Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

COL1A1 as a Potential Prognostic Marker and Therapeutic Target in Non-small Cell Lung Cancer

Author(s): Boyu Pan, Chen Huang, Yafei Xia, Cuicui Zhang, Bole Li, Liangjiao Wang, Senbiao Fang, Liren Liu* and Shu Yan*

Volume 17, Issue 10, 2022

Published on: 21 April, 2022

Page: [909 - 923] Pages: 15

DOI: 10.2174/1574893617666220114141705

Price: $65

Abstract

Background: Nowadays, non-small cell lung cancer (NSCLC) is a common and highly fatal malignancy worldwide. Therefore, identifying the potential prognostic markers and therapeutic targets is urgent for patients.

Objective: This study aimed at finding hub targets associated with NSCLC using multiple databases.

Methods: Differentially expressed genes (DEGs) from Genome Expression Omnibus (GEO) cohorts were employed for the enrichment analyses of Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genome (KEGG) pathways. Candidate key genes, filtered from the topological parameter 'Degree' and validated using the Cancer Genome Atlas (TCGA) cohort, were analyzed for their association with clinicopathological features and prognosis of NSCLC. Meanwhile, immunohistochemical cohort analyses and biological verification were further evaluated.

Results: A total of 146 DEGs were identified following data preprocessing, and a protein-protein interaction (PPI) systematic network was constructed based on them. The top ten candidate core genes were further extracted from the above PPI network by using 'Degree' value, among which COL1A1 was shown to associate with overall survival (OS) of NSCLC as determined by using the Kaplan-Meier analysis (p=0.028), and could serve as an independent prognostic factor for OS in NSCLC patients (HR, 0.814; 95% CI, 0.665-0.996; p=0.046). We then analyzed the clinical stages, PPI, mutations, potential biological functions, and immune regulations of COL1A1 in NSCLC patients using multiple bioinformatics tools, including GEPIA, GeneMANIA, cBioPortal, GESA, and TISIDB. Finally, we further experimentally validated the overexpression of COL1A1 in NSCLC samples and found that inhibition of COL1A1 expression moderately sensitized NSCLC cells to cisplatin.

Conclusion: Thus, our results showed that COL1A1 may serve as a potential prognostic marker and therapeutic target in NSCLC.

Keywords: COL1A1, non-small cell lung cancer (NSCLC), chemosensitivity, bioinformatics analysis, differentially expressed genes (DEGs), prognosis.

[1]
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019; 144(8): 1941-53.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Lewis DR, Chen H, Feurer EJ, Aminou R, Waldron W, Altekruse SF. SEER cancer statistics review, 1975-2008. Bethesda, MD: National Cancer Institute 2010.
[3]
Liu M, Zhang Y, Zhang J, et al. MicroRNA-1253 suppresses cell proliferation and invasion of non-small-cell lung carcinoma by targeting WNT5A. Cell Death Dis 2018; 9(2): 189.
[http://dx.doi.org/10.1038/s41419-017-0218-x] [PMID: 29415994]
[4]
Andriani F, Roz E, Caserini R, et al. Inactivation of both FHIT and p53 cooperate in deregulating proliferation-related pathways in lung cancer. J Thorac Oncol 2012; 7(4): 631-42.
[http://dx.doi.org/10.1097/JTO.0b013e318244aed0] [PMID: 22425911]
[5]
Martin P, Kelly CM, Carney D. Epidermal growth factor receptor-targeted agents for lung cancer. Cancer Contr 2006; 13(2): 129-40.
[http://dx.doi.org/10.1177/107327480601300207] [PMID: 16735987]
[6]
Toyooka S, Tsuda T, Gazdar AF. The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat 2003; 21(3): 229-39.
[http://dx.doi.org/10.1002/humu.10177] [PMID: 12619108]
[7]
Eberhard DA, Johnson BE, Amler LC, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 2005; 23(25): 5900-9.
[http://dx.doi.org/10.1200/JCO.2005.02.857] [PMID: 16043828]
[8]
Golding B, Luu A, Jones R, Viloria-Petit AM. The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC). Mol Cancer 2018; 17(1): 52.
[http://dx.doi.org/10.1186/s12943-018-0810-4] [PMID: 29455675]
[9]
Giustini NP, Jeong AR, Buturla J, Bazhenova L. Advances in treatment of locally advanced or metastatic non-small cell lung cancer: targeted therapy. Clin Chest Med 2020; 41(2): 223-35.
[http://dx.doi.org/10.1016/j.ccm.2020.02.003] [PMID: 32402358]
[10]
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 2013; 41(Database issue): D991-5.
[PMID: 23193258]
[11]
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43(Database issue): D447-52.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[12]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[13]
Franz M, Rodriguez H, Lopes C, et al. GeneMANIA update 2018. Nucleic Acids Res 2018; 46(W1): W60-4.
[http://dx.doi.org/10.1093/nar/gky311] [PMID: 29912392]
[14]
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017; 45(W1): W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[15]
Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2(5): 401-4.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0095] [PMID: 22588877]
[16]
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545-50.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[17]
Ru B, Wong CN, Tong Y, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics 2019; 35(20): 4200-2.
[http://dx.doi.org/10.1093/bioinformatics/btz210] [PMID: 30903160]
[18]
Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 2010; 38 (Suppl.): W214-20.
[http://dx.doi.org/10.1093/nar/gkq537] [PMID: 20576703]
[19]
Musiime M, Chang J, Hansen U, Kadler KE, Zeltz C, Gullberg D. Collagen assembly at the cell surface: dogmas revisited. Cells 2021; 10(3): 662.
[http://dx.doi.org/10.3390/cells10030662] [PMID: 33809734]
[20]
Lu P, Weaver VM, Werb Z. The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol 2012; 196(4): 395-406.
[http://dx.doi.org/10.1083/jcb.201102147] [PMID: 22351925]
[21]
Marini JC, Forlino A, Bächinger HP, et al. Osteogenesis imperfecta. Nat Rev Dis Primers 2017; 3: 17052.
[http://dx.doi.org/10.1038/nrdp.2017.52] [PMID: 28820180]
[22]
Li M, Wang J, Wang C, et al. Microenvironment remodeled by tumor and stromal cells elevates fibroblast-derived COL1A1 and facilitates ovarian cancer metastasis. Exp Cell Res 2020; 394(1): 112153.
[http://dx.doi.org/10.1016/j.yexcr.2020.112153] [PMID: 32589888]
[23]
Zhu X, Rao X, Yao W, Zou X. Downregulation of MiR-196b-5p impedes cell proliferation and metastasis in breast cancer through regulating COL1A1. Am J Transl Res 2018; 10(10): 3122-32.
[PMID: 30416655]
[24]
He B, Lin X, Tian F, Yu W, Qiao B. MiR-133a-3p Inhibits Oral Squamous Cell Carcinoma (OSCC) Proliferation and Invasion by Suppressing COL1A1. J Cell Biochem 2018; 119(1): 338-46.
[http://dx.doi.org/10.1002/jcb.26182] [PMID: 28569392]
[25]
Shintani Y, Hollingsworth MA, Wheelock MJ, Johnson KR. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH(2)-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res 2006; 66(24): 11745-53.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2322] [PMID: 17178870]
[26]
Ma HP, Chang HL, Bamodu OA, et al. Collagen 1A1 (COL1A1) is a reliable biomarker and putative therapeutic target for hepatocellular carcinogenesis and metastasis. Cancers (Basel) 2019; 11(6): 786.
[http://dx.doi.org/10.3390/cancers11060786] [PMID: 31181620]
[27]
Li J, Ding Y, Li A. Identification of COL1A1 and COL1A2 as candidate prognostic factors in gastric cancer. World J Surg Oncol 2016; 14(1): 297.
[http://dx.doi.org/10.1186/s12957-016-1056-5] [PMID: 27894325]
[28]
Dong S, Zhu P, Zhang S. Expression of collagen type 1 alpha 1 indicates lymph node metastasis and poor outcomes in squamous cell carcinomas of the lung. PeerJ 2020; 8: e10089.
[http://dx.doi.org/10.7717/peerj.10089] [PMID: 33062455]
[29]
Song Y, Kim SH, Kim KM, Choi EK, Kim J, Seo HR. Activated hepatic stellate cells play pivotal roles in hepatocellular carcinoma cell chemoresistance and migration in multicellular tumor spheroids. Sci Rep 2016; 6: 36750.
[http://dx.doi.org/10.1038/srep36750] [PMID: 27853186]
[30]
Wu W, Yang Z, Long F, et al. COL1A1 and MZB1 as the hub genes influenced the proliferation, invasion, migration and apoptosis of rectum adenocarcinoma cells by weighted correlation network analysis. Bioorg Chem 2020; 95: 103457.
[http://dx.doi.org/10.1016/j.bioorg.2019.103457] [PMID: 31901757]
[31]
Geng Q, Shen Z, Li L, Zhao J. COL1A1 is a prognostic biomarker and correlated with immune infiltrates in lung cancer. PeerJ 2021; 9: e11145.
[http://dx.doi.org/10.7717/peerj.11145] [PMID: 33850663]
[32]
Yu PN, Yan MD, Lai HC, et al. Downregulation of miR-29 contributes to cisplatin resistance of ovarian cancer cells. Int J Cancer 2014; 134(3): 542-51.
[http://dx.doi.org/10.1002/ijc.28399] [PMID: 23904094]
[33]
Riddell IA. Cisplatin and oxaliplatin: Our current understanding of their actions. Met Ions Life Sci 2018; 18: 9783110470734.
[34]
Qi MM, Ge F, Chen XJ, Tang C, Ma J. MiR-124 changes the sensitivity of lung cancer cells to cisplatin through targeting STAT3. Eur Rev Med Pharmacol Sci 2019; 23(12): 5242-50.
[PMID: 31298375]
[35]
Chakravarthy D, Muñoz AR, Su A, et al. Palmatine suppresses glutamine-mediated interaction between pancreatic cancer and stellate cells through simultaneous inhibition of survivin and COL1A1. Cancer Lett 2018; 419: 103-15.
[http://dx.doi.org/10.1016/j.canlet.2018.01.057] [PMID: 29414301]
[36]
Chen X, Wang L, Qu J, Guan NN, Li JQ. Predicting miRNA-disease association based on inductive matrix completion. Bioinformatics 2018; 34(24): 4256-65.
[http://dx.doi.org/10.1093/bioinformatics/bty503] [PMID: 29939227]
[37]
Chen X, Xie D, Zhao Q, You Z. MicroRNAs and complex diseases: From experimental results to computational models. Brief Bioinform 2019; 20(2): 515-39.
[http://dx.doi.org/10.1093/bib/bbx130]
[38]
Cho WC, Chow AS, Au JS. MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1. RNA Biol 2011; 8(1): 125-31.
[http://dx.doi.org/10.4161/rna.8.1.14259] [PMID: 21289483]
[39]
Jia R, Wang C. MiR-29b-3p reverses cisplatin resistance by targeting COL1A1 in non-small-cell lung cancer A549/DDP cells. Cancer Manag Res 2020; 12: 2559-66.
[http://dx.doi.org/10.2147/CMAR.S246625] [PMID: 32368137]
[40]
Chen X, Yin J, Qu J, Huang L. MDHGI: Matrix decomposition and heterogeneous graph inference for mirna-disease association prediction. PLOS Comput Biol 2018; 14(8): e1006418.
[http://dx.doi.org/10.1371/journal.pcbi.1006418] [PMID: 30142158]
[41]
Chen X, Guan NN, Sun YZ, Li JQ, Qu J. MicroRNA-small molecule association identification: from experimental results to computational models. Brief Bioinform 2018. Epub ahead of print
[http://dx.doi.org/10.1093/bib/bby098] [PMID: 30325405]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy