[148]
Brinkworth, R.I.; Munn, A.L.; Kobe, B. Protein kinases associated with the yeast phosphoproteome. BMC Bioinformatics, 2006, 7, 47.
[http://dx.doi.org/10.1186/1471-2105-7-47] [PMID: 16445868]
[149]
Ellis, J.J.; Kobe, B. Predicting protein kinase specificity: Predikin update and performance in the DREAM4 challenge. PLoS One, 2011, 6(7), e21169.
[http://dx.doi.org/10.1371/journal.pone.0021169] [PMID: 21829434]
[150]
Cohen, P.; Knebel, A. KESTREL: A powerful method for identifying the physiological substrates of protein kinases. Biochem. J., 2006, 393(Pt 1), 1-6.
[http://dx.doi.org/10.1042/BJ20051545] [PMID: 16336195]
[151]
Holt, L.J.; Tuch, B.B.; Villén, J.; Johnson, A.D.; Gygi, S.P.; Morgan, D.O. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science, 2009, 325(5948), 1682-1686.
[http://dx.doi.org/10.1126/science.1172867] [PMID: 19779198]
[152]
Roy, J.; Cyert, M.S. Cracking the phosphatase code: Docking interactions determine substrate specificity. Sci. Signal., 2009, 2(100), re9.
[http://dx.doi.org/10.1126/scisignal.2100re9] [PMID: 19996458]
[153]
Bollen, M.; Peti, W.; Ragusa, M.J.; Beullens, M. The extended PP1 toolkit: designed to create specificity. Trends Biochem. Sci., 2010, 35(8), 450-458.
[http://dx.doi.org/10.1016/j.tibs.2010.03.002] [PMID: 20399103]
[154]
Garaud, M.; Pei, D. Substrate profiling of protein tyrosine phosphatase PTP1B by screening a combinatorial peptide library. J. Am. Chem. Soc., 2007, 129(17), 5366-5367.
[http://dx.doi.org/10.1021/ja071275i] [PMID: 17417856]
[155]
Wälchli, S.; Espanel, X.; Harrenga, A.; Rossi, M.; Cesareni, G.; Hooft van Huijsduijnen, R. Probing protein-tyrosine phosphatase substrate specificity using a phosphotyrosine-containing phage library. J. Biol. Chem., 2004, 279(1), 311-318.
[http://dx.doi.org/10.1074/jbc.M307617200] [PMID: 14578355]
[156]
Flint, A.J.; Tiganis, T.; Barford, D.; Tonks, N.K. Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA, 1997, 94(5), 1680-1685.
[http://dx.doi.org/10.1073/pnas.94.5.1680] [PMID: 9050838]
[157]
Gavrin, L.K.; Saiah, E. Approaches to discover non-ATP site inhibitors. Med. Chem. Res., 2013, 4, 41.
[158]
Lamba, V.; Ghosh, I. New directions in targeting protein kinases: Focusing upon true allosteric and bivalent inhibitors. Curr. Pharm. Des., 2012, 18(20), 2936-2945.
[http://dx.doi.org/10.2174/138161212800672813] [PMID: 22571662]
[159]
van Linden, O.P.; Kooistra, A.J.; Leurs, R.; de Esch, I.J.; de Graaf, C. KLIFS: A knowledge-based structural database to navigate kinase-ligand interaction space. J. Med. Chem., 2014, 57(2), 249-277.
[http://dx.doi.org/10.1021/jm400378w] [PMID: 23941661]
[160]
Liao, J.J. Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. J. Med. Chem., 2007, 50(3), 409-424.
[http://dx.doi.org/10.1021/jm0608107] [PMID: 17266192]
[161]
Kooistra, A.J. Kinase-centric computational drug development. Annual Reports in Medicinal Chemistry: Platform Technologies in Drug Discovery and Validation., 2017, 50, 197-236.
[http://dx.doi.org/10.1016/bs.armc.2017.08.001]
[162]
Bajusz, D.; Ferenczy, G.G.; Keseru, G.M. Structure-based virtual screening approaches in kinase-directed drug discovery. Curr. Top. Med. Chem., 2017, 17(20), 2235-2259.
[http://dx.doi.org/10.2174/1568026617666170224121313] [PMID: 28240180]
[163]
Wu, P.; Nielsen, T.E.; Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci., 2015, 36(7), 422-439.
[http://dx.doi.org/10.1016/j.tips.2015.04.005] [PMID: 25975227]
[164]
Kanev, G.K.; de Graaf, C.; de Esch, I.J.P.; Leurs, R.; Würdinger, T.; Westerman, B.A.; Kooistra, A.J. The landscape of atypical and eukaryotic protein kinases. Trends Pharmacol. Sci., 2019, 40(11), 818-832.
[http://dx.doi.org/10.1016/j.tips.2019.09.002] [PMID: 31677919]
[165]
Knighton, D.R.; Zheng, J.H.; Ten Eyck, L.F.; Ashford, V.A.; Xuong, N.H.; Taylor, S.S.; Sowadski, J.M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science, 1991, 253(5018), 407-414.
[http://dx.doi.org/10.1126/science.1862342] [PMID: 1862342]
[166]
Knighton, D.R.; Zheng, J.H.; Ten Eyck, L.F.; Xuong, N.H.; Taylor, S.S.; Sowadski, J.M. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science, 1991, 253(5018), 414-420.
[http://dx.doi.org/10.1126/science.1862343] [PMID: 1862343]
[167]
Taylor, S.S.; Keshwani, M.M.; Steichen, J.M.; Kornev, A.P. Evolution of the eukaryotic protein kinases as dynamic molecular switches. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1602), 2517-2528.
[http://dx.doi.org/10.1098/rstb.2012.0054] [PMID: 22889904]
[168]
Nolen, B.; Taylor, S.; Ghosh, G. Regulation of protein kinases; controlling activity through activation segment conformation. Mol. Cell, 2004, 15(5), 661-675.
[http://dx.doi.org/10.1016/j.molcel.2004.08.024] [PMID: 15350212]
[169]
Gotoh, N.; Tojo, A.; Hino, M.; Yazaki, Y.; Shibuya, M. A highly conserved tyrosine residue at codon 845 within the kinase domain is not required for the transforming activity of human epidermal growth factor receptor. Biochem. Biophys. Res. Commun., 1992, 186(2), 768-774.
[http://dx.doi.org/10.1016/0006-291X(92)90812-Y] [PMID: 1323290]
[170]
Tice, D.A.; Biscardi, J.S.; Nickles, A.L.; Parsons, S.J. Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc. Natl. Acad. Sci. USA, 1999, 96(4), 1415-1420.
[http://dx.doi.org/10.1073/pnas.96.4.1415] [PMID: 9990038]
[171]
Huse, M.; Kuriyan, J. The conformational plasticity of protein kinases. Cell, 2002, 109(3), 275-282.
[http://dx.doi.org/10.1016/S0092-8674(02)00741-9] [PMID: 12015977]
[172]
Meharena, H.S.; Chang, P.; Keshwani, M.M.; Oruganty, K.; Nene, A.K.; Kannan, N.; Taylor, S.S.; Kornev, A.P. Deciphering the structural basis of eukaryotic protein kinase regulation. PLoS Biol., 2013, 11(10), e1001680.
[http://dx.doi.org/10.1371/journal.pbio.1001680] [PMID: 24143133]
[173]
Kornev, A.P.; Haste, N.M.; Taylor, S.S.; Eyck, L.F. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl. Acad. Sci. USA, 2006, 103(47), 17783-17788.
[http://dx.doi.org/10.1073/pnas.0607656103] [PMID: 17095602]
[174]
Kornev, A.P.; Taylor, S.S.; Ten Eyck, L.F. A helix scaffold for the assembly of active protein kinases. Proc. Natl. Acad. Sci. USA, 2008, 105(38), 14377-14382.
[http://dx.doi.org/10.1073/pnas.0807988105] [PMID: 18787129]
[175]
Hanks, S.K.; Quinn, A.M. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol., 1991, 200, 38-62.
[http://dx.doi.org/10.1016/0076-6879(91)00126-H] [PMID: 1956325]
[176]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[177]
Klionsky, D.J. Autophagy revisited: A conversation with Christian de Duve. Autophagy, 2008, 4(6), 740-743.
[http://dx.doi.org/10.4161/auto.6398] [PMID: 18567941]
[178]
Fulda, S. Autophagy in cancer therapy. Front. Oncol., 2017, 7, 128.
[http://dx.doi.org/10.3389/fonc.2017.00128] [PMID: 28674677]
[179]
Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer, 2017, 17(9), 528-542.
[http://dx.doi.org/10.1038/nrc.2017.53] [PMID: 28751651]
[180]
Xiang, H.; Zhang, J.; Lin, C.; Zhang, L.; Liu, B.; Ouyang, L. Targeting autophagy-related protein kinases for potential therapeutic purpose. Acta Pharm. Sin. B, 2020, 10(4), 569-581.
[http://dx.doi.org/10.1016/j.apsb.2019.10.003] [PMID: 32322463]
[181]
Guardiola, S.; Varese, M.; Sánchez-Navarro, M.; Giralt, E. A Third shot at EGFR: New opportunities in cancer therapy. Trends Pharmacol. Sci., 2019, 40(12), 941-955.
[http://dx.doi.org/10.1016/j.tips.2019.10.004] [PMID: 31706618]
[182]
Wu, S.G.; Shih, J.Y. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol. Cancer, 2018, 17(1), 38.
[http://dx.doi.org/10.1186/s12943-018-0777-1] [PMID: 29455650]
[183]
Leonetti, A.; Assaraf, Y.G.; Veltsista, P.D.; El Hassouni, B.; Tiseo, M.; Giovannetti, E. MicroRNAs as a drug resistance mechanism to targeted therapies in EGFR-mutated NSCLC: Current implications and future directions. Drug Resist. Updat., 2019, 42, 1-11.
[184]
Malapelle, U.; Ricciuti, B.; Baglivo, S.; Pepe, F.; Pisapia, P.; Anastasi, P.; Tazza, M.; Sidoni, A.; Liberati, A.M.; Bellezza, G.; Chiari, R.; Metro, G. Osimertinib. Recent Results Cancer Res., 2018, 211, 257-276.
[http://dx.doi.org/10.1007/978-3-319-91442-8_18] [PMID: 30069773]
[185]
Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; Okamoto, I.; Zhou, C.; Cho, B.C.; Cheng, Y.; Cho, E.K.; Voon, P.J.; Planchard, D.; Su, W.C.; Gray, J.E.; Lee, S.M.; Hodge, R.; Marotti, M.; Rukazenkov, Y.; Ramalingam, S.S. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med., 2018, 378(2), 113-125.
[http://dx.doi.org/10.1056/NEJMoa1713137] [PMID: 29151359]
[186]
Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; Shah, R.; Cobo, M.; Lee, K.H.; Cheema, P.; Tiseo, M.; John, T.; Lin, M.C.; Imamura, F.; Kurata, T.; Todd, A.; Hodge, R.; Saggese, M.; Rukazenkov, Y.; Soria, J.C. Overall survival with Osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med., 2020, 382(1), 41-50.
[http://dx.doi.org/10.1056/NEJMoa1913662] [PMID: 31751012]
[187]
Cho, J.H.; Lim, S.H.; An, H.J.; Kim, K.H.; Park, K.U.; Kang, E.J.; Choi, Y.H.; Ahn, M.S.; Lee, M.H.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. Osimertinib for patients with non-small-cell lung cancer harboring uncommon egfr mutations: A multicenter, open-label, phase ii trial (KCSG-LU15-09). J. Clin. Oncol., 2020, 38(5), 488-495.
[http://dx.doi.org/10.1200/JCO.19.00931] [PMID: 31825714]
[188]
Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Han, J.Y.; Katakami, N.; Kim, H.R.; Hodge, R.; Kaur, P.; Brown, A.P.; Ghiorghiu, D.; Papadimitrakopoulou, V.A.; Mok, T.S.K. CNS efficacy of osimertinib in patients with t790m-positive advanced non-small-cell lung cancer: Data from a randomized phase III trial (AURA3). J. Clin. Oncol., 2018, 36(26), 2702-2709.
[http://dx.doi.org/10.1200/JCO.2018.77.9363] [PMID: 30059262]
[189]
Yang, J.C.H.; Kim, S.W.; Kim, D.W.; Lee, J.S.; Cho, B.C.; Ahn, J.S.; Lee, D.H.; Kim, T.M.; Goldman, J.W.; Natale, R.B.; Brown, A.P.; Collins, B.; Chmielecki, J.; Vishwanathan, K.; Mendoza-Naranjo, A.; Ahn, M.J. Osimertinib in patients with epidermal growth factor receptor mutation-positive non-small-cell lung cancer and leptomeningeal metastases: The bloom study. J. Clin. Oncol., 2020, 38(6), 538-547.
[http://dx.doi.org/10.1200/JCO.19.00457] [PMID: 31809241]
[190]
Wu, Y.L.; Tsuboi, M.; He, J.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Laktionov, K.; Kim, S.W.; Kato, T.; Vu, H.V.; Lu, S.; Lee, K.Y.; Akewanlop, C.; Yu, C.J.; de Marinis, F.; Bonanno, L.; Domine, M.; Shepherd, F.A.; Zeng, L.; Hodge, R.; Atasoy, A.; Rukazenkov, Y.; Herbst, R.S. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med., 2020, 383(18), 1711-1723.
[http://dx.doi.org/10.1056/NEJMoa2027071] [PMID: 32955177]
[191]
Yan, X.E.; Ayaz, P.; Zhu, S.J.; Zhao, P.; Liang, L.; Zhang, C.H.; Wu, Y.C.; Li, J.L.; Choi, H.G.; Huang, X.; Shan, Y.; Shaw, D.E.; Yun, C.H. Structural basis of AZD9291 selectivity for EGFR T790M. J. Med. Chem., 2020, 63(15), 8502-8511.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00891] [PMID: 32672461]
[192]
Chen, L.; Fu, W.; Zheng, L.; Liu, Z.; Liang, G. Recent progress of small-molecule epidermal growth factor receptor (EGFR) inhibitors against C797S resistance in non-small-cell lung cancer. J. Med. Chem., 2018, 61(10), 4290-4300.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01310] [PMID: 29136465]
[193]
Riess, J.W.; Gandara, D.R.; Frampton, G.M.; Madison, R.; Peled, N.; Bufill, J.A.; Dy, G.K.; Ou, S.I.; Stephens, P.J.; McPherson, J.D.; Lara, P.N., Jr; Burich, R.A.; Ross, J.S.; Miller, V.A.; Ali, S.M.; Mack, P.C.; Schrock, A.B. Diverse EGFR Exon 20 insertions and co-occurring molecular alterations identified by comprehensive genomic profiling of NSCLC J. Thorac. Oncol., 2018, 13(10), 1560-1568.
[194]
Arcila, M.E.; Nafa, K.; Chaft, J.E.; Rekhtman, N.; Lau, C.; Reva, B.A.; Zakowski, M.F.; Kris, M.G.; Ladanyi, M. EGFR exon 20 insertion mutations in lung adenocarcinomas: Prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther., 2013, 12(2), 220-229.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0620] [PMID: 23371856]
[195]
Vyse, S.; Huang, P.H. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct. Target. Ther., 2019, 4, 5.
[http://dx.doi.org/10.1038/s41392-019-0038-9] [PMID: 30854234]
[196]
Naidoo, J.; Sima, C.S.; Rodriguez, K.; Busby, N.; Nafa, K.; Ladanyi, M.; Riely, G.J.; Kris, M.G.; Arcila, M.E.; Yu, H.A. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer, 2015, 121(18), 3212-3220.
[http://dx.doi.org/10.1002/cncr.29493] [PMID: 26096453]
[197]
Gonzalvez, F.; Zhu, X.; Huang, W-S.; Baker, T.E.; Ning, Y.; Wardwell, S.D.; Nadworny, S.; Zhang, S.; Das, B.; Gong, Y.; Greenfield, M.T.; Jang, H.G.; Kohlmann, A.; Li, F.; Taslimi, P.M.; Tugnait, M.; Xu, Y.; Ye, E.Y.; Youngsaye, W.W.; Zech, S.G.; Zhang, Y.; Zhou, T.; Narasimhan, N.I.; Dalgarno, D.C.; Shakespeare, W.C.; Rivera, V.M. Abstract 2644: AP32788, a potent, selective inhibitor of EGFR and HER2 oncogenic mutants, including exon 20 insertions, in preclinical models. Cancer Res., 2016, 76(14)(Suppl.), 2644-2644.
[198]
Lovly, C.M. Early results from TAK-788 in NSCLC with EGFR exon 20 insertions. Available from: https://dailynews.ascopubs.org/do/10.1200/ADN.19.190339/full/.
[199]
Yun, J.; Lee, S.H.; Kim, S.Y.; Jeong, S.Y.; Kim, J.H.; Pyo, K.H.; Park, C.W.; Heo, S.G.; Yun, M.R.; Lim, S.; Lim, S.M.; Hong, M.H.; Kim, H.R.; Thayu, M.; Curtin, J.C.; Knoblauch, R.E.; Lorenzi, M.V.; Roshak, A.; Cho, B.C. Antitumor activity of amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in diverse models of EGFR exon 20 insertion-driven NSCLC. Cancer Discov., 2020, 10(8), 1194-1209.
[PMID: 32414908]
[200]
Gonzalvez, F.; Zhu, X.T.; Huang, W.S. AP32788, a potent, selective inhibitor of EGFR and HER2 oncogenic mutants, including exon 20 insertions, in preclinical models. Cancer Res.2016;76 abstract nr 2644.
[http://dx.doi.org/10.1158/1538-7445.AM2016-2644]
[201]
Xu, Y.; Zhang, L.; Zhu, L.; Wang, Y.; Wang, M.; Yang, Z. Abstract 3081: DZD9008, an oral, wild type selective EGFR inhibitor for the treatment of non-small-cell lung cancer with Exon20 insertion and other activating mutations. Cancer Res., 2019, 79(13)(Suppl.), 3081-3081.
[202]
Haura, E.B.; Cho, B.C.; Lee, J.S.; Han, J-Y.; Lee, K.H.; Sanborn, R.E.; Govindan, R.; Cho, E.K.; Kim, S-W.; Reckamp, K.L.; Sabari, J.K.; Thayu, M.; Bae, K.; Knoblauch, R.E.; Curtin, J.; Haddish-Berhane, N.; Sherman, L.J.; Lorenzi, M.V.; Park, K.; Bauml, J. JNJ-61186372 (JNJ-372), an EGFR-cMet bispecific antibody, in EGFR-driven advanced non-small cell lung cancer (NSCLC). J. Clin. Oncol., 2019, 37(15)(Suppl.), 9009-9009.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.9009]
[203]
Yu, L.; Chen, Y.; Tooze, S.A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 2018, 14(2), 207-215.
[http://dx.doi.org/10.1080/15548627.2017.1378838] [PMID: 28933638]
[204]
Reggiori, F.; Ungermann, C. Autophagosome maturation and fusion. J. Mol. Biol., 2017, 429(4), 486-496.
[http://dx.doi.org/10.1016/j.jmb.2017.01.002] [PMID: 28077293]
[205]
Yang, Y.; Willis, T.L.; Button, R.W.; Strang, C.J.; Fu, Y.; Wen, X.; Grayson, P.R.C.; Evans, T.; Sipthorpe, R.J.; Roberts, S.L.; Hu, B.; Zhang, J.; Lu, B.; Luo, S. Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response. Nat. Commun., 2019, 10(1), 3759.
[http://dx.doi.org/10.1038/s41467-019-11671-2] [PMID: 31434890]
[206]
Napolitano, G.; Ballabio, A. TFEB at a glance. J. Cell Sci., 2016, 129(13), 2475-2481.
[PMID: 27252382]
[207]
Inpanathan, S.; Botelho, R.J. The lysosome signaling platform: Adapting with the times. Front. Cell Dev. Biol., 2019, 7, 113.
[http://dx.doi.org/10.3389/fcell.2019.00113] [PMID: 31281815]
[208]
Liang, J.; Shao, S.H.; Xu, Z.X.; Hennessy, B.; Ding, Z.; Larrea, M.; Kondo, S.; Dumont, D.J.; Gutterman, J.U.; Walker, C.L.; Slingerland, J.M.; Mills, G.B. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol., 2007, 9(2), 218-224.
[http://dx.doi.org/10.1038/ncb1537] [PMID: 17237771]
[209]
Yang, H.; Jiang, X.; Li, B.; Yang, H.J.; Miller, M.; Yang, A.; Dhar, A.; Pavletich, N.P. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature, 2017, 552(7685), 368-373.
[http://dx.doi.org/10.1038/nature25023] [PMID: 29236692]
[210]
Nnah, I.C.; Wang, B.; Saqcena, C.; Weber, G.F.; Bonder, E.M.; Bagley, D.; De Cegli, R.; Napolitano, G.; Medina, D.L.; Ballabio, A.; Dobrowolski, R. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy, 2019, 15(1), 151-164.
[http://dx.doi.org/10.1080/15548627.2018.1511504] [PMID: 30145926]
[211]
Comel, A.; Sorrentino, G.; Capaci, V.; Del Sal, G. The cytoplasmic side of p53's oncosuppressive activities. FEBS Lett., 2014, 588(16), 2600-2609.
[http://dx.doi.org/10.1016/j.febslet.2014.04.015] [PMID: 24747877]
[212]
Aveic, S.; Pantile, M.; Polo, P.; Sidarovich, V.; De Mariano, M.; Quattrone, A.; Longo, L.; Tonini, G.P. Autophagy inhibition improves the cytotoxic effects of receptor tyrosine kinase inhibitors. Cancer Cell Int., 2018, 18, 63.
[http://dx.doi.org/10.1186/s12935-018-0557-4] [PMID: 29713246]
[213]
Kundu, M.; Thompson, C.B. Autophagy: Basic principles and relevance to disease. Annu. Rev. Pathol., 2008, 3, 427-455.
[http://dx.doi.org/10.1146/annurev.pathmechdis.2.010506.091842] [PMID: 18039129]
[214]
Bursch, W.; Ellinger, A.; Gerner, C.; Fröhwein, U.; Schulte-Hermann, R. Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann. N. Y. Acad. Sci., 2000, 926, 1-12.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb05594.x] [PMID: 11193023]
[215]
Lefranc, F.; Facchini, V.; Kiss, R. Proautophagic drugs: A novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist, 2007, 12(12), 1395-1403.
[http://dx.doi.org/10.1634/theoncologist.12-12-1395] [PMID: 18165616]
[216]
Lavieu, G.; Scarlatti, F.; Sala, G.; Carpentier, S.; Levade, T.; Ghidoni, R.; Botti, J.; Codogno, P. Sphingolipids in macroautophagy. Methods Mol. Biol., 2008, 445, 159-173.
[http://dx.doi.org/10.1007/978-1-59745-157-4_11] [PMID: 18425450]
[217]
Wymann, M.P.; Schneiter, R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol., 2008, 9(2), 162-176.
[http://dx.doi.org/10.1038/nrm2335] [PMID: 18216772]
[218]
Delgado, A.; Casas, J.; Llebaria, A.; Abad, J.L.; Fabrias, G. Inhibitors of sphingolipid metabolism enzymes. Biochim. Biophys. Acta, 2006, 1758(12), 1957-1977.
[http://dx.doi.org/10.1016/j.bbamem.2006.08.017] [PMID: 17049336]
[219]
Cuvillier, O. Sphingosine kinase-1-a potential therapeutic target in cancer. Anticancer Drugs, 2007, 18(2), 105-110.
[http://dx.doi.org/10.1097/CAD.0b013e328011334d] [PMID: 17159597]
[220]
French, K.J.; Schrecengost, R.S.; Lee, B.D.; Zhuang, Y.; Smith, S.N.; Eberly, J.L.; Yun, J.K.; Smith, C.D. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res., 2003, 63(18), 5962-5969.
[PMID: 14522923]
[221]
Taha, T.A.; Osta, W.; Kozhaya, L.; Bielawski, J.; Johnson, K.R.; Gillanders, W.E.; Dbaibo, G.S.; Hannun, Y.A.; Obeid, L.M. Down-regulation of sphingosine kinase-1 by DNA damage: Dependence on proteases and p53. J. Biol. Chem., 2004, 279(19), 20546-20554.
[http://dx.doi.org/10.1074/jbc.M401259200] [PMID: 14988393]
[222]
Kang, M.; Lee, K.H.; Lee, H.S.; Jeong, C.W.; Kwak, C.; Kim, H.H.; Ku, J.H. Concurrent autophagy inhibition overcomes the resistance of epidermal growth factor receptor tyrosine kinase inhibitors in human bladder cancer cells. Int. J. Mol. Sci., 2017, 18(2), E321.
[http://dx.doi.org/10.3390/ijms18020321] [PMID: 28165387]
[223]
Würstle, S.; Schneider, F.; Ringel, F.; Gempt, J.; Lämmer, F.; Delbridge, C.; Wu, W.; Schlegel, J. Temozolomide induces autophagy in primary and established glioblastoma cells in an EGFR independent manner. Oncol. Lett., 2017, 14(1), 322-328.
[http://dx.doi.org/10.3892/ol.2017.6107] [PMID: 28693171]
[224]
Dai, C.; Zhang, B.; Liu, X.; Ma, S.; Yang, Y.; Yao, Y.; Feng, M.; Bao, X.; Li, G.; Wang, J.; Guo, K.; Ma, W.; Xing, B.; Lian, W.; Xiao, J.; Cai, F.; Zhang, H.; Wang, R. Inhibition of PI3K/AKT/mTOR pathway enhances temozolomide-induced cytotoxicity in pituitary adenoma cell lines in vitro and xenografted pituitary adenoma in female nude mice. Endocrinology, 2013, 154(3), 1247-1259.
[http://dx.doi.org/10.1210/en.2012-1908] [PMID: 23384836]
[225]
Chen, B.; Xiao, F.; Li, B.; Xie, B.; Zhou, J.; Zheng, J.; Zhang, W. The role of epithelial-mesenchymal transition and IGF-1R expression in prediction of gefitinib activity as the second-line treatment for advanced nonsmall-cell lung cancer. Cancer Invest., 2013, 31(7), 454-460.
[http://dx.doi.org/10.3109/07357907.2013.820315] [PMID: 23915069]
[226]
Zhao, Z.Q.; Yu, Z.Y.; Li, J.; Ouyang, X.N. Gefitinib induces lung cancer cell autophagy and apoptosis via blockade of the PI3K/AKT/mTOR pathway. Oncol. Lett., 2016, 12(1), 63-68.
[http://dx.doi.org/10.3892/ol.2016.4606] [PMID: 27347100]
[227]
Sugita, S.; Ito, K.; Yamashiro, Y.; Moriya, S.; Che, X.F.; Yokoyama, T.; Hiramoto, M.; Miyazawa, K. EGFR-independent autophagy induction with gefitinib and enhancement of its cytotoxic effect by targeting autophagy with clarithromycin in non-small cell lung cancer cells. Biochem. Biophys. Res. Commun., 2015, 461(1), 28-34.
[http://dx.doi.org/10.1016/j.bbrc.2015.03.162] [PMID: 25858318]
[228]
Yamamoto, A.; Cremona, M.L.; Rothman, J.E. Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J. Cell Biol., 2006, 172(5), 719-731.
[http://dx.doi.org/10.1083/jcb.200510065] [PMID: 16505167]
[229]
Xie, W.; Zhou, J. Aberrant regulation of autophagy in mammalian diseases. Biol. Lett., 2018, 14(1), 20170540.
[http://dx.doi.org/10.1098/rsbl.2017.0540] [PMID: 29321247]
[230]
Park, S.; Han, S.; Choi, I.; Kim, B.; Park, S.P.; Joe, E.H.; Suh, Y.H. Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in selective autophagy. PLoS One, 2016, 11(9), e0163029.
[http://dx.doi.org/10.1371/journal.pone.0163029] [PMID: 27631370]
[231]
He, C.; Levine, B. The Beclin 1 interactome. Curr. Opin. Cell Biol., 2010, 22(2), 140-149.
[http://dx.doi.org/10.1016/j.ceb.2010.01.001] [PMID: 20097051]
[232]
Rocchi, A.; Yamamoto, S.; Ting, T.; Fan, Y.; Sadleir, K.; Wang, Y.; Zhang, W.; Huang, S.; Levine, B.; Vassar, R.; He, C. A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer’s disease. PLoS Genet., 2017, 13(8), e1006962.
[http://dx.doi.org/10.1371/journal.pgen.1006962] [PMID: 28806762]
[233]
Nakatogawa, H. Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 439-458.
[http://dx.doi.org/10.1038/s41580-020-0241-0] [PMID: 32372019]
[234]
Gao, H.; Yang, Q.; Dong, R.; Hou, F.; Wu, Y. Sequential changes in autophagy in diabetic cardiac fibrosis. Mol. Med. Rep., 2016, 13(1), 327-332.
[http://dx.doi.org/10.3892/mmr.2015.4517] [PMID: 26548845]
[235]
Del Re, D.P.; Miyamoto, S.; Brown, J.H. RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis. J. Biol. Chem., 2007, 282(11), 8069-8078.
[http://dx.doi.org/10.1074/jbc.M604298200] [PMID: 17234627]
[236]
Garcia, D.; Shaw, R.J. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell, 2017, 66(6), 789-800.
[http://dx.doi.org/10.1016/j.molcel.2017.05.032] [PMID: 28622524]
[237]
Herzig, S.; Shaw, R.J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 121-135.
[http://dx.doi.org/10.1038/nrm.2017.95] [PMID: 28974774]
[238]
Smith, B.K.; Marcinko, K.; Desjardins, E.M.; Lally, J.S.; Ford, R.J.; Steinberg, G.R. Treatment of nonalcoholic fatty liver disease: Role of AMPK. Am. J. Physiol. Endocrinol. Metab., 2016, 311(4), E730-E740.
[http://dx.doi.org/10.1152/ajpendo.00225.2016] [PMID: 27577854]
[239]
Bultot, L.; Guigas, B.; Von Wilamowitz-Moellendorff, A.; Maisin, L.; Vertommen, D.; Hussain, N.; Beullens, M.; Guinovart, J.J.; Foretz, M.; Viollet, B.; Sakamoto, K.; Hue, L.; Rider, M.H. AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase. Biochem. J., 2012, 443(1), 193-203.
[http://dx.doi.org/10.1042/BJ20112026] [PMID: 22233421]
[240]
Zibrova, D.; Vandermoere, F.; Göransson, O.; Peggie, M.; Mariño, K.V.; Knierim, A.; Spengler, K.; Weigert, C.; Viollet, B.; Morrice, N.A.; Sakamoto, K.; Heller, R. GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochem. J., 2017, 474(6), 983-1001.
[http://dx.doi.org/10.1042/BCJ20160980] [PMID: 28008135]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy