Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Review Article

Single Nucleotide Polymorphisms in Neonatal Necrotizing Enterocolitis

Author(s): Keyur T. Donda*, Benjamin A. Torres, Minesh Khashu and Akhil Maheshwari

Volume 18, Issue 3, 2022

Published on: 18 March, 2022

Page: [197 - 209] Pages: 13

DOI: 10.2174/1573396318666220117091621

Price: $65

Abstract

The etiopathogenesis of necrotizing enterocolitis (NEC) remains unclear, but increasing information suggests that the risk and severity of NEC may be influenced by single nucleotide polymorphisms in many genes. In this article, we have reviewed gene variations that have either been specifically identified in NEC or have been noted in other inflammatory bowel disorders with similar histopathological abnormalities. We present evidence from our own peer-reviewed laboratory studies and data from an extensive literature search in the databases PubMed, EMBASE, and Scopus. To avoid bias in the identification of existing studies, search keywords were short-listed both from our own studies and from PubMed’s Medical Subject Heading (MeSH) thesaurus.

Keywords: Single nucleotide polymorphism, necrotizing enterocolitis, neonates, genetic predisposition, spontaneous intestinal perforation, inherited disease.

[1]
Denning PW, Maheshwari A. Necrotizing enterocolitis: Hope on the horizon. Clin Perinatol 2013; 40(1): xvii-ix.
[http://dx.doi.org/10.1016/j.clp.2013.01.001] [PMID: 23415273]
[2]
Bellodas Sanchez J, Kadrofske M. Necrotizing enterocolitis. Neurogastroenterol Motil 2019; 31(3): e13569.
[http://dx.doi.org/10.1111/nmo.13569] [PMID: 30793842]
[3]
Alganabi M, Lee C, Bindi E, Li B, Pierro A. Recent advances in understanding necrotizing enterocolitis. F1000 Res 2019; 8: 107.
[http://dx.doi.org/10.12688/f1000research.17228.1] [PMID: 30740215]
[4]
Hackam D, Caplan M. Necrotizing enterocolitis: Pathophysiology from a historical context. Semin Pediatr Surg 2018; 27(1): 11-8.
[http://dx.doi.org/10.1053/j.sempedsurg.2017.11.003] [PMID: 29275810]
[5]
Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature 2015; 526(7571): 68-74.
[http://dx.doi.org/10.1038/nature15393] [PMID: 26432245]
[6]
Smigielski EM, Sirotkin K, Ward M, Sherry ST. dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 2000; 28(1): 352-5.
[http://dx.doi.org/10.1093/nar/28.1.352] [PMID: 10592272]
[7]
Poo DCC, Cai S, Mah JTL. UASIS: Universal automatic SNP identification system. BMC Genomics 2011; 12(Suppl. 3): S9.
[http://dx.doi.org/10.1186/1471-2164-12-S3-S9] [PMID: 22369494]
[8]
Brookes AJ, Lehväslaiho H, Siegfried M, et al. HGBASE: A database of SNPs and other variations in and around human genes. Nucleic Acids Res 2000; 28(1): 356-60.
[http://dx.doi.org/10.1093/nar/28.1.356] [PMID: 10592273]
[9]
Bitner A, Kalinka J. IL-1β, IL-6 promoter, TNF-α promoter and IL-1RA gene polymorphisms and the risk of preterm delivery due to preterm premature rupture of membranes in a population of Polish women. Arch Med Sci 2010; 6(4): 552-7.
[http://dx.doi.org/10.5114/aoms.2010.14467] [PMID: 22371799]
[10]
Fujimoto T, Parry S, Urbanek M, et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 (MMP-1) promoter influences amnion cell MMP-1 expression and risk for preterm premature rupture of the fetal membranes. J Biol Chem 2002; 277(8): 6296-302.
[http://dx.doi.org/10.1074/jbc.M107865200] [PMID: 11741975]
[11]
Menon R, Merialdi M, Betrán AP, et al. Analysis of association between maternal tumor necrosis factor-alpha promoter polymorphism (-308), tumor necrosis factor concentration, and preterm birth. Am J Obstet Gynecol 2006; 195(5): 1240-8.
[http://dx.doi.org/10.1016/j.ajog.2006.05.037] [PMID: 17074545]
[12]
Kalinka J, Bitner A. Selected cytokine gene polymorphisms and the risk of preterm delivery in the population of Polish women. Ginekol Pol 2009; 80(2): 111-7.
[PMID: 19338208]
[13]
Krediet TG, Wiertsema SP, Vossers MJ, et al. Toll-like receptor 2 polymorphism is associated with preterm birth. Pediatr Res 2007; 62(4): 474-6.
[http://dx.doi.org/10.1203/PDR.0b013e31813c9401] [PMID: 17667860]
[14]
Ramos BR, Mendes ND, Tanikawa AA, et al. Ancestry informative markers and selected single nucleotide polymorphisms in immunoregulatory genes on preterm labor and preterm premature rupture of membranes: a case control study. BMC Pregnancy Childbirth 2016; 16: 30.
[http://dx.doi.org/10.1186/s12884-016-0823-1] [PMID: 26846412]
[15]
Belousova VS, Svitich OA, Timokhina EV, Strizhakov AN, Bogomazova IM. Polymorphism of the IL-1β, TNF, IL-1RA and IL-4 cytokine genes significantly increases the risk of preterm birth. Biochemistry (Mosc) 2019; 84(9): 1040-6.
[http://dx.doi.org/10.1134/S0006297919090062] [PMID: 31693463]
[16]
Amory JH, Hitti J, Lawler R, Eschenbach DA. Increased tumor necrosis factor-alpha production after lipopolysaccharide stimulation of whole blood in patients with previous preterm delivery complicated by intra-amniotic infection or inflammation. Am J Obstet Gynecol 2001; 185(5): 1064-7.
[http://dx.doi.org/10.1067/mob.2001.117637] [PMID: 11717634]
[17]
Henderson G, Craig S, Baier RJ, Helps N, Brocklehurst P, McGuire W. Cytokine gene polymorphisms in preterm infants with necrotising enterocolitis: genetic association study. Arch Dis Child Fetal Neonatal Ed 2009; 94(2): F124-8.
[http://dx.doi.org/10.1136/adc.2007.119933] [PMID: 17768156]
[18]
Szpecht D, Neumann-Klimasińska N, Błaszczyński M, et al. Candidate gene analysis in pathogenesis of surgically and non-surgically treated necrotizing enterocolitis in preterm infants. Mol Cell Biochem 2018; 439(1-2): 53-63.
[http://dx.doi.org/10.1007/s11010-017-3135-5] [PMID: 28770467]
[19]
Szebeni B, Szekeres R, Rusai K, et al. Genetic polymorphisms of CD14, toll-like receptor 4, and caspase-recruitment domain 15 are not associated with necrotizing enterocolitis in very low birth weight infants. J Pediatr Gastroenterol Nutr 2006; 42(1): 27-31.
[http://dx.doi.org/10.1097/01.mpg.0000192246.47959.b2] [PMID: 16385250]
[20]
Treszl A, Héninger E, Kálmán A, Schuler A, Tulassay T, Vásárhelyi B. Lower prevalence of IL-4 receptor alpha-chain gene G variant in very-low-birth-weight infants with necrotizing enterocolitis. J Pediatr Surg 2003; 38(9): 1374-8.
[http://dx.doi.org/10.1016/S0022-3468(03)00399-3] [PMID: 14523823]
[21]
Treszl A, Kocsis I, Szathmári M, Schuler A, Tulassay T, Vásárhelyi B. Genetic variants of the tumour necrosis factor-alpha promoter gene do not influence the development of necrotizing enterocolitis. Acta Paediatr 2001; 90(10): 1182-5.
[http://dx.doi.org/10.1111/j.1651-2227.2001.tb03251.x] [PMID: 11697432]
[22]
Treszl A, Tulassay T, Vasarhelyi B. Genetic basis for necrotizing enterocolitis--risk factors and their relations to genetic polymorphisms. Front Biosci 2006; 11: 570-80.
[http://dx.doi.org/10.2741/1819] [PMID: 16146753]
[23]
MohanKumar K, Namachivayam K, Cheng F, et al. Trinitrobenzene sulfonic acid-induced intestinal injury in neonatal mice activates transcriptional networks similar to those seen in human necrotizing enterocolitis. Pediatr Res 2017; 81(1-1): 99-112.
[http://dx.doi.org/10.1038/pr.2016.189] [PMID: 27656771]
[24]
MohanKumar K, Namachivayam K, Song T, et al. A murine neonatal model of necrotizing enterocolitis caused by anemia and red blood cell transfusions. Nat Commun 2019; 10(1): 3494.
[http://dx.doi.org/10.1038/s41467-019-11199-5] [PMID: 31375667]
[25]
Remon JI, Amin SC, Mehendale SR, Rao R, Luciano AA, Garzon SA, et al. Depth of bacterial invasion in resected intestinal tissue predicts mortality in surgical necrotizing enterocolitis. J Perinatal 2015; 35(9): 755-62.
[http://dx.doi.org/10.1038/jp.2015.51]
[26]
De Plaen IG, Liu SX, Tian R, et al. Inhibition of nuclear factor-kappaB ameliorates bowel injury and prolongs survival in a neonatal rat model of necrotizing enterocolitis. Pediatr Res 2007; 61(6): 716-21.
[http://dx.doi.org/10.1203/pdr.0b013e3180534219] [PMID: 17426653]
[27]
Jilling T, Lu J, Jackson M, Caplan MS. Intestinal epithelial apoptosis initiates gross bowel necrosis in an experimental rat model of neonatal necrotizing enterocolitis. Pediatr Res 2004; 55(4): 622-9.
[http://dx.doi.org/10.1203/01.PDR.0000113463.70435.74] [PMID: 14764921]
[28]
Jilling T, Simon D, Lu J, et al. The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol 2006; 177(5): 3273-82.
[http://dx.doi.org/10.4049/jimmunol.177.5.3273] [PMID: 16920968]
[29]
Soliman A, Michelsen KS, Karahashi H, et al. Platelet-activating factor induces TLR4 expression in intestinal epithelial cells: implication for the pathogenesis of necrotizing enterocolitis. PLoS One 2010; 5(10): e15044.
[http://dx.doi.org/10.1371/journal.pone.0015044] [PMID: 20976181]
[30]
MohanKumar K, Namachivayam K, Chapalamadugu KC, et al. Smad7 interrupts TGF-β signaling in intestinal macrophages and promotes inflammatory activation of these cells during necrotizing enterocolitis. Pediatr Res 2016; 79(6): 951-61.
[http://dx.doi.org/10.1038/pr.2016.18] [PMID: 26859364]
[31]
Namachivayam K, Blanco CL, MohanKumar K, et al. Smad7 inhibits autocrine expression of TGF-β2 in intestinal epithelial cells in baboon necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2013; 304(2): G167-80.
[http://dx.doi.org/10.1152/ajpgi.00141.2012] [PMID: 23154975]
[32]
Werts AD, Fulton WB, Ladd MR, et al. A novel role for necroptosis in the pathogenesis of necrotizing enterocolitis. Cell Mol Gastroenterol Hepatol 2020; 9(3): 403-23.
[http://dx.doi.org/10.1016/j.jcmgh.2019.11.002] [PMID: 31756560]
[33]
Caplan MS, Sun XM, Hsueh W. Hypoxia causes ischemic bowel necrosis in rats: the role of platelet-activating factor (PAF-acether). Gastroenterology 1990; 99(4): 979-86.
[http://dx.doi.org/10.1016/0016-5085(90)90616-9] [PMID: 2394352]
[34]
McElroy SJ, Underwood MA, Sherman MP. Paneth cells and necrotizing enterocolitis: a novel hypothesis for disease pathogenesis. Neonatology 2013; 103(1): 10-20.
[http://dx.doi.org/10.1159/000342340] [PMID: 23006982]
[35]
Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation 2018; 15(1): 199.
[http://dx.doi.org/10.1186/s12974-018-1235-0] [PMID: 29980212]
[36]
Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ 2019; 26(1): 99-114.
[http://dx.doi.org/10.1038/s41418-018-0212-6] [PMID: 30341423]
[37]
Chen H, Zeng L, Zheng W, Li X, Lin B. Increased expression of microRNA-141-3p improves necrotizing enterocolitis of neonates through targeting MNX1. Front Pediatr 2020; 8: 385.
[http://dx.doi.org/10.3389/fped.2020.00385] [PMID: 32850524]
[38]
Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res 2016; 51: 125-55.
[http://dx.doi.org/10.1016/j.preteyeres.2015.07.005] [PMID: 26209346]
[39]
Yao C, Li G, Cai M, et al. Expression and genetic polymorphism of necroptosis related protein RIPK1 is correlated with severe hepatic ischemia-reperfusion injury and prognosis after hepatectomy in hepatocellular carcinoma patients. Cancer Biomark 2017; 20(1): 23-9.
[http://dx.doi.org/10.3233/CBM-170525] [PMID: 28759952]
[40]
Hildebrand JM, Kauppi M, Majewski IJ, et al. A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction. Nat Commun 2020; 11(1): 3150.
[http://dx.doi.org/10.1038/s41467-020-16819-z] [PMID: 32561755]
[41]
Sharp RC, Beg SA, Naser SA. Role of PTPN2/22 polymorphisms in pathophysiology of Crohn’s disease. World J Gastroenterol 2018; 24(6): 657-70.
[http://dx.doi.org/10.3748/wjg.v24.i6.657] [PMID: 29456405]
[42]
Ferreira P, Cravo M, Guerreiro CS, Tavares L, Santos PM, Brito M. Fat intake interacts with polymorphisms of Caspase9, FasLigand and PPARgamma apoptotic genes in modulating Crohn’s disease activity. Clin Nutr 2010; 29(6): 819-23.
[http://dx.doi.org/10.1016/j.clnu.2010.06.008] [PMID: 20650551]
[43]
Botto F, Alonso-Coello P, Chan MT, et al. Myocardial injury after noncardiac surgery: a large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology 2014; 120(3): 564-78.
[http://dx.doi.org/10.1097/ALN.0000000000000113] [PMID: 24534856]
[44]
Bowker RM, Yan X, De Plaen IG. Intestinal microcirculation and necrotizing enterocolitis: The vascular endothelial growth factor system. Semin Fetal Neonatal Med 2018; 23(6): 411-5.
[http://dx.doi.org/10.1016/j.siny.2018.08.008] [PMID: 30213591]
[45]
Crafts TD, Jensen AR, Blocher-Smith EC, Markel TA. Vascular endothelial growth factor: therapeutic possibilities and challenges for the treatment of ischemia. Cytokine 2015; 71(2): 385-93.
[http://dx.doi.org/10.1016/j.cyto.2014.08.005] [PMID: 25240960]
[46]
Sabnis A, Carrasco R, Liu SX, et al. Intestinal vascular endothelial growth factor is decreased in necrotizing enterocolitis. Neonatology 2015; 107(3): 191-8.
[http://dx.doi.org/10.1159/000368879] [PMID: 25659996]
[47]
Bányász I, Bokodi G, Vásárhelyi B, et al. Genetic polymorphisms for vascular endothelial growth factor in perinatal complications. Eur Cytokine Netw 2006; 17(4): 266-70.
[PMID: 17353160]
[48]
Gao X, Ma F, Hao H, et al. Association of VEGFA polymorphisms with necrotizing enterocolitis in Chinese Han population. Pediatr Neonatol 2019; 60(2): 129-34.
[http://dx.doi.org/10.1016/j.pedneo.2018.07.002] [PMID: 30100520]
[49]
Ramroop R, Manase G, Lu D, et al. Adrenergic receptor genotypes influence postoperative outcomes in infants in the single-ventricle reconstruction trial. J Thorac Cardiovasc Surg 2017; 154(5): 1703-1710.e3.
[http://dx.doi.org/10.1016/j.jtcvs.2017.06.041] [PMID: 28734628]
[50]
Becker RM, Wu G, Galanko JA, et al. Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr 2000; 137(6): 785-93.
[http://dx.doi.org/10.1067/mpd.2000.109145] [PMID: 11113834]
[51]
Zamora SA, Amin HJ, McMillan DD, et al. Plasma L-arginine concentrations in premature infants with necrotizing enterocolitis. J Pediatr 1997; 131(2): 226-32.
[http://dx.doi.org/10.1016/S0022-3476(97)70158-6] [PMID: 9290608]
[52]
Richir MC, Siroen MP, van Elburg RM, et al. Low plasma concentrations of arginine and asymmetric dimethylarginine in premature infants with necrotizing enterocolitis. Br J Nutr 2007; 97(5): 906-11.
[http://dx.doi.org/10.1017/S0007114507669268] [PMID: 17381965]
[53]
Polycarpou E, Zachaki S, Tsolia M, et al. Enteral L-arginine supplementation for prevention of necrotizing enterocolitis in very low birth weight neonates: a double-blind randomized pilot study of efficacy and safety. JPEN J Parenter Enteral Nutr 2013; 37(5): 617-22.
[http://dx.doi.org/10.1177/0148607112471561] [PMID: 23329787]
[54]
Moonen RM, Paulussen AD, Souren NY, Kessels AG, Rubio-Gozalbo ME, Villamor E. Carbamoyl phosphate synthetase polymorphisms as a risk factor for necrotizing enterocolitis. Pediatr Res 2007; 62(2): 188-90.
[http://dx.doi.org/10.1203/PDR.0b013e3180a0324e] [PMID: 17597649]
[55]
Moonen RM, Cavallaro G, Huizing MJ, González-Luis GE, Mosca F, Villamor E. Association between the p.Thr1406Asn polymorphism of the carbamoyl-phosphate synthetase 1 gene and necrotizing enterocolitis: A prospective multicenter study. Sci Rep 2016; 6: 36999.
[http://dx.doi.org/10.1038/srep36999] [PMID: 27833157]
[56]
Maheshwari A, Kelly DR, Nicola T, et al. TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology 2011; 140(1): 242-53.
[http://dx.doi.org/10.1053/j.gastro.2010.09.043] [PMID: 20875417]
[57]
Mara MA, Good M, Weitkamp JH. Innate and adaptive immunity in necrotizing enterocolitis. Semin Fetal Neonatal Med 2018; 23(6): 394-9.
[http://dx.doi.org/10.1016/j.siny.2018.08.002] [PMID: 30146477]
[58]
Mihi B, Good M. Impact of toll-like receptor 4 signaling in necrotizing enterocolitis: the state of the science. Clin Perinatol 2019; 46(1): 145-57.
[http://dx.doi.org/10.1016/j.clp.2018.09.007] [PMID: 30771815]
[59]
Sampath V, Le M, Lane L, et al. The NFKB1 (g.-24519delATTG) variant is associated with necrotizing enterocolitis (NEC) in premature infants. J Surg Res 2011; 169(1): e51-7.
[http://dx.doi.org/10.1016/j.jss.2011.03.017] [PMID: 21529841]
[60]
Zhou W, Yuan W, Huang L, Wang P, Rong X, Tang J. Association of neonatal necrotizing enterocolitis with myeloid differentiation-2 and GM2 activator protein genetic polymorphisms. Mol Med Rep 2015; 12(1): 974-80.
[http://dx.doi.org/10.3892/mmr.2015.3499] [PMID: 25816011]
[61]
Talavera MM, Jin Y, Zmuda EJ, et al. Single nucleotide polymorphisms in the dual specificity phosphatase genes and risk of necrotizing enterocolitis in premature infant. J Neonatal Perinatal Med 2020; 13(3): 373-80.
[http://dx.doi.org/10.3233/NPM-190302] [PMID: 31985475]
[62]
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010; 140(6): 805-20.
[http://dx.doi.org/10.1016/j.cell.2010.01.022] [PMID: 20303872]
[63]
Mukherjee T, Hovingh ES, Foerster EG, Abdel-Nour M, Philpott DJ, Girardin SE. NOD1 and NOD2 in inflammation, immunity and disease. Arch Biochem Biophys 2019; 670: 69-81.
[http://dx.doi.org/10.1016/j.abb.2018.12.022] [PMID: 30578751]
[64]
Zouali H, Bonnard A, De Lagausie DL, et al. CARD15/NOD2 is not a predisposing factor for necrotizing enterocolitis. Dig Dis Sci 2005; 50(9): 1684-7.
[http://dx.doi.org/10.1007/s10620-005-2915-z] [PMID: 16133969]
[65]
Härtel C, Hartz A, Pagel J, et al. NOD2 loss-of-function mutations and risks of necrotizing enterocolitis or focal intestinal perforation in very low-birth-weight infants. Inflamm Bowel Dis 2016; 22(2): 249-56.
[http://dx.doi.org/10.1097/MIB.0000000000000658] [PMID: 26752461]
[66]
Sampath V, Bhandari V, Berger J, et al. A functional ATG16L1 (T300A) variant is associated with necrotizing enterocolitis in premature infants. Pediatr Res 2017; 81(4): 582-8.
[http://dx.doi.org/10.1038/pr.2016.260] [PMID: 27893720]
[67]
Frakking FN, Brouwer N, Zweers D, et al. High prevalence of mannose-binding lectin (MBL) deficiency in premature neonates. Clin Exp Immunol 2006; 145(1): 5-12.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03093.x] [PMID: 16792667]
[68]
de Benedetti F, Auriti C, D’Urbano LE, et al. Low serum levels of mannose binding lectin are a risk factor for neonatal sepsis. Pediatr Res 2007; 61(3): 325-8.
[http://dx.doi.org/10.1203/pdr.0b013e318030d12f] [PMID: 17314691]
[69]
Schlapbach LJ, Aebi C, Fisch U, et al. Higher cord blood levels of mannose-binding lectin-associated serine protease-2 in infants with necrotising enterocolitis. Pediatr Res 2008; 64(5): 562-6.
[http://dx.doi.org/10.1203/PDR.0b013e3181841335] [PMID: 18596574]
[70]
Schlapbach LJ, Latzin P, Regamey N, et al. Mannose-binding lectin cord blood levels and respiratory symptoms during infancy: A prospective birth cohort study. Pediatr Allergy Immunol 2009; 20(3): 219-26.
[http://dx.doi.org/10.1111/j.1399-3038.2008.00782.x] [PMID: 18700861]
[71]
Takahashi K. Mannose-binding lectin and the balance between immune protection and complication. Expert Rev Anti Infect Ther 2011; 9(12): 1179-90.
[http://dx.doi.org/10.1586/eri.11.136] [PMID: 22114968]
[72]
Prencipe G, Azzari C, Moriondo M, et al. Association between mannose-binding lectin gene polymorphisms and necrotizing enterocolitis in preterm infants. J Pediatr Gastroenterol Nutr 2012; 55(2): 160-5.
[http://dx.doi.org/10.1097/MPG.0b013e31824e5f7a] [PMID: 22331020]
[73]
Sham HP, Yu EY, Gulen MF, et al. SIGIRR, a negative regulator of TLR/IL-1R signalling promotes Microbiota dependent resistance to colonization by enteric bacterial pathogens. PLoS Pathog 2013; 9(8): e1003539.
[http://dx.doi.org/10.1371/journal.ppat.1003539] [PMID: 23950714]
[74]
Wald D, Qin J, Zhao Z, et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 2003; 4(9): 920-7.
[http://dx.doi.org/10.1038/ni968] [PMID: 12925853]
[75]
Sampath V, Menden H, Helbling D, et al. SIGIRR genetic variants in premature infants with necrotizing enterocolitis. Pediatrics 2015; 135(6): e1530-4.
[http://dx.doi.org/10.1542/peds.2014-3386] [PMID: 25963006]
[76]
Franklin AL, Said M, Cappiello CD, et al. Are immune modulating single nucleotide polymorphisms associated with necrotizing enterocolitis? Sci Rep 2015; 5: 18369.
[http://dx.doi.org/10.1038/srep18369] [PMID: 26670709]
[77]
Tian J, Liu Y, Jiang Y, et al. Association of single nucleotide polymorphisms of IL23R and IL17 with necrotizing enterocolitis in premature infants. Mol Cell Biochem 2017; 430(1-2): 201-9.
[http://dx.doi.org/10.1007/s11010-017-2972-6] [PMID: 28224332]
[78]
Zhang Y, Li K. Association of interleukin-23 receptor and interleukin-17 single nucleotide polymorphisms with necrotizing enterocolitis in Chinese Han preterm infants. Zhongguo Dang Dai Er Ke Za Zhi 2020; 22(2): 141-5.
[PMID: 32051081]
[79]
Héninger E, Treszl A, Kocsis I, Dérfalvi B, Tulassay T, Vásárhelyi B. Genetic variants of the interleukin-18 promoter region (-607) influence the course of necrotising enterocolitis in very low birth weight neonates. Eur J Pediatr 2002; 161(7): 410-1.
[http://dx.doi.org/10.1007/s00431-002-0968-y] [PMID: 12174825]
[80]
Been JV, Lievense S, Zimmermann LJ, Kramer BW, Wolfs TG. Chorioamnionitis as a risk factor for necrotizing enterocolitis: A systematic review and meta-analysis. J Pediatr 2013; 162(2): 236-42.e2.
[http://dx.doi.org/10.1016/j.jpeds.2012.07.012] [PMID: 22920508]
[81]
Baumgartel KL, Groer MW, Cohen SM, Ren D, Spatz DL, Conley YP. Maternal interleukin genotypes are associated with NICU outcomes among low-birth-weight infants. Biol Res Nurs 2017; 19(1): 36-44.
[http://dx.doi.org/10.1177/1099800416664585] [PMID: 27605567]
[82]
Caplan MS, Hsueh W. Necrotizing enterocolitis: role of platelet activating factor, endotoxin, and tumor necrosis factor. J Pediatr 1990; 117(1 Pt 2): S47-51.
[http://dx.doi.org/10.1016/S0022-3476(05)81130-8] [PMID: 2194011]
[83]
Caplan MS, Sun XM, Hseuh W, Hageman JR. Role of platelet activating factor and tumor necrosis factor-alpha in neonatal necrotizing enterocolitis. J Pediatr 1990; 116(6): 960-4.
[http://dx.doi.org/10.1016/S0022-3476(05)80661-4] [PMID: 2348301]
[84]
Caplan MS, Lickerman M, Adler L, Dietsch GN, Yu A. The role of recombinant platelet-activating factor acetylhydrolase in a neonatal rat model of necrotizing enterocolitis. Pediatr Res 1997; 42(6): 779-83.
[http://dx.doi.org/10.1203/00006450-199712000-00010] [PMID: 9396557]
[85]
Muguruma K, Gray PW, Tjoelker LW, Johnston JM. The central role of PAF in necrotizing enterocolitis development. Adv Exp Med Biol 1997; 407: 379-82.
[http://dx.doi.org/10.1007/978-1-4899-1813-0_56] [PMID: 9321979]
[86]
Sankararaman S, Yanamandra K, Napper D, Caldito G, Dhanireddy R. The prevalence of platelet activating factor acetylhydrolase single nucleotide polymorphisms in relationship to necrotizing enterocolitis in Northwest Louisiana infants. Springerplus 2013; 2(1): 294.
[http://dx.doi.org/10.1186/2193-1801-2-294] [PMID: 23888267]
[87]
Perrone S, Tataranno ML, Santacroce A, Negro S, Buonocore G. The role of oxidative stress on necrotizing enterocolitis in very low birth weight infants. Curr Pediatr Rev 2014; 10(3): 202-7.
[http://dx.doi.org/10.2174/1573396309666140101235126] [PMID: 25088341]
[88]
Huizing MJ, Cavallaro G, Moonen RM, et al. Is the C242T Polymorphism of the CYBA gene linked with oxidative stress-associated complications of prematurity? Antioxid Redox Signal 2017; 27(17): 1432-8.
[http://dx.doi.org/10.1089/ars.2017.7042] [PMID: 28375031]
[89]
Marseglia L, Manti S, D’Angelo G, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 2014; 16(1): 378-400.
[http://dx.doi.org/10.3390/ijms16010378] [PMID: 25548896]
[90]
Sampath V, Helbling D, Menden H, et al. Necrotizing enterocolitis is not associated with sequence variants in antioxidant response genes in premature infants. J Pediatr Gastroenterol Nutr 2016; 62(3): 420-3.
[http://dx.doi.org/10.1097/MPG.0000000000000988] [PMID: 26426434]
[91]
Giuliani S, Tan YW, Zheng D, et al. Coagulation gene expression profiling in infants with necrotizing enterocolitis. J Pediatr Gastroenterol Nutr 2016; 63(6): e169-75.
[http://dx.doi.org/10.1097/MPG.0000000000001215] [PMID: 27050058]
[92]
Namachivayam K, MohanKumar K, Garg L, Torres BA, Maheshwari A. Neonatal mice with necrotizing enterocolitis-like injury develop thrombocytopenia despite increased megakaryopoiesis. Pediatr Res 2017; 81(5): 817-24.
[http://dx.doi.org/10.1038/pr.2017.7] [PMID: 28085792]
[93]
Namachivayam K, MohanKumar K, Shores DR, et al. Targeted inhibition of thrombin attenuates murine neonatal necrotizing enterocolitis. Proc Natl Acad Sci USA 2020; 117(20): 10958-69.
[http://dx.doi.org/10.1073/pnas.1912357117] [PMID: 32366656]
[94]
Ververidis M, Kiely EM, Spitz L, Drake DP, Eaton S, Pierro A. The clinical significance of thrombocytopenia in neonates with necrotizing enterocolitis. J Pediatr Surg 2001; 36(5): 799-803.
[http://dx.doi.org/10.1053/jpsu.2001.22964] [PMID: 11329593]
[95]
Curley A, Stanworth SJ, Willoughby K, Fustolo-Gunnink SF, Venkatesh V, Hudson C, et al. Randomized trial of platelet-transfusion thresholds in neonates. N Engl J Med 2018; 380(3): 242-51.
[PMID: 30387697]
[96]
Rowland KJ, Choi PM, Warner BW. The role of growth factors in intestinal regeneration and repair in necrotizing enterocolitis. Semin Pediatr Surg 2013; 22(2): 101-11.
[http://dx.doi.org/10.1053/j.sempedsurg.2013.01.007] [PMID: 23611614]
[97]
Feng J, El-Assal ON, Besner GE. Heparin-binding EGF-like growth factor (HB-EGF) and necrotizing enterocolitis. Semin Pediatr Surg 2005; 14(3): 167-74.
[http://dx.doi.org/10.1053/j.sempedsurg.2005.05.005] [PMID: 16084404]
[98]
Ma F, Li S, Hao H, et al. Association of Heparin-binding EGF-like growth factor polymorphisms with necrotizing enterocolitis in preterm infants. J Pediatr Gastroenterol Nutr 2018; 66(4): e99-e102.
[http://dx.doi.org/10.1097/MPG.0000000000001753] [PMID: 28953531]
[99]
Jaeggi T, Kortman GA, Moretti D, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 2015; 64(5): 731-42.
[http://dx.doi.org/10.1136/gutjnl-2014-307720] [PMID: 25143342]
[100]
Schmolzer G, Urlesberger B, Haim M, et al. Multi-modal approach to prophylaxis of necrotizing enterocolitis: clinical report and review of literature. Pediatr Surg Int 2006; 22(7): 573-80.
[http://dx.doi.org/10.1007/s00383-006-1709-5] [PMID: 16775708]
[101]
Gopel W, Drese J, Rausch TK, Twisselmann N, Bohnhorst B, Muller A, et al. Necrotizing enterocolitis and high intestinal iron uptake due to genetic variants. Pediatr Res 2018; 83(1-1): 57-62.
[http://dx.doi.org/10.1038/pr.2017.195]
[102]
Domellöf M, Georgieff MK. Postdischarge iron requirements of the preterm infant. J Pediatr 2015; 167(4)(Suppl.): S31-5.
[http://dx.doi.org/10.1016/j.jpeds.2015.07.018] [PMID: 26364023]
[103]
Sampath V, Mulrooney N, Patel AL, et al. A potential role for the NOD1 variant (rs6958571) in gram-positive blood stream Infection in ELBW infants. Neonatology 2017; 112(4): 354-8.
[http://dx.doi.org/10.1159/000477433] [PMID: 28768269]
[104]
Hajivassiliou CA, Pitkin J. Recurrent necrotizing enterocolitis associated with episodes of supraventricular tachycardia. J Pediatr Surg 1998; 33(10): 1569-70.
[http://dx.doi.org/10.1016/S0022-3468(98)90502-4] [PMID: 9802818]
[105]
Stringer MD, Brereton RJ, Drake DP, Kiely EM, Capps SN, Spitz L. Recurrent necrotizing enterocolitis. J Pediatr Surg 1993; 28(8): 979-81.
[http://dx.doi.org/10.1016/0022-3468(93)90496-8] [PMID: 8229602]
[106]
Bhandari V, Bizzarro MJ, Shetty A, et al. Familial and genetic susceptibility to major neonatal morbidities in preterm twins. Pediatrics 2006; 117(6): 1901-6.
[http://dx.doi.org/10.1542/peds.2005-1414] [PMID: 16740829]
[107]
Andrews WW, Goldenberg RL, Faye-Petersen O, Cliver S, Goepfert AR, Hauth JC. The Alabama Preterm Birth study: polymorphonuclear and mononuclear cell placental infiltrations, other markers of inflammation, and outcomes in 23- to 32-week preterm newborn infants. Am J Obstet Gynecol 2006; 195(3): 803-8.
[http://dx.doi.org/10.1016/j.ajog.2006.06.083] [PMID: 16949415]
[108]
Dorling J, Kempley S, Leaf A. Feeding growth restricted preterm infants with abnormal antenatal Doppler results. Arch Dis Child Fetal Neonatal Ed 2005; 90(5): F359-63.
[http://dx.doi.org/10.1136/adc.2004.060350] [PMID: 16113150]
[109]
Venkatesh KK, Jackson W, Hughes BL, Laughon MM, Thorp JM, Stamilio DM. Association of chorioamnionitis and its duration with neonatal morbidity and mortality. J Perinatal 2019; 39(5): 673-82.
[http://dx.doi.org/10.1038/s41372-019-0322-0]
[110]
Peterslund P, Rasmussen L, Qvist N, Hansen TP, Husby S, Detlefsen S. Frequencies of immune cells in the human small bowel during normal gestation and in necrotizing enterocolitis. Fetal Pediatr Pathol 2019; 38(2): 153-66.
[http://dx.doi.org/10.1080/15513815.2018.1561774] [PMID: 30689475]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy