Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

Inhibiting the Activity of ABCG2 by KU55933 in Colorectal Cancer

Author(s): Kun Liu, Yu Chen, Xiao-Bao Shi, Zi-Hao Xing, Zheng-Jie He, Sheng-Te Wang, Yan-Chi Li, Wei-Jing Liu, Peng-Wei Zhang, Ze-Zhong Yu, Xue-Mei Mo, Xing-Yuan Shi*, Zhe-Sheng Chen* and Zhi Shi*

Volume 17, Issue 4, 2022

Published on: 30 March, 2022

Page: [387 - 395] Pages: 9

DOI: 10.2174/1574892817666220112100036

Price: $65

Abstract

Background: Therapeutic resistance is a frequent problem of cancer treatment and a leading cause of mortality in patients with metastatic colorectal cancer (CRC). Recent insight into the mechanisms that confer multidrug resistance has elucidated that the ATP-binding cassette (ABC) superfamily G member 2 (ABCG2) assists cancer cells in escaping therapeutic stress caused by toxic chemotherapy. Therefore, it is necessary to develop ABCG2 inhibitors.

Objectives: In the present study, we investigated the inhibitory effect of KU55933 on ABCG2 in CRC.

Methods: The cytotoxicity assay and drug accumulation assay were used to examine the inhibitory effect of KU55933 on ABCG2. The protein expressions were detected by Western blot assay. The docking assay was performed to predict the binding site and intermolecular interactions between KU55933 and ABCG2.

Results: KU55933 was more potent than the known ABCG2 inhibitor fumitremorgin C to enhance the sensitivity of mitoxantrone and doxorubicin and the intracellular accumulation of mitoxantrone, doxorubicin and rhodamine 123 inside CRC cells with ABCG2 overexpression. Moreover, KU55933 did not affect the protein level of ABCG2. Furthermore, the docking data showed that KU55933 was tightly located in the drug-binding pocket of ABCG2.

Conclusion: In summary, our data presented that KU55933 could effectively inhibit the drug pump activity of ABCG2 in colorectal cancer, which is further supported by the predicted model that showed the hydrophobic interactions of KU55933 within the drug-binding pocket of ABCG2. KU55933 can potently inhibit the activity of ABCG2 in CRC.

Keywords: KU55933, ABCG2, multidrug resistance, chemotherapy, drug sensitivity, colorectal cancer.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Janney A, Powrie F, Mann EH. Host-microbiota maladaptation in colorectal cancer. Nature 2020; 585(7826): 509-17.
[http://dx.doi.org/10.1038/s41586-020-2729-3] [PMID: 32968260]
[3]
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet 2019; 394(10207): 1467-80.
[http://dx.doi.org/10.1016/S0140-6736(19)32319-0] [PMID: 31631858]
[4]
Li ZN, Zhao L, Yu LF, Wei MJ. BRAF and KRAS mutations in metastatic colorectal cancer: Future perspectives for personalized therapy. Gastroenterol Rep (Oxf) 2020; 8(3): 192-205.
[http://dx.doi.org/10.1093/gastro/goaa022] [PMID: 32665851]
[5]
Modest DP, Pant S, Sartore-Bianchi A. Treatment sequencing in metastatic colorectal cancer. Eur J Cancer 2019; 109(1): 70-83.
[http://dx.doi.org/10.1016/j.ejca.2018.12.019] [PMID: 30690295]
[6]
Foubert F, Matysiak-Budnik T, Touchefeu Y. Options for metastatic colorectal cancer beyond the second line of treatment. Dig Liver Dis 2014; 46(2): 105-12.
[http://dx.doi.org/10.1016/j.dld.2013.07.002] [PMID: 23954144]
[7]
Lee GY, Lee JS, Son CG, Lee NH. Combating drug resistance in colorectal cancer using herbal medicines. Chin J Integr Med 2020; 27(7): 1-10.
[http://dx.doi.org/10.1007/s11655-020-3425-8] [PMID: 32740824]
[8]
Gottesman MM, Lavi O, Hall MD, Gillet JP. Toward a better understanding of the complexity of cancer drug resistance. Annu Rev Pharmacol Toxicol 2016; 56(20): 85-102.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103111] [PMID: 26514196]
[9]
Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006; 5(3): 219-34.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[10]
Fetsch PA, Abati A, Litman T, et al. Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues. Cancer Lett 2006; 235(1): 84-92.
[http://dx.doi.org/10.1016/j.canlet.2005.04.024] [PMID: 15990223]
[11]
Meyer zu Schwabedissen HE, Grube M, Dreisbach A, et al. Epidermal growth factor-mediated activation of the map kinase cascade results in altered expression and function of ABCG2 (BCRP). Drug Metab Dispos 2006; 34(4): 524-33.
[http://dx.doi.org/10.1124/dmd.105.007591] [PMID: 16415123]
[12]
Diestra JE, Scheffer GL, Català I, et al. Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material. J Pathol 2002; 198(2): 213-9.
[http://dx.doi.org/10.1002/path.1203] [PMID: 12237881]
[13]
Maliepaard M, van Gastelen MA, de Jong LA, et al. Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res 1999; 59(18): 4559-63.
[PMID: 10493507]
[14]
Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998; 95(26): 15665-70.
[http://dx.doi.org/10.1073/pnas.95.26.15665] [PMID: 9861027]
[15]
Miyake K, Mickley L, Litman T, et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: Demonstration of homology to ABC transport genes. Cancer Res 1999; 59(1): 8-13.
[PMID: 9892175]
[16]
Kawabata S, Oka M, Shiozawa K, et al. Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochem Biophys Res Commun 2001; 280(5): 1216-23.
[http://dx.doi.org/10.1006/bbrc.2001.4267] [PMID: 11162657]
[17]
Turner JG, Gump JL, Zhang C, et al. ABCG2 expression, function, and promoter methylation in human multiple myeloma. Blood 2006; 108(12): 3881-9.
[http://dx.doi.org/10.1182/blood-2005-10-009084] [PMID: 16917002]
[18]
Wang J, Sun J, Qiao S, et al. Effects of isoflurane on complex II-associated mitochondrial respiration and reactive oxygen species production: Roles of nitric oxide and mitochondrial KATP channels. Mol Med Rep 2019; 20(5): 4383-90.
[http://dx.doi.org/10.3892/mmr.2019.10658] [PMID: 31545457]
[19]
Kim HP, Bernard L, Berkowitz J, Nitta J, Hogge DE. Flow cytometry-based assessment of mitoxantrone efflux from leukemic blasts varies with response to induction chemotherapy in acute myeloid leukemia. Cytometry B Clin Cytom 2012; 82(5): 283-94.
[http://dx.doi.org/10.1002/cyto.b.21028] [PMID: 22508650]
[20]
Kauffman MK, Kauffman ME, Zhu H, Jia Z, Li YR. Fluorescence-based assays for measuring doxorubicin in biological systems. React Oxyg Species (Apex) 2016; 2(6): 432-9.
[http://dx.doi.org/10.20455/ros.2016.873] [PMID: 29707647]
[21]
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[22]
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018; 18(7): 452-64.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[23]
Kukal S, Guin D, Rawat C, et al. Multidrug efflux transporter ABCG2: Expression and regulation. Cell Mol Life Sci 2021; 78(21-22): 6887-939.
[http://dx.doi.org/10.1007/s00018-021-03901-y] [PMID: 34586444]
[24]
Lin PC, Lin HH, Lin JK, et al. Expression of ABCG2 associated with tumor response in metastatic colorectal cancer patients receiving first-line FOLFOX therapy--preliminary evidence. Int J Biol Markers 2013; 28(2): 182-6.
[http://dx.doi.org/10.5301/jbm.5000004] [PMID: 23558935]
[25]
Qadir M, O’Loughlin KL, Fricke SM, et al. Cyclosporin A is a broad-spectrum multidrug resistance modulator. Clin Cancer Res 2005; 11(6): 2320-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1725] [PMID: 15788683]
[26]
de Bruin M, Miyake K, Litman T, Robey R, Bates SE. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR. Cancer Lett 1999; 146(2): 117-26.
[http://dx.doi.org/10.1016/S0304-3835(99)00182-2] [PMID: 10656616]
[27]
Nakamura Y, Oka M, Soda H, et al. Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res 2005; 65(4): 1541-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2417] [PMID: 15735043]
[28]
Shi Z, Peng XX, Kim IW, et al. Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res 2007; 67(22): 11012-20.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2686] [PMID: 18006847]
[29]
Shi Z, Tiwari AK, Shukla S, et al. Sildenafil reverses ABCB1- and ABCG2-mediated chemotherapeutic drug resistance. Cancer Res 2011; 71(8): 3029-41.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3820] [PMID: 21402712]
[30]
Brendel C, Scharenberg C, Dohse M, et al. Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 2007; 21(6): 1267-75.
[http://dx.doi.org/10.1038/sj.leu.2404638] [PMID: 17519960]
[31]
Dai CL, Tiwari AK, Wu CP, et al. Lapatinib (Tykerb, GW 572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res 2008; 68(19): 7905-14.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0499] [PMID: 18829547]
[32]
Shi Z, Tiwari AK, Shukla S, et al. Inhibiting the function of ABCB1 and ABCG2 by the EGFR tyrosine kinase inhibitor AG1478. Biochem Pharmacol 2009; 77(5): 781-93.
[http://dx.doi.org/10.1016/j.bcp.2008.11.007] [PMID: 19059384]
[33]
Fan YF, Zhang W, Zeng L, et al. Dacomitinib antagonizes multidrug resistance (MDR) in cancer cells by inhibiting the efflux activity of ABCB1 and ABCG2 transporters. Cancer Lett 2018; 421: 186-98.
[http://dx.doi.org/10.1016/j.canlet.2018.01.021] [PMID: 29331420]
[34]
Zhang YK, Wang YJ, Lei ZN, et al. Regorafenib antagonizes BCRP-mediated multidrug resistance in colon cancer. Cancer Lett 2019; 442: 104-12.
[http://dx.doi.org/10.1016/j.canlet.2018.10.032] [PMID: 30392788]
[35]
Shukla S, Robey RW, Bates SE, Ambudkar SV. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos 2009; 37(2): 359-65.
[http://dx.doi.org/10.1124/dmd.108.024612] [PMID: 18971320]
[36]
Allen JD, van Loevezijn A, Lakhai JM, et al. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 2002; 1(6): 417-25.
[PMID: 12477054]
[37]
Rabindran SK, He H, Singh M, et al. Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Res 1998; 58(24): 5850-8.
[PMID: 9865745]
[38]
Chen ZS, Shi Z, Ashby CR. Use of phosphodiesterase inhibitors for treating multidrug resistance. US 8673914 B2, 2014.
[39]
Huo Q, Yuan J, Zhu T, Li Z, Xie N. A combined bioinformatic and nanoparticle-based study reveal the role of ABCG2 in the drug resistant breast cancer. Recent Pat Antican Drug Discov 2021; 16(3): 393-406.
[http://dx.doi.org/10.2174/1574892816666210218220531] [PMID: 33602075]
[40]
Shi Z, Chen Y, Zhang WJ, Wei MN, Qiu JG, Jiang QW, et al. A sgRNA guide sequence specifically targeting human ABCG2 gene and its application. CN106191061B, 2019.
[41]
Hickson I, Zhao Y, Richardson CJ, et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 2004; 64(24): 9152-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2727] [PMID: 15604286]
[42]
Yan HQ, Huang XB, Ke SZ, et al. Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation. Cancer Sci 2014; 105(9): 1220-7.
[http://dx.doi.org/10.1111/cas.12478] [PMID: 24988892]
[43]
Ke SZ, Ni XY, Zhang YH, Wang YN, Wu B, Gao FG. Camptothecin and cisplatin upregulate ABCG2 and MRP2 expression by activating the ATM/NF-κB pathway in lung cancer cells. Int J Oncol 2013; 42(4): 1289-96.
[http://dx.doi.org/10.3892/ijo.2013.1805] [PMID: 23381786]
[44]
Zhuang X, Li X, Zhang J, et al. Conditioned medium mimicking the tumor microenvironment augments chemotherapeutic resistance via ataxia-telangiectasia mutated and nuclear factor-κB pathways in gastric cancer cells. Oncol Rep 2018; 40(4): 2334-42.
[http://dx.doi.org/10.3892/or.2018.6637] [PMID: 30106453]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy