Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

The Emerging Roles of IL-36, IL-37, and IL-38 in Diabetes Mellitus and its Complications

Author(s): Guoqing Huang, Mingcai Li, Xiaoqing Tian, Qiankai Jin, Yushan Mao* and Yan Li*

Volume 22, Issue 10, 2022

Published on: 15 June, 2022

Page: [997 - 1008] Pages: 12

DOI: 10.2174/1871530322666220113142533

Price: $65

Abstract

Diabetes mellitus is a metabolic disease caused by a combination of genetic and environmental factors. The importance of the inflammatory response occurring in the pancreas and adipose tissue in the occurrence and progression of diabetes has been gradually accepted. Excess blood glucose and free fatty acids produce large amounts of inflammatory cytokines and chemokines through oxidative stress and endoplasmic reticulum stress. There is sufficient evidence that proinflammatory mediators, such as interleukin (IL)-1β, IL-6, macrophage chemotactic protein-1, and tumor necrosis factor-α, are engaged in insulin resistance in peripheral adipose tissue and the apoptosis of pancreatic β-cells. IL-36, IL-37, and IL-38, as new members of the IL-1 family, play an indispensable role in the regulation of immune system homeostasis and are involved in the pathogenesis of inflammatory and autoimmune diseases. Recently, the abnormal expression of IL-36, IL-37, and IL-38 in diabetes has been reported. In this review, we discuss the emerging functions, potential mechanisms, and future research directions on the role of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications.

Keywords: Diabetes mellitus, complications, inflammation, IL-36, IL-37, IL-38.

Graphical Abstract

[1]
Morrish, N.J.; Wang, S.L.; Stevens, L.K.; Fuller, J.H.; Keen, H. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia, 2001, 44(Suppl. 2), S14-S21.
[http://dx.doi.org/10.1007/PL00002934] [PMID: 11587045]
[2]
Petersmann, A.; Müller-Wieland, D.; Müller, U.A. Definition, classification and diagnosis of diabetes mellitus. Exp. Clin. Endocrinol. Diabetes, 2019, 127(S01), S1-S7.
[3]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; Shaw, J.E.; Bright, D.; Williams, R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract., 2019, 157, 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[4]
Baena-Díez, J.M.; Peñafiel, J.; Subirana, I.; Ramos, R.; Elosua, R.; Marín-Ibañez, A.; Guembe, M.J.; Rigo, F.; Tormo-Díaz, M.J.; Moreno-Iribas, C.; Cabré, J.J.; Segura, A.; García-Lareo, M.; Gómez de la Cámara, A.; Lapetra, J.; Quesada, M.; Marrugat, J.; Medrano, M.J.; Berjón, J.; Frontera, G.; Gavrila, D.; Barricarte, A.; Basora, J.; García, J.M.; Pavone, N.C.; Lora-Pablos, D.; Mayoral, E.; Franch, J.; Mata, M.; Castell, C.; Frances, A.; Grau, M. Risk of cause-specific death in individuals with diabetes: A competing risks analysis. Diabetes Care, 2016, 39(11), 1987-1995.
[http://dx.doi.org/10.2337/dc16-0614] [PMID: 27493134]
[5]
Echouffo-Tcheugui, J.B.; Niiranen, T.J.; McCabe, E.L.; Henglin, M.; Jain, M.; Vasan, R.S.; Larson, M.G.; Cheng, S. An early-onset subgroup of type 2 diabetes: a multigenerational, prospective analysis in the framingham heart study. Diabetes Care, 2020, 43(12), 3086-3093.
[http://dx.doi.org/10.2337/dc19-1758] [PMID: 33033069]
[6]
Pollack, R.M.; Donath, M.Y.; LeRoith, D.; Leibowitz, G. Anti-inflammatory agents in the treatment of diabetes and its vascular complications. Diabetes Care, 2016, 39(Suppl. 2), S244-S252.
[http://dx.doi.org/10.2337/dcS15-3015] [PMID: 27440839]
[7]
Lee, Y.S.; Olefsky, J. Chronic tissue inflammation and metabolic disease. Genes Dev., 2021, 35(5-6), 307-328.
[http://dx.doi.org/10.1101/gad.346312.120] [PMID: 33649162]
[8]
Hotamisligil, G.S. Inflammation and metabolic disorders. Nature, 2006, 444(7121), 860-867.
[http://dx.doi.org/10.1038/nature05485] [PMID: 17167474]
[9]
Maedler, K.; Sergeev, P.; Ris, F.; Oberholzer, J.; Joller-Jemelka, H.I.; Spinas, G.A.; Kaiser, N.; Halban, P.A.; Donath, M.Y. Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest., 2017, 127(4), 1589.
[http://dx.doi.org/10.1172/JCI92172] [PMID: 28368291]
[10]
Spranger, J.; Kroke, A.; Möhlig, M.; Hoffmann, K.; Bergmann, M.M.; Ristow, M.; Boeing, H.; Pfeiffer, A.F. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes, 2003, 52(3), 812-817.
[http://dx.doi.org/10.2337/diabetes.52.3.812] [PMID: 12606524]
[11]
Liu, C.; Feng, X.; Li, Q.; Wang, Y.; Li, Q.; Hua, M. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis. Cytokine, 2016, 86, 100-109.
[http://dx.doi.org/10.1016/j.cyto.2016.06.028] [PMID: 27498215]
[12]
Cimini, F.A.; Barchetta, I.; Porzia, A.; Mainiero, F.; Costantino, C.; Bertoccini, L.; Ceccarelli, V.; Morini, S.; Baroni, M.G.; Lenzi, A.; Cavallo, M.G. Circulating IL-8 levels are increased in patients with type 2 diabetes and associated with worse inflammatory and cardiometabolic profile. Acta Diabetol., 2017, 54(10), 961-967.
[http://dx.doi.org/10.1007/s00592-017-1039-1] [PMID: 28836077]
[13]
Donate-Correa, J.; Ferri, C.M.; Sánchez-Quintana, F.; Pérez-Castro, A.; González-Luis, A.; Martín-Núñez, E.; Mora-Fernández, C.; Navarro-González, J.F. Inflammatory cytokines in diabetic kidney disease: pathophysiologic and therapeutic implications. Front. Med. (Lausanne), 2021, 7, 628289.
[http://dx.doi.org/10.3389/fmed.2020.628289] [PMID: 33553221]
[14]
van de Veerdonk, F.L.; Netea, M.G. New Insights in the Immunobiology of IL-1 Family Members. Front. Immunol., 2013, 4, 167.
[http://dx.doi.org/10.3389/fimmu.2013.00167] [PMID: 23847614]
[15]
Ge, Y.; Huang, M.; Yao, Y-M. Recent advances in the biology of IL-1 family cytokines and their potential roles in development of sepsis. Cytokine Growth Factor Rev., 2019, 45, 24-34.
[http://dx.doi.org/10.1016/j.cytogfr.2018.12.004] [PMID: 30587411]
[16]
Xie, L.; Huang, Z.; Li, H.; Liu, X.; Zheng, S.; Su, W. IL-38: a new player in inflammatory autoimmune disorders. Biomolecules, 2019, 9(8), E345.
[http://dx.doi.org/10.3390/biom9080345] [PMID: 31387327]
[17]
Hiz, P.; Kanbur, E.; Demir, N.; Akalin, H.; Cagan, E.; Pashazadeh, M.; Bal, S.H.; Tezcan, G.; Oral, H.B.; Budak, F. Roles of novel IL-1 family (IL-36, IL-37, and IL-38) members in chronic brucellosis. Cytokine, 2020, 135, 155211.
[http://dx.doi.org/10.1016/j.cyto.2020.155211] [PMID: 32736334]
[18]
Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther., 2008, 88(11), 1254-1264.
[http://dx.doi.org/10.2522/ptj.20080020] [PMID: 18801858]
[19]
Lewko, B.; Stepinski, J. Hyperglycemia and mechanical stress: targeting the renal podocyte. J. Cell. Physiol., 2009, 221(2), 288-295.
[http://dx.doi.org/10.1002/jcp.21856] [PMID: 19562677]
[20]
Cefalu, W.T.; Ratner, R.E. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: the “gift” that keeps on giving! Diabetes Care, 2014, 37(1), 5-7.
[http://dx.doi.org/10.2337/dc13-2369] [PMID: 24356590]
[21]
Shah, I.M.; Mackay, S.P.; McKay, G.A. Therapeutic strategies in the treatment of diabetic nephropathy - a translational medicine approach. Curr. Med. Chem., 2009, 16(8), 997-1016.
[http://dx.doi.org/10.2174/092986709787581897] [PMID: 19275608]
[22]
Opazo-Ríos, L.; Mas, S.; Marín-Royo, G.; Mezzano, S.; Gómez-Guerrero, C.; Moreno, J.A.; Egido, J. Lipotoxicity and diabetic nephropathy: novel mechanistic insights and therapeutic opportunities. Int. J. Mol. Sci., 2020, 21(7), E2632.
[http://dx.doi.org/10.3390/ijms21072632] [PMID: 32290082]
[23]
Donath, M.Y.; Dalmas, É.; Sauter, N.S.; Böni-Schnetzler, M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab., 2013, 17(6), 860-872.
[http://dx.doi.org/10.1016/j.cmet.2013.05.001] [PMID: 23747245]
[24]
Kahn, B.B. Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance. Cell, 1998, 92(5), 593-596.
[http://dx.doi.org/10.1016/S0092-8674(00)81125-3] [PMID: 9506512]
[25]
Ying, W.; Fu, W.; Lee, Y.S.; Olefsky, J.M. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat. Rev. Endocrinol., 2020, 16(2), 81-90.
[http://dx.doi.org/10.1038/s41574-019-0286-3] [PMID: 31836875]
[26]
Gasmi, A.; Noor, S.; Menzel, A.; Doşa, A.; Pivina, L.; Bjørklund, G. Obesity and insulin resistance: associations with chronic inflammation, genetic and epigenetic factors. Curr. Med. Chem., 2021, 28(4), 800-826.
[http://dx.doi.org/10.2174/0929867327666200824112056] [PMID: 32838708]
[27]
Harding, H.P.; Ron, D. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes, 2002, 51(Suppl. 3), S455-S461.
[http://dx.doi.org/10.2337/diabetes.51.2007.S455] [PMID: 12475790]
[28]
Hull, R.L.; Westermark, G.T.; Westermark, P.; Kahn, S.E. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab., 2004, 89(8), 3629-3643.
[http://dx.doi.org/10.1210/jc.2004-0405] [PMID: 15292279]
[29]
Eizirik, D.L.; Pasquali, L.; Cnop, M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat. Rev. Endocrinol., 2020, 16(7), 349-362.
[http://dx.doi.org/10.1038/s41574-020-0355-7] [PMID: 32398822]
[30]
Lytrivi, M.; Castell, A-L.; Poitout, V.; Cnop, M. Recent insights into mechanisms of β-cell lipo- and glucolipotoxicity in type 2 diabetes. J. Mol. Biol., 2020, 432(5), 1514-1534.
[http://dx.doi.org/10.1016/j.jmb.2019.09.016] [PMID: 31628942]
[31]
Donath, M.Y.; Størling, J.; Maedler, K.; Mandrup-Poulsen, T. Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J. Mol. Med. (Berl.), 2003, 81(8), 455-470.
[http://dx.doi.org/10.1007/s00109-003-0450-y] [PMID: 12879149]
[32]
Hotamisligil, G.S.; Erbay, E. Nutrient sensing and inflammation in metabolic diseases. Nat. Rev. Immunol., 2008, 8(12), 923-934.
[http://dx.doi.org/10.1038/nri2449] [PMID: 19029988]
[33]
Masters, S.L.; Dunne, A.; Subramanian, S.L.; Hull, R.L.; Tannahill, G.M.; Sharp, F.A.; Becker, C.; Franchi, L.; Yoshihara, E.; Chen, Z.; Mullooly, N.; Mielke, L.A.; Harris, J.; Coll, R.C.; Mills, K.H.; Mok, K.H.; Newsholme, P.; Nuñez, G.; Yodoi, J.; Kahn, S.E.; Lavelle, E.C.; O’Neill, L.A. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol., 2010, 11(10), 897-904.
[http://dx.doi.org/10.1038/ni.1935] [PMID: 20835230]
[34]
Pickup, J.C.; Mattock, M.B.; Chusney, G.D.; Burt, D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia, 1997, 40(11), 1286-1292.
[http://dx.doi.org/10.1007/s001250050822] [PMID: 9389420]
[35]
Connelly, M.A.; Gruppen, E.G.; Wolak-Dinsmore, J.; Matyus, S.P.; Riphagen, I.J.; Shalaurova, I.; Bakker, S.J.; Otvos, J.D.; Dullaart, R.P. GlycA, a marker of acute phase glycoproteins, and the risk of incident type 2 diabetes mellitus: Prevend study. Clin. Chim. Acta, 2016, 452, 10-17.
[http://dx.doi.org/10.1016/j.cca.2015.11.001] [PMID: 26549655]
[36]
Lainampetch, J.; Panprathip, P.; Phosat, C.; Chumpathat, N.; Prangthip, P.; Soonthornworasiri, N.; Puduang, S.; Wechjakwen, N.; Kwanbunjan, K. Association of tumor necrosis factor alpha, interleukin 6, and c-reactive protein with the risk of developing type 2 diabetes: a retrospective cohort study of rural thais. J. Diabetes Res., 2019, 2019, 9051929.
[http://dx.doi.org/10.1155/2019/9051929] [PMID: 31485456]
[37]
Pradhan, A.D.; Manson, J.E.; Rifai, N.; Buring, J.E.; Ridker, P.M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA, 2001, 286(3), 327-334.
[http://dx.doi.org/10.1001/jama.286.3.327] [PMID: 11466099]
[38]
Herder, C.; Brunner, E.J.; Rathmann, W.; Strassburger, K.; Tabák, A.G.; Schloot, N.C.; Witte, D.R. Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: the Whitehall II study. Diabetes Care, 2009, 32(3), 421-423.
[http://dx.doi.org/10.2337/dc08-1161] [PMID: 19073760]
[39]
Böni-Schnetzler, M.; Thorne, J.; Parnaud, G.; Marselli, L.; Ehses, J.A.; Kerr-Conte, J.; Pattou, F.; Halban, P.A.; Weir, G.C.; Donath, M.Y. Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation. J. Clin. Endocrinol. Metab., 2008, 93(10), 4065-4074.
[http://dx.doi.org/10.1210/jc.2008-0396] [PMID: 18664535]
[40]
Weksler-Zangen, S.; Raz, I.; Lenzen, S.; Jörns, A.; Ehrenfeld, S.; Amir, G.; Oprescu, A.; Yagil, Y.; Yagil, C.; Zangen, D.H.; Kaiser, N. Impaired glucose-stimulated insulin secretion is coupled with exocrine pancreatic lesions in the Cohen diabetic rat. Diabetes, 2008, 57(2), 279-287.
[http://dx.doi.org/10.2337/db07-0520] [PMID: 17977959]
[41]
Berchtold, L.A.; Prause, M.; Størling, J.; Mandrup-Poulsen, T. Cytokines and pancreatic β-cell apoptosis. Adv. Clin. Chem., 2016, 75, 99-158.
[http://dx.doi.org/10.1016/bs.acc.2016.02.001] [PMID: 27346618]
[42]
Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Invest., 2006, 116(7), 1793-1801.
[http://dx.doi.org/10.1172/JCI29069] [PMID: 16823477]
[43]
Piffaretti, C.; Mandereau-Bruno, L.; Guilmin-Crepon, S.; Choleau, C.; Coutant, R.; Fosse-Edorh, S. Trends in childhood type 1 diabetes incidence in France, 2010-2015. Diabetes Res. Clin. Pract., 2019, 149, 200-207.
[http://dx.doi.org/10.1016/j.diabres.2018.11.005] [PMID: 30439385]
[44]
Patterson, C.C.; Harjutsalo, V.; Rosenbauer, J.; Neu, A.; Cinek, O.; Skrivarhaug, T.; Rami-Merhar, B.; Soltesz, G.; Svensson, J.; Parslow, R.C.; Castell, C.; Schoenle, E.J.; Bingley, P.J.; Dahlquist, G.; Jarosz-Chobot, P.K.; Marčiulionytė, D.; Roche, E.F.; Rothe, U.; Bratina, N.; Ionescu-Tirgoviste, C.; Weets, I.; Kocova, M.; Cherubini, V.; Rojnic Putarek, N.; deBeaufort, C.E.; Samardzic, M.; Green, A. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989-2013: a multicentre prospective registration study. Diabetologia, 2019, 62(3), 408-417.
[http://dx.doi.org/10.1007/s00125-018-4763-3] [PMID: 30483858]
[45]
Meyerovich, K.; Ortis, F.; Allagnat, F.; Cardozo, A.K. Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. J. Mol. Endocrinol., 2016, 57(1), R1-R17.
[http://dx.doi.org/10.1530/JME-15-0306] [PMID: 27067637]
[46]
Clark, M.; Kroger, C.J.; Tisch, R.M. Type 1 diabetes: a chronic anti-self-inflammatory response. Front. Immunol., 2017, 8, 1898.
[http://dx.doi.org/10.3389/fimmu.2017.01898] [PMID: 29312356]
[47]
Kanter, J.E.; Kramer, F.; Barnhart, S.; Averill, M.M.; Vivekanandan-Giri, A.; Vickery, T.; Li, L.O.; Becker, L.; Yuan, W.; Chait, A.; Braun, K.R.; Potter-Perigo, S.; Sanda, S.; Wight, T.N.; Pennathur, S.; Serhan, C.N.; Heinecke, J.W.; Coleman, R.A.; Bornfeldt, K.E. Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proc. Natl. Acad. Sci. USA, 2012, 109(12), E715-E724.
[http://dx.doi.org/10.1073/pnas.1111600109] [PMID: 22308341]
[48]
Böni-Schnetzler, M.; Boller, S.; Debray, S.; Bouzakri, K.; Meier, D.T.; Prazak, R.; Kerr-Conte, J.; Pattou, F.; Ehses, J.A.; Schuit, F.C.; Donath, M.Y. Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology, 2009, 150(12), 5218-5229.
[http://dx.doi.org/10.1210/en.2009-0543] [PMID: 19819943]
[49]
Jia, G.; Whaley-Connell, A.; Sowers, J.R. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia, 2018, 61(1), 21-28.
[http://dx.doi.org/10.1007/s00125-017-4390-4] [PMID: 28776083]
[50]
Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev., 2013, 93(1), 137-188.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[51]
Tsang, M.S-M.; Sun, X.; Wong, C.K. The role of new il-1 family members (il-36 and il-38) in atopic dermatitis, allergic asthma, and allergic rhinitis. Curr. Allergy Asthma Rep., 2020, 20(8), 40.
[http://dx.doi.org/10.1007/s11882-020-00937-1] [PMID: 32533268]
[52]
Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev., 2018, 281(1), 8-27.
[http://dx.doi.org/10.1111/imr.12621] [PMID: 29247995]
[53]
Dinarello, C.; Arend, W.; Sims, J.; Smith, D.; Blumberg, H.; O’Neill, L.; Goldbach-Mansky, R.; Pizarro, T.; Hoffman, H.; Bufler, P.; Nold, M.; Ghezzi, P.; Mantovani, A.; Garlanda, C.; Boraschi, D.; Rubartelli, A.; Netea, M.; van der Meer, J.; Joosten, L.; Mandrup-Poulsen, T.; Donath, M.; Lewis, E.; Pfeilschifter, J.; Martin, M.; Kracht, M.; Muehl, H.; Novick, D.; Lukic, M.; Conti, B.; Solinger, A.; Kelk, P.; van de Veerdonk, F.; Gabel, C. IL-1 family nomenclature. Nat. Immunol., 2010, 11(11), 973.
[http://dx.doi.org/10.1038/ni1110-973] [PMID: 20959797]
[54]
Towne, J.E.; Garka, K.E.; Renshaw, B.R.; Virca, G.D.; Sims, J.E. Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-kappaB and MAPKs. J. Biol. Chem., 2004, 279(14), 13677-13688.
[http://dx.doi.org/10.1074/jbc.M400117200] [PMID: 14734551]
[55]
Kumar, S.; McDonnell, P.C.; Lehr, R.; Tierney, L.; Tzimas, M.N.; Griswold, D.E.; Capper, E.A.; Tal-Singer, R.; Wells, G.I.; Doyle, M.L.; Young, P.R. Identification and initial characterization of four novel members of the interleukin-1 family. J. Biol. Chem., 2000, 275(14), 10308-10314.
[http://dx.doi.org/10.1074/jbc.275.14.10308] [PMID: 10744718]
[56]
Bozoyan, L.; Dumas, A.; Patenaude, A.; Vallières, L. Interleukin-36γ is expressed by neutrophils and can activate microglia, but has no role in experimental autoimmune encephalomyelitis. J. Neuroinflammation, 2015, 12, 173.
[http://dx.doi.org/10.1186/s12974-015-0392-7] [PMID: 26377915]
[57]
Bassoy, E.Y.; Towne, J.E.; Gabay, C. Regulation and function of interleukin-36 cytokines. Immunol. Rev., 2018, 281(1), 169-178.
[http://dx.doi.org/10.1111/imr.12610] [PMID: 29247994]
[58]
Mercurio, L.; Failla, C.M.; Capriotti, L.; Scarponi, C.; Facchiano, F.; Morelli, M.; Rossi, S.; Pagnanelli, G.; Albanesi, C.; Cavani, A.; Madonna, S. Interleukin (IL)-17/IL-36 axis participates to the crosstalk between endothelial cells and keratinocytes during inflammatory skin responses. PLoS One, 2020, 15(4), e0222969.
[http://dx.doi.org/10.1371/journal.pone.0222969] [PMID: 32352958]
[59]
Xiao, C.; Luo, Y.; Zhang, C.; Zhu, Z.; Yang, L.; Qiao, H.; Fu, M.; Wang, G.; Yao, X.; Li, W. Negative regulation of dendritic cell activation in psoriasis mediated via CD100-plexin-B2. J. Pathol., 2020, 250(4), 409-419.
[http://dx.doi.org/10.1002/path.5383] [PMID: 31943215]
[60]
Afonina, I.S.; Tynan, G.A.; Logue, S.E.; Cullen, S.P.; Bots, M.; Lüthi, A.U.; Reeves, E.P.; McElvaney, N.G.; Medema, J.P.; Lavelle, E.C.; Martin, S.J. Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1α. Mol. Cell, 2011, 44(2), 265-278.
[http://dx.doi.org/10.1016/j.molcel.2011.07.037] [PMID: 22017873]
[61]
Taylor, S.L.; Renshaw, B.R.; Garka, K.E.; Smith, D.E.; Sims, J.E. Genomic organization of the interleukin-1 locus. Genomics, 2002, 79(5), 726-733.
[http://dx.doi.org/10.1006/geno.2002.6752] [PMID: 11991723]
[62]
Macleod, T.; Doble, R.; McGonagle, D.; Wasson, C.W.; Alase, A.; Stacey, M.; Wittmann, M. Neutrophil Elastase-mediated proteolysis activates the anti-inflammatory cytokine IL-36 Receptor antagonist. Sci. Rep., 2016, 6, 24880.
[http://dx.doi.org/10.1038/srep24880] [PMID: 27101808]
[63]
Ainscough, J.S.; Macleod, T.; McGonagle, D.; Brakefield, R.; Baron, J.M.; Alase, A.; Wittmann, M.; Stacey, M. Cathepsin S is the major activator of the psoriasis-associated proinflammatory cytokine IL-36γ. Proc. Natl. Acad. Sci. USA, 2017, 114(13), E2748-E2757.
[http://dx.doi.org/10.1073/pnas.1620954114] [PMID: 28289191]
[64]
Clancy, D.M.; Henry, C.M.; Sullivan, G.P.; Martin, S.J. Neutrophil extracellular traps can serve as platforms for processing and activation of IL-1 family cytokines. FEBS J., 2017, 284(11), 1712-1725.
[http://dx.doi.org/10.1111/febs.14075] [PMID: 28374518]
[65]
Clancy, D.M.; Sullivan, G.P.; Moran, H.B.T.; Henry, C.M.; Reeves, E.P.; McElvaney, N.G.; Lavelle, E.C.; Martin, S.J. Extracellular neutrophil proteases are efficient regulators of il-1, il-33, and il-36 cytokine activity but poor effectors of microbial killing. Cell Rep., 2018, 22(11), 2937-2950.
[http://dx.doi.org/10.1016/j.celrep.2018.02.062] [PMID: 29539422]
[66]
Guo, J.; Tu, J.; Hu, Y.; Song, G.; Yin, Z. Cathepsin G cleaves and activates IL-36γ and promotes the inflammation of psoriasis. Drug Des. Devel. Ther., 2019, 13, 581-588.
[http://dx.doi.org/10.2147/DDDT.S194765] [PMID: 30804664]
[67]
Sims, J.E.; Smith, D.E. The IL-1 family: regulators of immunity. Nat. Rev. Immunol., 2010, 10(2), 89-102.
[http://dx.doi.org/10.1038/nri2691] [PMID: 20081871]
[68]
Zhou, L.; Todorovic, V.; Kakavas, S.; Sielaff, B.; Medina, L.; Wang, L.; Sadhukhan, R.; Stockmann, H.; Richardson, P.L.; DiGiammarino, E.; Sun, C.; Scott, V. Quantitative ligand and receptor binding studies reveal the mechanism of interleukin-36 (IL-36) pathway activation. J. Biol. Chem., 2018, 293(2), 403-411.
[http://dx.doi.org/10.1074/jbc.M117.805739] [PMID: 29180446]
[69]
Towne, J.E.; Renshaw, B.R.; Douangpanya, J.; Lipsky, B.P.; Shen, M.; Gabel, C.A.; Sims, J.E. Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36α, IL-36β, and IL-36γ) or antagonist (IL-36Ra) activity. J. Biol. Chem., 2011, 286(49), 42594-42602.
[http://dx.doi.org/10.1074/jbc.M111.267922] [PMID: 21965679]
[70]
Nold, M.F.; Nold-Petry, C.A.; Zepp, J.A.; Palmer, B.E.; Bufler, P.; Dinarello, C.A. IL-37 is a fundamental inhibitor of innate immunity. Nat. Immunol., 2010, 11(11), 1014-1022.
[http://dx.doi.org/10.1038/ni.1944] [PMID: 20935647]
[71]
Kumar, S.; Hanning, C.R.; Brigham-Burke, M.R.; Rieman, D.J.; Lehr, R.; Khandekar, S.; Kirkpatrick, R.B.; Scott, G.F.; Lee, J.C.; Lynch, F.J.; Gao, W.; Gambotto, A.; Lotze, M.T. Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production. Cytokine, 2002, 18(2), 61-71.
[http://dx.doi.org/10.1006/cyto.2002.0873] [PMID: 12096920]
[72]
Cavalli, G.; Dinarello, C.A. Suppression of inflammation and acquired immunity by IL-37. Immunol. Rev., 2018, 281(1), 179-190.
[http://dx.doi.org/10.1111/imr.12605] [PMID: 29247987]
[73]
Bensen, J.T.; Dawson, P.A.; Mychaleckyj, J.C.; Bowden, D.W. Identification of a novel human cytokine gene in the interleukin gene cluster on chromosome 2q12-14. J. Interferon Cytokine Res., 2001, 21(11), 899-904.
[http://dx.doi.org/10.1089/107999001753289505] [PMID: 11747621]
[74]
Lin, H.; Ho, A.S.; Haley-Vicente, D.; Zhang, J.; Bernal-Fussell, J.; Pace, A.M.; Hansen, D.; Schweighofer, K.; Mize, N.K.; Ford, J.E. Cloning and characterization of IL-1HY2, a novel interleukin-1 family member. J. Biol. Chem., 2001, 276(23), 20597-20602.
[http://dx.doi.org/10.1074/jbc.M010095200] [PMID: 11278614]
[75]
Mora, J.; Schlemmer, A.; Wittig, I.; Richter, F.; Putyrski, M.; Frank, A.C.; Han, Y.; Jung, M.; Ernst, A.; Weigert, A.; Brüne, B. Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses. J. Mol. Cell Biol., 2016, 8(5), 426-438.
[http://dx.doi.org/10.1093/jmcb/mjw006] [PMID: 26892022]
[76]
Boutet, M-A.; Najm, A.; Bart, G.; Brion, R.; Touchais, S.; Trichet, V.; Layrolle, P.; Gabay, C.; Palmer, G.; Blanchard, F.; Le Goff, B. IL-38 overexpression induces anti-inflammatory effects in mice arthritis models and in human macrophages in vitro Ann. Rheum. Dis., 2017, 76(7), 1304-1312.
[http://dx.doi.org/10.1136/annrheumdis-2016-210630] [PMID: 28288964]
[77]
Riva, F.; Bonavita, E.; Barbati, E.; Muzio, M.; Mantovani, A.; Garlanda, C. TIR8/SIGIRR is an interleukin-1 receptor/toll like receptor family member with regulatory functions in inflammation and immunity. Front. Immunol., 2012, 3, 322.
[http://dx.doi.org/10.3389/fimmu.2012.00322] [PMID: 23112799]
[78]
Boutet, M.A.; Bart, G.; Penhoat, M.; Amiaud, J.; Brulin, B.; Charrier, C.; Morel, F.; Lecron, J.C.; Rolli-Derkinderen, M.; Bourreille, A.; Vigne, S.; Gabay, C.; Palmer, G.; Le Goff, B.; Blanchard, F. Distinct expression of interleukin (IL)-36α, β and γ, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn’s disease. Clin. Exp. Immunol., 2016, 184(2), 159-173.
[http://dx.doi.org/10.1111/cei.12761] [PMID: 26701127]
[79]
Xia, H-S.; Liu, Y.; Fu, Y.; Li, M.; Wu, Y.Q. Biology of interleukin-38 and its role in chronic inflammatory diseases. Int. Immunopharmacol., 2021, 95, 107528.
[http://dx.doi.org/10.1016/j.intimp.2021.107528] [PMID: 33725637]
[80]
van de Veerdonk, F.L.; Stoeckman, A.K.; Wu, G.; Boeckermann, A.N.; Azam, T.; Netea, M.G.; Joosten, L.A.; van der Meer, J.W.; Hao, R.; Kalabokis, V.; Dinarello, C.A. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc. Natl. Acad. Sci. USA, 2012, 109(8), 3001-3005.
[http://dx.doi.org/10.1073/pnas.1121534109] [PMID: 22315422]
[81]
Palomo, J.; Troccaz, S.; Talabot-Ayer, D.; Rodriguez, E.; Palmer, G. The severity of imiquimod-induced mouse skin inflammation is independent of endogenous IL-38 expression. PLoS One, 2018, 13(3), e0194667.
[http://dx.doi.org/10.1371/journal.pone.0194667] [PMID: 29554104]
[82]
Lamacchia, C.; Palmer, G.; Rodriguez, E.; Martin, P.; Vigne, S.; Seemayer, C.A.; Talabot-Ayer, D.; Towne, J.E.; Gabay, C. The severity of experimental arthritis is independent of IL-36 receptor signaling. Arthritis Res. Ther., 2013, 15(2), R38.
[http://dx.doi.org/10.1186/ar4192] [PMID: 23452551]
[83]
Derer, A.; Groetsch, B.; Harre, U.; Böhm, C.; Towne, J.; Schett, G.; Frey, S.; Hueber, A.J. Blockade of IL-36 receptor signaling does not prevent from TNF-induced arthritis. PLoS One, 2014, 9(8), e101954.
[http://dx.doi.org/10.1371/journal.pone.0101954] [PMID: 25111378]
[84]
Jin, H.; Gardner, R.J.; Viswesvaraiah, R.; Muntoni, F.; Roberts, R.G. Two novel members of the interleukin-1 receptor gene family, one deleted in Xp22.1-Xp21.3 mental retardation. Eur. J. Hum. Genet., 2000, 8(2), 87-94.
[http://dx.doi.org/10.1038/sj.ejhg.5200415] [PMID: 10757639]
[85]
Sana, T.R.; Debets, R.; Timans, J.C.; Bazan, J.F.; Kastelein, R.A. Computational identification, cloning, and characterization of IL-1R9, a novel interleukin-1 receptor-like gene encoded over an unusually large interval of human chromosome Xq22.2-q22.3. Genomics, 2000, 69(2), 252-262.
[http://dx.doi.org/10.1006/geno.2000.6328] [PMID: 11031108]
[86]
Ferrante, M.I.; Ghiani, M.; Bulfone, A.; Franco, B. IL1RAPL2 maps to Xq22 and is specifically expressed in the central nervous system. Gene, 2001, 275(2), 217-221.
[http://dx.doi.org/10.1016/S0378-1119(01)00659-X] [PMID: 11587848]
[87]
Boraschi, D.; Italiani, P.; Weil, S.; Martin, M.U. The family of the interleukin-1 receptors. Immunol. Rev., 2018, 281(1), 197-232.
[http://dx.doi.org/10.1111/imr.12606] [PMID: 29248002]
[88]
Pavlowsky, A.; Zanchi, A.; Pallotto, M.; Giustetto, M.; Chelly, J.; Sala, C.; Billuart, P. Neuronal JNK pathway activation by IL-1 is mediated through IL1RAPL1, a protein required for development of cognitive functions. Commun. Integr. Biol., 2010, 3(3), 245-247.
[http://dx.doi.org/10.4161/cib.3.3.11414] [PMID: 20714405]
[89]
Madonna, S.; Girolomoni, G.; Dinarello, C.A.; Albanesi, C. The significance of IL-36 hyperactivation and IL-36R targeting in psoriasis. Int. J. Mol. Sci., 2019, 20(13), E3318.
[http://dx.doi.org/10.3390/ijms20133318] [PMID: 31284527]
[90]
Chu, M.; Wong, C.K.; Cai, Z.; Dong, J.; Jiao, D.; Kam, N.W.; Lam, C.W.; Tam, L.S. Elevated expression and pro-inflammatory activity of il-36 in patients with systemic lupus erythematosus. Molecules, 2015, 20(10), 19588-19604.
[http://dx.doi.org/10.3390/molecules201019588] [PMID: 26516833]
[91]
DeVallance, E.; Fournier, S.B.; Donley, D.A.; Bonner, D.E.; Lee, K.; Frisbee, J.C.; Chantler, P.D. Is obesity predictive of cardiovascular dysfunction independent of cardiovascular risk factors? Int. J. Obes., 2015, 39(2), 244-253.
[http://dx.doi.org/10.1038/ijo.2014.111] [PMID: 24957486]
[92]
Kretowski, A.; Ruperez, F.J.; Ciborowski, M. Genomics and metabolomics in obesity and type 2 diabetes. J. Diabetes Res., 2016, 2016, 9415645.
[http://dx.doi.org/10.1155/2016/9415645] [PMID: 27314051]
[93]
Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol., 2021, 320(3), C375-C391.
[http://dx.doi.org/10.1152/ajpcell.00379.2020] [PMID: 33356944]
[94]
Lee, M.K.S.; Yvan-Charvet, L.; Masters, S.L.; Murphy, A.J. The modern interleukin-1 superfamily: Divergent roles in obesity. Semin. Immunol., 2016, 28(5), 441-449.
[http://dx.doi.org/10.1016/j.smim.2016.10.001] [PMID: 27726910]
[95]
Giannoudaki, E.; Hernandez-Santana, Y.E.; Mulfaul, K.; Doyle, S.L.; Hams, E.; Fallon, P.G.; Mat, A.; O’Shea, D.; Kopf, M.; Hogan, A.E.; Walsh, P.T. Interleukin-36 cytokines alter the intestinal microbiome and can protect against obesity and metabolic dysfunction. Nat. Commun., 2019, 10(1), 4003.
[http://dx.doi.org/10.1038/s41467-019-11944-w] [PMID: 31488830]
[96]
Li, Y.; Chen, S.; Zhao, T.; Li, M. Serum IL-36 cytokines levels in type 2 diabetes mellitus patients and their association with obesity, insulin resistance, and inflammation. J. Clin. Lab. Anal., 2021, 35(2), e23611.
[http://dx.doi.org/10.1002/jcla.23611] [PMID: 33034926]
[97]
McNamee, E.N.; Masterson, J.C.; Jedlicka, P.; McManus, M.; Grenz, A.; Collins, C.B.; Nold, M.F.; Nold-Petry, C.; Bufler, P.; Dinarello, C.A.; Rivera-Nieves, J. Interleukin 37 expression protects mice from colitis. Proc. Natl. Acad. Sci. USA, 2011, 108(40), 16711-16716.
[http://dx.doi.org/10.1073/pnas.1111982108] [PMID: 21873195]
[98]
Dinarello, C.A.; Bufler, P. Interleukin-37. Semin. Immunol., 2013, 25(6), 466-468.
[http://dx.doi.org/10.1016/j.smim.2013.10.004] [PMID: 24275599]
[99]
Fujita, H.; Inoue, Y.; Seto, K.; Komitsu, N.; Aihara, M. Interleukin-37 is elevated in subjects with atopic dermatitis. J. Dermatol. Sci., 2013, 69(2), 173-175.
[http://dx.doi.org/10.1016/j.jdermsci.2012.11.001] [PMID: 23182761]
[100]
Song, L.; Qiu, F.; Fan, Y.; Ding, F.; Liu, H.; Shu, Q.; Liu, W.; Li, X. Glucocorticoid regulates interleukin-37 in systemic lupus erythematosus. J. Clin. Immunol., 2013, 33(1), 111-117.
[http://dx.doi.org/10.1007/s10875-012-9791-z] [PMID: 22961070]
[101]
Li, T.; Li, H.; Li, W.; Chen, S.; Feng, T.; Jiao, W.; Wu, C.; Dong, J.; Li, Y.; Li, S.; Feng, M.; Wei, X. Interleukin-37 sensitize the elderly type 2 diabetic patients to insulin therapy through suppressing the gut microbiota dysbiosis. Mol. Immunol., 2019, 112, 322-329.
[http://dx.doi.org/10.1016/j.molimm.2019.06.008] [PMID: 31238287]
[102]
Colagiuri, S.; Falavigna, M.; Agarwal, M.M.; Boulvain, M.; Coetzee, E.; Hod, M.; Meltzer, S.J.; Metzger, B.; Omori, Y.; Rasa, I.; Schmidt, M.I.; Seshiah, V.; Simmons, D.; Sobngwi, E.; Torloni, M.R.; Yang, H.X. Strategies for implementing the WHO diagnostic criteria and classification of hyperglycaemia first detected in pregnancy. Diabetes Res. Clin. Pract., 2014, 103(3), 364-372.
[http://dx.doi.org/10.1016/j.diabres.2014.02.012] [PMID: 24731475]
[103]
Yu, Z.; Liu, J.; Zhang, R.; Huang, X.; Sun, T.; Wu, Y.; Hambly, B.D.; Bao, S. IL-37 and 38 signalling in gestational diabetes. J. Reprod. Immunol., 2017, 124, 8-14.
[http://dx.doi.org/10.1016/j.jri.2017.09.011] [PMID: 28992508]
[104]
Dai, H.; Liu, Q.; Liu, B. Research progress on mechanism of podocyte depletion in diabetic nephropathy. J. Diabetes Res., 2017, 2017, 2615286.
[http://dx.doi.org/10.1155/2017/2615286] [PMID: 28791309]
[105]
Zhang, X.; Zhu, Y.; Zhou, Y.; Fei, B. Interleukin 37 (IL-37) reduces high glucose-induced inflammation, oxidative stress, and apoptosis of podocytes by inhibiting the stat3-cyclophilin a (cypa) signaling pathway. Med. Sci. Monit., 2020, 26, e922979.
[http://dx.doi.org/10.12659/MSM.922979] [PMID: 32931486]
[106]
Yau, J.W.Y.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; Haffner, S.; Hamman, R.F.; Ikram, M.K.; Kayama, T.; Klein, B.E.; Klein, R.; Krishnaiah, S.; Mayurasakorn, K.; O’Hare, J.P.; Orchard, T.J.; Porta, M.; Rema, M.; Roy, M.S.; Sharma, T.; Shaw, J.; Taylor, H.; Tielsch, J.M.; Varma, R.; Wang, J.J.; Wang, N.; West, S.; Xu, L.; Yasuda, M.; Zhang, X.; Mitchell, P.; Wong, T.Y. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 2012, 35(3), 556-564.
[http://dx.doi.org/10.2337/dc11-1909] [PMID: 22301125]
[107]
Klein, R.; Klein, B.E.; Moss, S.E. Visual impairment in diabetes. Ophthalmology, 1984, 91(1), 1-9.
[http://dx.doi.org/10.1016/S0161-6420(84)34337-8] [PMID: 6709312]
[108]
Zhao, M.; Hu, Y.; Yu, Y.; Lin, Q.; Yang, J.; Su, S.B.; Xu, G.T.; Yang, T. Involvement of IL-37 in the pathogenesis of proliferative diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2016, 57(7), 2955-2962.
[http://dx.doi.org/10.1167/iovs.15-18505] [PMID: 27273593]
[109]
Aiello, L.P.; Avery, R.L.; Arrigg, P.G.; Keyt, B.A.; Jampel, H.D.; Shah, S.T.; Pasquale, L.R.; Thieme, H.; Iwamoto, M.A.; Park, J.E. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med., 1994, 331(22), 1480-1487.
[http://dx.doi.org/10.1056/NEJM199412013312203] [PMID: 7526212]
[110]
Williams, E.P.; Mesidor, M.; Winters, K.; Dubbert, P.M.; Wyatt, S.B. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr. Obes. Rep., 2015, 4(3), 363-370.
[http://dx.doi.org/10.1007/s13679-015-0169-4] [PMID: 26627494]
[111]
Saltiel, A.R.; Olefsky, J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Invest., 2017, 127(1), 1-4.
[http://dx.doi.org/10.1172/JCI92035] [PMID: 28045402]
[112]
Ballak, D.B.; van Diepen, J.A.; Moschen, A.R.; Jansen, H.J.; Hijmans, A.; Groenhof, G.J.; Leenders, F.; Bufler, P.; Boekschoten, M.V.; Müller, M.; Kersten, S.; Li, S.; Kim, S.; Eini, H.; Lewis, E.C.; Joosten, L.A.; Tilg, H.; Netea, M.G.; Tack, C.J.; Dinarello, C.A.; Stienstra, R. IL-37 protects against obesity-induced inflammation and insulin resistance. Nat. Commun., 2014, 5, 4711.
[http://dx.doi.org/10.1038/ncomms5711] [PMID: 25182023]
[113]
Ballak, D.B.; Li, S.; Cavalli, G.; Stahl, J.L.; Tengesdal, I.W.; van Diepen, J.A.; Klück, V.; Swartzwelter, B.; Azam, T.; Tack, C.J.; Stienstra, R.; Mandrup-Poulsen, T.; Seals, D.R.; Dinarello, C.A. Interleukin-37 treatment of mice with metabolic syndrome improves insulin sensitivity and reduces pro-inflammatory cytokine production in adipose tissue. J. Biol. Chem., 2018, 293(37), 14224-14236.
[http://dx.doi.org/10.1074/jbc.RA118.003698] [PMID: 30006351]
[114]
Sag, D.; Carling, D.; Stout, R.D.; Suttles, J. Adenosine 5′monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol., 2008, 181(12), 8633-8641.
[http://dx.doi.org/10.4049/jimmunol.181.12.8633] [PMID: 19050283]
[115]
Cavalli, G.; Justice, J.N.; Boyle, K.E.; D’Alessandro, A.; Eisenmesser, E.Z.; Herrera, J.J.; Hansen, K.C.; Nemkov, T.; Stienstra, R.; Garlanda, C.; Mantovani, A.; Seals, D.R.; Dagna, L.; Joosten, L.A.; Ballak, D.B.; Dinarello, C.A. Interleukin 37 reverses the metabolic cost of inflammation, increases oxidative respiration, and improves exercise tolerance. Proc. Natl. Acad. Sci. USA, 2017, 114(9), 2313-2318.
[http://dx.doi.org/10.1073/pnas.1619011114] [PMID: 28193888]
[116]
Wei, F.; Zhu, H.; Li, N.; Yu, C.; Song, Z.; Wang, S.; Sun, Y.; Zheng, L.; Wang, G.; Huang, Y.; Bao, Y.; Sun, L. Stevioside activates ampk to suppress inflammation in macrophages and protects mice from lps-induced lethal shock. Molecules, 2021, 26(4), 858.
[http://dx.doi.org/10.3390/molecules26040858] [PMID: 33562046]
[117]
Schäffler, A.; Schölmerich, J. Innate immunity and adipose tissue biology. Trends Immunol., 2010, 31(6), 228-235.
[http://dx.doi.org/10.1016/j.it.2010.03.001] [PMID: 20434953]
[118]
Orr, J.S.; Puglisi, M.J.; Ellacott, K.L.J.; Lumeng, C.N.; Wasserman, D.H.; Hasty, A.H. Toll-like receptor 4 deficiency promotes the alternative activation of adipose tissue macrophages. Diabetes, 2012, 61(11), 2718-2727.
[http://dx.doi.org/10.2337/db11-1595] [PMID: 22751700]
[119]
Tanti, J-F.; Jager, J. Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr. Opin. Pharmacol., 2009, 9(6), 753-762.
[http://dx.doi.org/10.1016/j.coph.2009.07.004] [PMID: 19683471]
[120]
Gurău, F.; Silvestrini, A.; Matacchione, G.; Fazioli, F.; Bonfigli, A.R.; Olivieri, F.; Sabbatinelli, J. Plasma levels of interleukin-38 in healthy aging and in type 2 diabetes. Diabetes Res. Clin. Pract., 2021, 171, 108585.
[http://dx.doi.org/10.1016/j.diabres.2020.108585] [PMID: 33310128]
[121]
Liu, Y.; Chen, T.; Zhou, F.; Mu, D.; Liu, S. Interleukin-38 increases the insulin sensitivity in children with the type 2 diabetes. Int. Immunopharmacol., 2020, 82, 106264.
[http://dx.doi.org/10.1016/j.intimp.2020.106264] [PMID: 32087495]
[122]
Xu, K.; Sun, J.; Chen, S.; Li, Y.; Peng, X.; Li, M.; Li, Y. Hydrodynamic delivery of IL-38 gene alleviates obesity-induced inflammation and insulin resistance. Biochem. Biophys. Res. Commun., 2019, 508(1), 198-202.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.114] [PMID: 30477747]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy