Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Single-Atom Nanocatalysts for Biosensing Application

Author(s): Xiaoxiao Ge, Zhifan Liu, Weiying Zhang and Shaojun Guo*

Volume 18, Issue 6, 2022

Published on: 05 April, 2022

Page: [753 - 763] Pages: 11

DOI: 10.2174/1573411018666220112111502

Price: $65

conference banner
Abstract

Single-atom (SA) catalysts, as a rising star in the catalytic field, have many advantages over traditional nanocatalysts. SA catalysts have improved catalytic activity, a simple and tunable structure, and obvious active sites, which might provide a good opportunity for biosensing technique innovation. This paper will review the latest research progress of SA catalysts in the biosensing field. In particular, we will emphasize on the biosensing strategies for the determination of disease-related biological matrices (H2O2, biological enzyme, NO) and environmental pollutants (organophosphorus pesticides, heavy metal ions, and volatile organic compounds). Finally, we will provide some perspective and discuss the challenges that SA catalysts continue to face.

Keywords: Single-atom catalysts, biological monitoring, environmental analysis, enzyme-like activity, high-catalytic performance.

« Previous
Graphical Abstract

[1]
Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem., 2011, 3(8), 634-641.
[http://dx.doi.org/10.1038/nchem.1095] [PMID: 21778984]
[2]
Zhang, T.; Walsh, A.G.; Yu, J.; Zhang, P. Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev., 2021, 50(1), 569-588.
[http://dx.doi.org/10.1039/D0CS00844C] [PMID: 33170202]
[3]
Zhao, M.Y.; Zhang, N.; Yang, R.G.; Chen, D.L.; Zhao, Y.X. Which is better for nanomedicines: Nanocatalysts or single-atom catalysts? Adv. Healthc. Mater., 2020, 10(8), 2001897.
[http://dx.doi.org/10.1002/adhm.202001897] [PMID: 33326185]
[4]
Shang, H.; Sun, W.; Sui, R.; Pei, J.; Zheng, L.; Dong, J.; Jiang, Z.; Zhou, D.; Zhuang, Z.; Chen, W.; Zhang, J.; Wang, D.; Li, Y. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett., 2020, 20(7), 5443-5450.
[http://dx.doi.org/10.1021/acs.nanolett.0c01925] [PMID: 32515966]
[5]
Tang, M.; Yuan, W.T.; Ou, Y.; Li, G.X.; You, R.Y.; Li, S.D.; Yang, H.S.; Zhang, Z.; Wang, Y. Recent progresses on structural reconstruction of nanosized metal catalysts viacontrolled-atmosphere transmission electron microscopy: A review. ACS Catal., 2020, 10(24), 14419-14450.
[http://dx.doi.org/10.1021/acscatal.0c03335]
[6]
Lang, R.; Du, X.; Huang, Y.; Jiang, X.; Zhang, Q.; Guo, Y.; Liu, K.; Qiao, B.; Wang, A.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev., 2020, 120(21), 11986-12043.
[http://dx.doi.org/10.1021/acs.chemrev.0c00797] [PMID: 33112599]
[7]
Sun, T.; Mitchell, S.; Li, J.; Lyu, P.; Wu, X.; Pérez-Ramírez, J.; Lu, J. Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions. Adv. Mater., 2021, 33(5), e2003075.
[http://dx.doi.org/10.1002/adma.202003075] [PMID: 33283369]
[8]
Sun, K. Xu; Lin, X.; Tian, S.B.; Lin, W.F.; Zhou, D.J.; Sun, X.M. Electrochemical oxygen reduction to hydrogen peroxide via a two-electron transfer pathway on carbon-based single-atom catalysts. Adv. Mater. Interfaces, 2020, 8(8), 2001360.
[http://dx.doi.org/10.1002/admi.202001360]]
[9]
Tang, Q.; Cao, S.J.; Ma, T.; Xiang, X.; Luo, H.R.; Borovskikh, P.; Rodriguez, R.D.; Guo, Q.Y.; Qiu, L.; Cheng, C. Engineering biofunctional enzyme-mimics for catalytic therapeutics and diagnostics. Adv. Funct. Mater., 2020, 31(7), 2007475.
[http://dx.doi.org/10.1002/adfm.202007475]
[10]
Tiburcio, E.; Greco, R.; Mon, M.; Ballesteros-Soberanas, J.; Ferrando-Soria, J.; López-Haro, M.; Hernández-Garrido, J.C.; Oliver-Meseguer, J.; Marini, C.; Boronat, M.; Armentano, D.; Leyva-Pérez, A.; Pardo, E. Soluble/MOF-supported palladium single atoms catalyze the ligand-, additive-, and solvent-free aerobic oxidation of benzyl alcohols to benzoic acids. J. Am. Chem. Soc., 2021, 143(6), 2581-2592.
[http://dx.doi.org/10.1021/jacs.0c12367] [PMID: 33535758]
[11]
Han, S.G.; Ma, D.D.; Zhou, S.H.; Zhang, K.X.; Wei, W.B.; Du, Y.H.; Wu, X.T.; Xu, Q.; Zou, R.Q.; Zhu, Q.L. Fluorine-tuned single-atom catalysts with dense surface Ni-N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction. Appl. Catal. B, 2021, 283, 119591.
[http://dx.doi.org/10.1016/j.apcatb.2020.119591]
[12]
Shen, H.J.; Gracia-Espino, E.; Ma, J.Y.; Tang, H.D.; Mamat, X.; Wagberg, T.; Hu, G.Z.; Guo, S.J. Atomically FeN2 moieties dispersed on mesoporous carbon: A new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy, 2017, 35, 9-16.
[http://dx.doi.org/10.1016/j.nanoen.2017.03.027]
[13]
Zhou, P.; Chao, Y.G.; Lv, F.; Wang, K.; Zhang, W.Y.; Zhou, J.H.; Chen, H.; Wang, L.; Li, Y.J.; Zhang, Q.H.; Gu, L.; Guo, S.J. Metal single atom strategy greatly boosts photocatalytic methyl activation and C-C coupling for the coproduction of high-value-added multicarbon compounds and hydrogen. ACS Catal., 2020, 10(16), 9109-9114.
[http://dx.doi.org/10.1021/acscatal.0c01192]
[14]
Li, X.; Bi, W.; Zhang, L.; Tao, S.; Chu, W.; Zhang, Q.; Luo, Y.; Wu, C.; Xie, Y. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater., 2016, 28(12), 2427-2431.
[http://dx.doi.org/10.1002/adma.201505281] [PMID: 26822495]
[15]
Chen, Y.; Ji, S.; Wang, Y.; Dong, J.; Chen, W.; Li, Z.; Shen, R.; Zheng, L.; Zhuang, Z.; Wang, D.; Li, Y. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. Engl., 2017, 56(24), 6937-6941.
[http://dx.doi.org/10.1002/anie.201702473] [PMID: 28402604]
[16]
Li, Y.; Lin, S.; Wang, D.; Gao, T.; Song, J.; Zhou, P.; Xu, Z.; Yang, Z.; Xiao, N.; Guo, S. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv. Mater., 2020, 32(8), e1906722.
[http://dx.doi.org/10.1002/adma.201906722] [PMID: 31957092]
[17]
Li, Y.J.; Sun, Y.J.; Qin, Y.N.; Zhang, W.Y.; Wang, L.; Luo, M.C.; Yang, H.; Guo, S.J. Recent advances on water‐splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Eng. Mater., 2020, 10(11), 1903120.
[http://dx.doi.org/10.1002/aenm.201903120]
[18]
Yan, H.; Su, C.L.; He, J.; Chen, W. Single-atom catalysts and their applications in organic chemistry. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(19), 8793-8814.
[http://dx.doi.org/10.1039/C8TA01940A]
[19]
Fan, Y.; Liu, S.; Yi, Y.; Rong, H.; Zhang, J. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. ACS Nano, 2021, 15(2), 2005-2037.
[http://dx.doi.org/10.1021/acsnano.0c06962] [PMID: 33566564]
[20]
Li, Y.; Zhou, P.; Li, H.; Gao, T.; Zhou, L.; Zhang, Y.; Xiao, Ni.; Xia, Z.; Wang, L.; Zhang, Q.; Gu, L.; Guo, S. Multifunctional interlayer toward reversible and durable lithium-sulfur batteries. Small Methods, 2020, 4, 1900701.
[http://dx.doi.org/10.1002/smtd.201900701]
[21]
Shen, L.; Ye, D.; Zhao, H.; Zhang, J. Perspectives for single-atom nanozymes: Advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem., 2021, 93(3), 1221-1231.
[http://dx.doi.org/10.1021/acs.analchem.0c04084] [PMID: 33371664]
[22]
Jiao, L.; Yan, H.; Wu, Y.; Gu, W.; Zhu, C.; Du, D.; Lin, Y. When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. Engl., 2020, 59(7), 2565-2576.
[http://dx.doi.org/10.1002/anie.201905645] [PMID: 31209985]
[23]
Niu, X.; Li, X.; Lyu, Z.; Pan, J.; Ding, S.; Ruan, X.; Zhu, W.; Du, D.; Lin, Y. Metal-organic framework based nanozymes: promising materials for biochemical analysis. Chem. Commun. (Camb.), 2020, 56(77), 11338-11353.
[http://dx.doi.org/10.1039/D0CC04890A] [PMID: 32909017]
[24]
Wang, D.; Jana, D.; Zhao, Y. Metal-organic framework derived nanozymes in biomedicine. Acc. Chem. Res., 2020, 53(7), 1389-1400.
[http://dx.doi.org/10.1021/acs.accounts.0c00268] [PMID: 32597637]
[25]
Abdel-Mageed, A.M.; Rungtaweevoranit, B.; Parlinska-Wojtan, M.; Pei, X.; Yaghi, O.M.; Behm, R.J. Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. J. Am. Chem. Soc., 2019, 141(13), 5201-5210.
[http://dx.doi.org/10.1021/jacs.8b11386] [PMID: 30852893]
[26]
Wang, D.; Wu, H.; Phua, S.Z.F.; Yang, G.; Qi Lim, W.; Gu, L.; Qian, C.; Wang, H.; Guo, Z.; Chen, H.; Zhao, Y. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun., 2020, 11(1), 357.
[http://dx.doi.org/10.1038/s41467-019-14199-7] [PMID: 31953423]
[27]
Cao, F.; Zhang, L.; Wang, H.; You, Y.; Wang, Y.; Gao, N.; Ren, J.; Qu, X. Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angew. Chem. Int. Ed. Engl., 2019, 58(45), 16236-16242.
[http://dx.doi.org/10.1002/anie.201908289] [PMID: 31456332]
[28]
Liu, W.G.; Hu, W.J.; Yang, L.J.; Liu, J. Single cobalt atom anchored on carbon nitride with well-defined active sites for photo-enzyme catalysis. Nano Energy, 2020, 73, 104750.
[http://dx.doi.org/10.1016/j.nanoen.2020.104750]
[29]
Huang, L.; Chen, J.; Gan, L.; Wang, J.; Dong, S. Single-atom nanozymes. Sci. Adv., 2019, 5(5), eaav5490.
[http://dx.doi.org/10.1126/sciadv.aav5490] [PMID: 31058221]
[30]
Jiao, L.; Wu, J.B.; Zhong, H.; Zhang, Y.; Xu, W.Y.; Wu, Y.; Chen, Y.F.; Yan, H.Y.; Zhang, Q.H.; Gu, L.; Gu, L.; Scott, P.B.; Huang, L.; Zhu, C.Z. Densely isolated fen4 sites for peroxidase mimicking. ACS Catal., 2020, 10(11), 6422-6429.
[http://dx.doi.org/10.1021/acscatal.0c01647]
[31]
Jiao, L.; Xu, W.; Yan, H.; Wu, Y.; Liu, C.; Du, D.; Lin, Y.; Zhu, C. Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem., 2019, 91(18), 11994-11999.
[http://dx.doi.org/10.1021/acs.analchem.9b02901] [PMID: 31436084]
[32]
Zhou, X.; Wang, M.; Chen, J.; Xie, X.; Su, X. Peroxidase-like activity of Fe-N-C single-atom nanozyme based colorimetric detection of galactose. Anal. Chim. Acta, 2020, 1128, 72-79.
[http://dx.doi.org/10.1016/j.aca.2020.06.027] [PMID: 32825914]
[33]
Jing, W.; Cui, X.; Kong, F.; Wei, W.; Li, Y.; Fan, L.; Li, X. Fe-N/C single-atom nanozyme-based colorimetric sensor array for discriminating multiple biological antioxidants. Analyst (Lond.), 2021, 146(1), 207-212.
[http://dx.doi.org/10.1039/D0AN01447H] [PMID: 33089838]
[34]
Wu, Y.; Jiao, L.; Luo, L.; Xu, W.Q.; Wei, X.Q.; Wang, H.G.; Yan, H.Y.; Gu, W.L.; Xu, B.Z.; Du, D.; Lin, Y.H.; Zhu, C.Z. Oxidase-like Fe-N-C single-atom nanozymes for the detection of Acetylcholinesterase activity. Small, 2019, 15(43), 1903108.
[http://dx.doi.org/10.1002/smll.201903108]
[35]
Xu, X.; Cen, Y.; Xu, G.; Wei, F.; Shi, M.; Hu, Q. A ratiometric fluorescence probe based on carbon dots for discriminative and highly sensitive detection of acetylcholinesterase and butyrylcholinesterase in human whole blood. Biosens. Bioelectron., 2019, 131, 232-236.
[http://dx.doi.org/10.1016/j.bios.2019.02.031] [PMID: 30849722]
[36]
Chen, G.L.; Feng, H.; Xi, W.B.; Xu, J.; Pan, S.F.; Qian, Z.S. The effects of SnS2 secondary phases on Cu2ZnSnS4 solar cells: A promising mechanical exfoliation method for its removal. Analyst (Lond.), 2019, 144, 559-566.
[http://dx.doi.org/10.1039/C8AN01808A]
[37]
Ma, Y.; Gao, W.; Ma, S.; Liu, Y.; Lin, W. Observation of the elevation of Cholinesterase activity in brain glioma by a near-infrared emission chemsensor. Anal. Chem., 2020, 92(19), 13405-13410.
[http://dx.doi.org/10.1021/acs.analchem.0c02770] [PMID: 32864956]
[38]
Wang, M.; Zhou, X.; Wang, S.; Xie, X.; Wang, Y.; Su, X. Fabrication of bioresource-derived porous carbon-supported iron as an efficient oxidase mimic for dual-channel biosensing. Anal. Chem., 2021, 93(6), 3130-3137.
[http://dx.doi.org/10.1021/acs.analchem.0c04386] [PMID: 33535742]
[39]
Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem., 2015, 87(1), 230-249.
[http://dx.doi.org/10.1021/ac5039863] [PMID: 25354297]
[40]
Niu, X.; Shi, Q.; Zhu, W.; Liu, D.; Tian, H.; Fu, S.; Cheng, N.; Li, S.; Smith, J.N.; Du, D.; Lin, Y. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron., 2019, 142, 111495.
[http://dx.doi.org/10.1016/j.bios.2019.111495] [PMID: 31310943]
[41]
Wang, M.K.; Liu, L.; Xie, X.L.; Zhou, X.B.; Lin, Z.H.; Su, X.G. Single-atom iron containing nanozyme with peroxidase-like activity and copper nanoclusters based ratio fluorescent strategy for acetylcholinesterase activity sensing. Sens. Actuators B Chem., 2020, 313, 128023.
[http://dx.doi.org/10.1016/j.snb.2020.128023]
[42]
Xie, X.; Wang, Y.; Zhou, X.; Chen, J.; Wang, M.; Su, X. Fe-N-C single-atom nanozymes with peroxidase-like activity for the detection of alkaline phosphatase. Analyst (Lond.), 2021, 146(3), 896-903.
[http://dx.doi.org/10.1039/D0AN01846E] [PMID: 33237050]
[43]
Chen, Q.M.; Li, S.Q.; Liu, Y.; Zhang, X.D.; Tang, Y.; Chai, H.X.; Huang, Y.M. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B Chem., 2020, 305(15), 127511.
[http://dx.doi.org/10.1016/j.snb.2019.127511]
[44]
Zhou, M.; Jiang, Y.; Wang, G.; Wu, W.; Chen, W.; Yu, P.; Lin, Y.; Mao, J.; Mao, L. Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun., 2020, 11(1), 3188.
[http://dx.doi.org/10.1038/s41467-020-17018-6] [PMID: 32581225]
[45]
Wu, F.; Pan, C.; He, C.T.; Han, Y.; Ma, W.; Wei, H.; Ji, W.; Chen, W.; Mao, J.; Yu, P.; Wang, D.; Mao, L.; Li, Y. Single-atom Co-N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. J. Am. Chem. Soc., 2020, 142(39), 16861-16867.
[http://dx.doi.org/10.1021/jacs.0c07790] [PMID: 32924470]
[46]
Ge, X.; Tao, Y.; Zhang, A.; Lin, Y.; Du, D. Electrochemical detection of dual exposure biomarkers of organophosphorus agents based on reactivation of inhibited cholinesterase. Anal. Chem., 2013, 85(20), 9686-9691.
[http://dx.doi.org/10.1021/ac402022p] [PMID: 24020883]
[47]
Ge, X.; Zhang, W.; Lin, Y.; Du, D. Magnetic Fe3O4@TiO2 nanoparticles-based test strip immunosensing device for rapid detection of phosphorylated butyrylcholinesterase. Biosens. Bioelectron., 2013, 50, 486-491.
[http://dx.doi.org/10.1016/j.bios.2013.07.017] [PMID: 23911770]
[48]
Zhang, W.; Ge, X.; Tang, Y.; Du, D.; Liu, D.; Lin, Y. Nanoparticle-based immunochromatographic test strip with fluorescent detector for quantification of phosphorylated acetylcholinesterase: An exposure biomarker of organophosphorus agents. Analyst (Lond.), 2013, 138(18), 5431-5436.
[http://dx.doi.org/10.1039/c3an00621b] [PMID: 23885349]
[49]
Wu, Y.; Wu, J.; Jiao, L.; Xu, W.; Wang, H.; Wei, X.; Gu, W.; Ren, G.; Zhang, N.; Zhang, Q.; Huang, L.; Gu, L.; Zhu, C. Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing. Anal. Chem., 2020, 92(4), 3373-3379.
[http://dx.doi.org/10.1021/acs.analchem.9b05437] [PMID: 31941278]
[50]
Ge, X.; Zhou, P.; Zhang, Q.; Xia, Z.; Chen, S.; Gao, P.; Zhang, Z.; Gu, L.; Guo, S. Palladium single atoms on TiO2 as a photocatalytic sensing platform for analyzing the organophosphorus pesticide chlorpyrifos. Angew. Chem. Int. Ed. Engl., 2020, 59(1), 232-236.
[http://dx.doi.org/10.1002/anie.201911516] [PMID: 31609053]
[51]
Mao, Y.; Gao, S.; Yao, L.; Wang, L.; Qu, H.; Wu, Y.; Chen, Y.; Zheng, L. Single-atom nanozyme enabled fast and highly sensitive colorimetric detection of Cr(VI). J. Hazard. Mater., 2021, 408, 124898.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124898] [PMID: 33385719]
[52]
Li, P.H.; Yang, M.; Li, Y.X.; Song, Z.Y.; Liu, J.H.; Lin, C.H.; Zeng, J.; Huang, X.J. Ultra-sensitive and selective detection of Arsenic(III) via electroanalysis over cobalt single-atom catalysts. Anal. Chem., 2020, 92(8), 6128-6135.
[http://dx.doi.org/10.1021/acs.analchem.0c00677] [PMID: 32207296]
[53]
Gu, F.B.; Luo, C.; Han, D.M.; Hong, S.; Wang, Z.H. Atomically dispersed Pt on 3DOM WO3 promoted with cobalt and nickel oxides for highly selective and highly sensitive detection of xylene. Sens. Actuators B Chem., 2019, 297, 126772.
[http://dx.doi.org/10.1016/j.snb.2019.126772]
[54]
Gu, F.; Di, M.; Han, D.; Hong, S.; Wang, Z. Atomically dispersed Au on In2O3 nanosheets for highly sensitive and selective detection of formaldehyde. ACS Sens., 2020, 5(8), 2611-2619.
[http://dx.doi.org/10.1021/acssensors.0c01074] [PMID: 32786391]
[55]
Kohsuke, M.; Takaaki, M.; Hiromi, Y. Luminescent single-atom Eu-coordinated graphitic carbon nitride nanosheets for selective sensing of acetone and cyclohexane. ACS Appl. Nano Mater., 2020, 3(10), 10209-10217.
[http://dx.doi.org/10.1021/acsanm.0c02180]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy