Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

The Catalytic Efficiency of Isosteviol Derived Bifunctional Primary Amine-Squaramide on Michael Additions of Acetophenone to Nitroalkenes

Author(s): Yu-Xia Liu*, Zhi-Wei Ma, Chuan-Chuan Wang, Qian Li and Wen-Peng Mai

Volume 19, Issue 8, 2022

Published on: 28 March, 2022

Page: [677 - 681] Pages: 5

DOI: 10.2174/1570178619666220112124054

Price: $65

Abstract

The isosteviol derived bifunctional primary amine-squaramide organocatalysts were applied in the Michael addition between nitroalkenes and acetophenone. The conjugate addition isomers of two configurations were observed with high yields (up to 93% yield) and good enantioselectivity (up to 91% ee) at room temperature.

Keywords: Isosteviol, asymmetric catalysis, organocatalyst, squaramide, michael reaction, nitroalkenes.

« Previous
Graphical Abstract

[1]
Scheffler, U.; Mahrwald, R. Chemistry, 2013, 19(43), 14346-14396.
[http://dx.doi.org/10.1002/chem.201301996] [PMID: 24115407]
[2]
Bulfield, D.; Huber, S.M. Chemistry, 2016, 22(41), 14434-14450.
[http://dx.doi.org/10.1002/chem.201601844] [PMID: 27465662]
[3]
Zhan, G.; Du, W.; Chen, Y-C. Chem. Soc. Rev., 2017, 46(6), 1675-1692.
[http://dx.doi.org/10.1039/C6CS00247A] [PMID: 28221384]
[4]
Doyle, A.G.; Jacobsen, E.N. Chem. Rev., 2007, 107(12), 5713-5743.
[http://dx.doi.org/10.1021/cr068373r] [PMID: 18072808]
[5]
Connon, S. J. Chem., 2006, 12(21), 5418-5427.
[http://dx.doi.org/10.1002/chem.200501076] [PMID: 16514689]
[6]
Yu, X.; Wang, W. Chem. Asian J., 2008, 3(3), 516-532.
[http://dx.doi.org/10.1002/asia.200700415] [PMID: 18286564]
[7]
Bo, H.; Jun-Long, L.; You-Cai, X.; Si-Li, Z.; Ying-Chun, C. Curr. Org. Chem., 2011, 15(24), 4128-4143.
[http://dx.doi.org/10.2174/138527211798109204]
[8]
Malerich, J.P.; Hagihara, K.; Rawal, V.H. J. Am. Chem. Soc., 2008, 130(44), 14416-14417.
[http://dx.doi.org/10.1021/ja805693p] [PMID: 18847268]
[9]
Alemán, J.; Parra, A.; Jiang, H.; Jørgensen, K.A. Chemistry, 2011, 17(25), 6890-6899.
[http://dx.doi.org/10.1002/chem.201003694] [PMID: 21590822]
[10]
Gao, Y.; Du, D-M. Chemistry, 2014, 9(10), 2970-2974.
[11]
Li, X.; Yan, J.; Qin, J.; Lin, S.; Chen, W.; Zhan, R.; Huang, H. J. Org. Chem., 2019, 84(12), 8035-8045.
[http://dx.doi.org/10.1021/acs.joc.9b00911] [PMID: 31188599]
[12]
Lin, Y.; Zhao, B-L.; Du, D-M. J. Org. Chem., 2019, 84(16), 10209-10220.
[http://dx.doi.org/10.1021/acs.joc.9b01268] [PMID: 31318546]
[13]
Song, Y-X.; Du, D-M. J. Org. Chem., 2018, 83(16), 9278-9290.
[http://dx.doi.org/10.1021/acs.joc.8b01245] [PMID: 29956933]
[14]
Zhang, Y-P.; You, Y.; Zhao, J-Q.; Zhang, X-M.; Xu, X-Y.; Yuan, W-C. J. Org. Chem., 2019, 84(12), 7984-7994.
[http://dx.doi.org/10.1021/acs.joc.9b00837] [PMID: 31117570]
[15]
Zhao, M-X.; Bi, H-L.; Zhou, H.; Yang, H.; Shi, M. J. Org. Chem., 2013, 78(18), 9377-9382.
[http://dx.doi.org/10.1021/jo401585v] [PMID: 23984761]
[16]
Zhao, M-X.; Bi, H-L.; Jiang, R-H.; Xu, X-W.; Shi, M. Org. Lett., 2014, 16(17), 4566-4569.
[http://dx.doi.org/10.1021/ol502123z] [PMID: 25144620]
[17]
Zhou, D.; Huang, Z.; Yu, X.; Wang, Y.; Li, J.; Wang, W.; Xie, H. Org. Lett., 2015, 17(22), 5554-5557.
[http://dx.doi.org/10.1021/acs.orglett.5b02668] [PMID: 26524623]
[18]
Yang, W.; Yang, Y.; Du, D-M. Org. Lett., 2013, 15(6), 1190-1193.
[http://dx.doi.org/10.1021/ol400025a] [PMID: 23463941]
[19]
Zhu, Y.; Malerich, J.P.; Rawal, V.H. Angew. Chem. Int. Ed., 2010, 49(1), 153-156.
[http://dx.doi.org/10.1002/anie.200904779]
[20]
Modrocká, V.; Veverková, E. Mečiarová, M.; Šebesta, R. J. Org. Chem., 2018, 83(21), 13111-13120.
[http://dx.doi.org/10.1021/acs.joc.8b01847] [PMID: 30277392]
[21]
Liu, W.; Lai, X.; Zha, G.; Xu, Y.; Sun, P.; Xia, T.; Shen, Y. Org. Biomol. Chem., 2016, 14(14), 3603-3607.
[http://dx.doi.org/10.1039/C6OB00119J] [PMID: 26978187]
[22]
Zheng, Y.; Cui, L.; Wang, Y.; Zhou, Z. J. Org. Chem., 2016, 81(10), 4340-4346.
[http://dx.doi.org/10.1021/acs.joc.6b00196] [PMID: 27100356]
[23]
Bera, K.; Satam, N.S.; Namboothiri, I.N.N. J. Org. Chem., 2016, 81(13), 5670-5680.
[http://dx.doi.org/10.1021/acs.joc.6b00543] [PMID: 27244116]
[24]
Liu, Y.; Lu, A.; Hu, K.; Wang, Y.; Song, H.; Zhou, Z.; Tang, C. Eur. J. Org. Chem., 2013, 2013(22), 4836-4843.
[http://dx.doi.org/10.1002/ejoc.201300331]
[25]
Ma, Z-W.; Liu, Y-X.; Zhang, W-J.; Tao, Y.; Zhu, Y.; Tao, J-C.; Tang, M-S. Eur. J. Org. Chem., 2011, 2011(33), 6747-6754.
[http://dx.doi.org/10.1002/ejoc.201101086]
[26]
An, Y-J.; Zhang, Y-X.; Wu, Y.; Liu, Z-M.; Pi, C.; Tao, J-C. Tetrahedron Asymmetry, 2010, 21(6), 688-694.
[http://dx.doi.org/10.1016/j.tetasy.2010.04.019]
[27]
Ma, Z-W.; Liu, Y-X.; Huo, L-J.; Gao, X.; Tao, J-C. Tetrahedron Asymmetry, 2012, 23(6), 443-448.
[http://dx.doi.org/10.1016/j.tetasy.2012.03.020]
[28]
Yu-Xia, L.; Zhi-Wei, M.; Yan-Xun, L.; Jing-Chao, T. Lett. Org. Chem., 2018, 15(4), 307-313.
[http://dx.doi.org/10.2174/1570178615666171226163338]
[29]
Song, Z-T.; Zhang, T.; Du, H-L.; Ma, Z-W.; Zhang, C-H.; Tao, J-C. Chirality, 2014, 26(2), 121-127.
[http://dx.doi.org/10.1002/chir.22279] [PMID: 24420919]
[30]
Ma, Z-W.; Wu, Y.; Sun, B.; Du, H-L.; Shi, W-M.; Tao, J-C. Tetrahedron Asymmetry, 2013, 24(1), 7-13.
[http://dx.doi.org/10.1016/j.tetasy.2012.11.009]
[31]
Ma, Z-W.; Liu, X-F.; Liu, J-T.; Tao, J-C. Youji Huaxue, 2018, 38(1), 183-189.
[http://dx.doi.org/10.6023/cjoc201706025]
[32]
Ma, Z-W.; Liu, X-F.; Sun, B.; Huang, X-H.; Tao, J-C. Synthesis, 2017, 49(7), 1307-1314.
[33]
Ma, Z-W.; Liu, X-F.; Liu, J-T.; Liu, Z-J.; Tao, J-C. Tetrahedron Lett., 2017, 58(48), 4487-4490.
[http://dx.doi.org/10.1016/j.tetlet.2017.10.026]
[34]
Liu, K.; Cui, H-F.; Nie, J.; Dong, K-Y.; Li, X-J.; Ma, J-A. Org. Lett., 2007, 9(5), 923-925.
[http://dx.doi.org/10.1021/ol0701666] [PMID: 17288432]
[35]
Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Org. Lett., 2005, 7(10), 1967-1969.
[http://dx.doi.org/10.1021/ol050431s] [PMID: 15876031]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy