Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Role of TlyA in the Biology of Uncultivable Mycobacteria

Author(s): Mukul Sharma* and Pushpendra Singh*

Volume 25, Issue 10, 2022

Published on: 11 March, 2022

Page: [1587 - 1594] Pages: 8

DOI: 10.2174/1386207325666220111150923

Price: $65

Abstract

TlyA proteins are related to distinct functions in a diverse spectrum of bacterial pathogens, including mycobacterial spp. There are several annotated proteins that function as hemolysin or pore-forming molecules that play an important role in the virulence of pathogenic organisms. Many studies reported the dual activity of mycobacterial TlyA as ‘hemolysin’ and ‘Sadenosylmethionine dependent rRNA methylase’. To act as a hemolysin, a sequence must have a signal sequence and transmembrane segment, which helps the protein enter the extracellular environment. Interestingly, the mycobacterial tlyA has neither traditional signal sequences of general/ sec/tat pathways nor any transmembrane segments. Still, it can reach the extracellular milieu with the help of non-classical signal mechanisms. Also, retention of tlyA in cultivable mycobacterial pathogens (such as Mycobacterium tuberculosis and M. marinum) as well as uncultivated mycobacterial pathogens despite their extreme reductive evolution (such as M. leprae, M. lepromatosis and M. uberis) suggests its crucial role in the evolutionary biology of pathogenic mycobacteria. Numerous virulence factors have been characterised by the uncultivable mycobacteria, but the information of TlyA protein is still limited in terms of molecular and structural characterisation. The genomic insights offered by comparative analysis of TlyA sequences and their conserved domains reveal pore-forming activity, which further confirms its role as a virulence protein, particularly in uncultivable mycobacteria. Therefore, this review presents a comparative analysis of the mycobacterial TlyA family by sequence homology and alignment to improve our understanding of this unconventional hemolysin and RNA methyltransferase TlyA of uncultivable mycobacteria.

Keywords: TlyA, mycobacteria, Mycobacterium uberis, RNA methyltransferase, Mycobacterium lepromatosis, uncultivated mycobacteria.

Graphical Abstract

[1]
Rastogi, N.; Legrand, E.; Sola, C. The mycobacteria: An introduction to nomenclature and pathogenesis. Rev. Sci. Tech., 2001, 20(1), 21-54.
[http://dx.doi.org/10.20506/rst.20.1.1265] [PMID: 11288513]
[2]
Tortoli, E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin. Microbiol. Rev., 2014, 27(4), 727-752.
[http://dx.doi.org/10.1128/CMR.00035-14] [PMID: 25278573]
[3]
Zhou, L.; Ma, C.; Xiao, T.; Li, M.; Liu, H.; Zhao, X. A new single gene differential biomarker for Mycobacterium tuberculosis complex and non-tuberculosis mycobacteria. Front. Microbiol., 1887, 2019, 10.
[PMID: 31456790]
[4]
Tortoli, E. Phylogeny of the genus Mycobacterium: Many doubts, few certainties. Infect. Genet. Evol., 2012, 12(4), 827-831.
[http://dx.doi.org/10.1016/j.meegid.2011.05.025] [PMID: 21684354]
[5]
Forbes, B.A.; Hall, G.S.; Miller, M.B.; Novak, S.M.; Rowlinson, M-C.; Salfinger, M.; Somoskövi, A.; Warshauer, D.M.; Wilson, M.L. Practical guidance for clinical microbiology laboratories: Mycobacteria. Clin. Microbiol. Rev., 2018, 31(2), e00038-e17.
[http://dx.doi.org/10.1128/CMR.00038-17] [PMID: 29386234]
[6]
Baldwin, S.L.; Larsen, S.E.; Ordway, D.; Cassell, G.; Coler, R.N. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Negl. Trop. Dis., 2019, 13(2), e0007083.
[http://dx.doi.org/10.1371/journal.pntd.0007083] [PMID: 30763316]
[7]
Esteban, J.; Navas, E. Treatment of infections caused by nontuberculous mycobacteria. Enferm. Infecc. Microbiol. Clin., 2018, 36(9), 586-592.
[http://dx.doi.org/10.1016/j.eimce.2017.10.010] [PMID: 29217094]
[8]
Wade, W. Unculturable bacteria-the uncharacterized organisms that cause oral infections. J. R. Soc. Med., 2002, 95(2), 81-83.
[PMID: 11823550]
[9]
Avanzi, C.; Singh, P.; Truman, R.W.; Suffys, P.N. Molecular epidemiology of leprosy: An update. Infect. Genet. Evol., 2020, 86, 104581.
[http://dx.doi.org/10.1016/j.meegid.2020.104581] [PMID: 33022427]
[10]
Han, X.Y.; Sizer, K.C.; Thompson, E.J.; Kabanja, J.; Li, J.; Hu, P.; Gómez-Valero, L.; Silva, F.J. Comparative sequence analysis of Mycobacterium leprae and the new leprosy-causing Mycobacterium lepromatosis. J. Bacteriol., 2009, 191(19), 6067-6074.
[http://dx.doi.org/10.1128/JB.00762-09] [PMID: 19633074]
[11]
Singh, P.; Benjak, A.; Schuenemann, V.J.; Herbig, A.; Avanzi, C.; Busso, P.; Nieselt, K.; Krause, J.; Vera-Cabrera, L.; Cole, S.T. Insight into the evolution and origin of leprosy bacilli from the genome sequence of Mycobacterium lepromatosis. Proc. Natl. Acad. Sci. USA, 2015, 112(14), 4459-4464.
[http://dx.doi.org/10.1073/pnas.1421504112] [PMID: 25831531]
[12]
Benjak, A.; Avanzi, C.; Benito, Y.; Breysse, F.; Chartier, C.; Boschiroli, M.L.; Fourichon, C.; Michelet, L.; Pin, D.; Flandrois, J.P.; Bruyere, P.; Dumitrescu, O.; Cole, S.T.; Lina, G. Highly reduced genome of the new species Mycobacterium uberis, the causative agent of nodular thelitis and tuberculoid scrotitis in livestock and a close relative of the leprosy bacilli. MSphere, 2018, 3(5), 00405-00418.
[http://dx.doi.org/10.1128/mSphere.00405-18] [PMID: 30282756]
[13]
World Health Organization. Wkly. Epidemiol. Rec., 2019, 94, 389-412. Available from: http://www.who.int/wer
[14]
Quigley, J.; Peoples, A.; Sarybaeva, A.; Hughes, D.; Ghiglieri, M.; Achorn, C.; Desrosiers, A.; Felix, C.; Liang, L.; Malveira, S.; Millett, W.; Nitti, A.; Tran, B.; Zullo, A.; Anklin, C.; Spoering, A.; Ling, L.L.; Lewis, K. Novel antimicrobials from uncultured bacteria acting against Mycobacterium tuberculosis. MBio, 2020, 11(4), 01516-01520.
[http://dx.doi.org/10.1128/mBio.01516-20] [PMID: 32753498]
[15]
Salina, E.G.; Grigorov, A.S.; Bychenko, O.S.; Skvortsova, Y.V.; Mamedov, I.Z.; Azhikina, T.L.; Kaprelyants, A.S. Resuscitation of dormant “non-culturable” Mycobacterium tuberculosis is characterized by immediate transcriptional burst. Front. Cell. Infect. Microbiol., 2019, 9(272), 272.
[http://dx.doi.org/10.3389/fcimb.2019.00272] [PMID: 31428590]
[16]
Rahman, A.; Srivastava, S.S.; Sneh, A.; Ahmed, N.; Krishnasastry, M.V. Molecular characterization of tlyA gene product, Rv1694 of Mycobacterium tuberculosis: A non-conventional hemolysin and a ribosomal RNA methyl transferase. BMC Biochem., 2010, 11(35), 35.
[http://dx.doi.org/10.1186/1471-2091-11-35] [PMID: 20854656]
[17]
Rahman, M.A.; Krishnasastry, M.V. Hemolytic activity of mycobacterial TlyA (Rv1694) is independent of its rRNA methylation activity. Curr. Sci., 2014, 106(5), 725-729.
[18]
Koronakis, V.; Hughes, C. Hemolysin. In: Escherichia Coli; Donnenberg, M.S., Ed.; Academic Press: San Diego, 2002; pp. 361-378.
[http://dx.doi.org/10.1016/B978-012220751-8/50014-8]
[19]
Ostolaza, H.; Bartolomé, B.; Serra, J.L.; de la Cruz, F.; Goñi, F.M. Alpha-haemolysin from E. coli. Purification and self-aggregation properties. FEBS Lett., 1991, 280(2), 195-198.
[http://dx.doi.org/10.1016/0014-5793(91)80291-A] [PMID: 2013312]
[20]
Bhakdi, S.; Tranum-Jensen, J. Alpha-toxin of Staphylococcus aureus. Microbiol. Rev., 1991, 55(4), 733-751.
[http://dx.doi.org/10.1128/mr.55.4.733-751.1991] [PMID: 1779933]
[21]
Tang, G.; Iida, T.; Inoue, H.; Yutsudo, M.; Yamamoto, K.; Honda, T. A mutant cell line resistant to Vibrio parahaemolyticus thermostable direct hemolysin (TDH): its potential in identification of putative receptor for TDH. Biochim. Biophys. Acta, 1997, 1360(3), 277-282.
[http://dx.doi.org/10.1016/S0925-4439(97)00011-2] [PMID: 9197471]
[22]
Zhang, X.H.; Austin, B. Haemolysins in Vibrio species. J. Appl. Microbiol., 2005, 98(5), 1011-1019.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02583.x] [PMID: 15836469]
[23]
Ramachandran, G. Gram-positive and gram-negative bacterial toxins in sepsis: A brief review. Virulence, 2014, 5(1), 213-218.
[http://dx.doi.org/10.4161/viru.27024] [PMID: 24193365]
[24]
Braun, V.; Focareta, T. Pore-forming bacterial protein hemolysins (cytolysins). Crit. Rev. Microbiol., 1991, 18(2), 115-158.
[http://dx.doi.org/10.3109/10408419109113511] [PMID: 1930675]
[25]
Thelestam, M.; Möllby, R.; Wadström, T. Effects of staphylococcal alpha-, beta-, delta-, and gamma-hemolysins on human diploid fibroblasts and HeLa cells: evaluation of a new quantitative as say for measuring cell damage. Infect. Immun., 1973, 8(6), 938-946.
[http://dx.doi.org/10.1128/iai.8.6.938-946.1973] [PMID: 4784889]
[26]
Moraveji, Z.; Tabatabaei, M.; Shirzad Aski, H.; Khoshbakht, R. Characterization of hemolysins of Staphylococcus strains isolated from human and bovine, Southern Iran. Majallah-i Tahqiqat-i Dampizishki-i Iran, 2014, 15(4), 326-330.
[PMID: 27175125]
[27]
Javadi, M.B.; Katzenmeier, G. The forgotten virulence factor: The ‘non-conventional’ hemolysin TlyA and its role in Helicobacter pylori infection. Curr. Microbiol., 2016, 73(6), 930-937.
[http://dx.doi.org/10.1007/s00284-016-1141-6] [PMID: 27686341]
[28]
Song, L.; Hobaugh, M.R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J.E. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science, 1996, 274(5294), 1859-1866.
[http://dx.doi.org/10.1126/science.274.5294.1859] [PMID: 8943190]
[29]
Yamashita, K.; Kawai, Y.; Tanaka, Y.; Hirano, N.; Kaneko, J.; Tomita, N.; Ohta, M.; Kamio, Y.; Yao, M.; Tanaka, I. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proc. Natl. Acad. Sci. USA, 2011, 108(42), 17314-17319.
[http://dx.doi.org/10.1073/pnas.1110402108] [PMID: 21969538]
[30]
De, S.; Olson, R. Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins. Proc. Natl. Acad. Sci. USA, 2011, 108(18), 7385-7390.
[http://dx.doi.org/10.1073/pnas.1017442108] [PMID: 21502531]
[31]
Johansen, S.K.; Maus, C.E.; Plikaytis, B.B.; Douthwaite, S. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol. Cell, 2006, 23(2), 173-182.
[http://dx.doi.org/10.1016/j.molcel.2006.05.044] [PMID: 16857584]
[32]
Maus, C.E.; Plikaytis, B.B.; Shinnick, T.M. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2005, 49(2), 571-577.
[http://dx.doi.org/10.1128/AAC.49.2.571-577.2005] [PMID: 15673735]
[33]
Kumar, S.; Mittal, E.; Deore, S.; Kumar, A.; Rahman, A.; Krishnasastry, M.V. Mycobacterial tlyA gene product is localized to the cell-wall without signal sequence. Front. Cell. Infect. Microbiol., 2015, 5(60), 60.
[http://dx.doi.org/10.3389/fcimb.2015.00060] [PMID: 26347855]
[34]
Zhao, J.; Wei, W.; Yan, H.; Zhou, Y.; Li, Z.; Chen, Y.; Zhang, C.; Zeng, J.; Chen, T.; Zhou, L. Assessing capreomycin resistance on tlyA deficient and point mutation (G695A) Mycobacterium tuberculosis strains using multi-omics analysis. Int. J. Med. Microbiol., 2019, 309(7), 151323.
[http://dx.doi.org/10.1016/j.ijmm.2019.06.003] [PMID: 31279617]
[35]
Li, W.; Wang, G.; Zhang, S.; Fu, Y.; Jiang, Y.; Yang, X.; Lin, X. An integrated quantitative proteomic and metabolomics approach to reveal the negative regulation mechanism of LamB in antibiotics resistance. J. Proteomics, 2019, 194, 148-159.
[http://dx.doi.org/10.1016/j.jprot.2018.11.022] [PMID: 30521976]
[36]
Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev., 2007, 26(1), 51-78.
[http://dx.doi.org/10.1002/mas.20108] [PMID: 16921475]
[37]
Peng, J.; Russell, J.; Alexander, S. Can proteomics elucidate mechanisms of antimicrobial resistance in Neisseria gonorrhoeae that whole genome sequencing is unable to identify? An analysis of protein expression within the 2016 WHO N. gonorrhoeae reference strains. Sex. Transm. Infect., 2020, 96(5), 330-334.
[http://dx.doi.org/10.1136/sextrans-2019-054220] [PMID: 31801897]
[38]
Hendriksen, R.S.; Bortolaia, V.; Tate, H.; Tyson, G.H.; Aarestrup, F.M.; McDermott, P.F. Using genomics to track global antimicrobial resistance. Front. Public Health, 2019, 7(242), 242.
[http://dx.doi.org/10.3389/fpubh.2019.00242] [PMID: 31552211]
[39]
Pereira, R.; Oliveira, J.; Sousa, M. Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. J. Clin. Med., 2020, 9(1), E132.
[http://dx.doi.org/10.3390/jcm9010132] [PMID: 31947757]
[40]
Pérez-Wohlfeil, E.; Diaz-Del-Pino, S.; Trelles, O. Ultra-fast genome comparison for large-scale genomic experiments. Sci. Rep., 2019, 9(1), 10274.
[http://dx.doi.org/10.1038/s41598-019-46773-w] [PMID: 31312019]
[41]
Tomita, T.; Kamio, Y. Molecular biology of the pore-forming cytolysins from Staphylococcus aureus, alpha- and gamma-hemolysins and leukocidin. Biosci. Biotechnol. Biochem., 1997, 61(4), 565-572.
[http://dx.doi.org/10.1271/bbb.61.565] [PMID: 9145511]
[42]
Monshupanee, T.; Johansen, S.K.; Dahlberg, A.E.; Douthwaite, S. Capreomycin susceptibility is increased by TlyA-directed 2′-O-methylation on both ribosomal subunits. Mol. Microbiol., 2012, 85(6), 1194-1203.
[http://dx.doi.org/10.1111/j.1365-2958.2012.08168.x] [PMID: 22779429]
[43]
Witek, M.A.; Kuiper, E.G.; Minten, E.; Crispell, E.K.; Conn, G.L. A novel motif for S-adenosyl-l-methionine binding by the ribosomal RNA methyltransferase TlyA from Mycobacterium tuberculosis. J. Biol. Chem., 2017, 292(5), 1977-1987.
[http://dx.doi.org/10.1074/jbc.M116.752659] [PMID: 28031456]
[44]
Sałamaszyńska-Guz, A.; Serafińska, I.; Bącal, P.; Douthwaite, S. Virulence properties of Campylobacter jejuni are enhanced by displaying a mycobacterial TlyA methylation pattern in its rRNA. Cell. Microbiol., 2020, 22(7), e13199.
[http://dx.doi.org/10.1111/cmi.13199] [PMID: 32134554]
[45]
Hsu, T.; Hutto, D.L.; Minion, F.C.; Zuerner, R.L.; Wannemuehler, M.J. Cloning of a beta-hemolysin gene of Brachyspira (Serpulina) hyodysenteriae and its expression in Escherichia coli. Infect. Immun., 2001, 69(2), 706-711.
[http://dx.doi.org/10.1128/IAI.69.2.706-711.2001] [PMID: 11159958]
[46]
Feder, M.; Pas, J.; Wyrwicz, L.S.; Bujnicki, J.M. Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2′-O-methyltransferases. Gene, 2003, 302(1-2), 129-138.
[http://dx.doi.org/10.1016/S0378-1119(02)01097-1] [PMID: 12527203]
[47]
Arenas, N.E.; Salazar, L.M.; Soto, C.Y.; Vizcaíno, C.; Patarroyo, M.E.; Patarroyo, M.A.; Gómez, A. Molecular modeling and in silico characterization of Mycobacterium tuberculosis TlyA: Possible misannotation of this tubercle bacilli-hemolysin. BMC Struct. Biol., 2011, 11(1), 16.
[http://dx.doi.org/10.1186/1472-6807-11-16] [PMID: 21443791]
[48]
Monshupanee, T. Increased bacterial hemolytic activity is conferred by expression of TlyA methyltransferase but not by its 2′-O-methylation of the ribosome. Curr. Microbiol., 2013, 67(1), 61-68.
[http://dx.doi.org/10.1007/s00284-013-0332-7] [PMID: 23417025]
[49]
Malinga, L.; Brand, J.; Olorunju, S.; Stoltz, A.; van der Walt, M. Molecular analysis of genetic mutations among cross-resistant second-line injectable drugs reveals a new resistant mutation in Mycobacterium tuberculosis. Diagn. Microbiol. Infect. Dis., 2016, 85(4), 433-437.
[http://dx.doi.org/10.1016/j.diagmicrobio.2016.05.010] [PMID: 27298046]
[50]
Samainukul, N.; Linn, A.K.; Javadi, M.B.; Sakdee, S.; Angsuthanasombat, C.; Katzenmeier, G. Importance of the Cys124-Cys128 intermolecular disulfide bonding for oligomeric assembly and hemolytic activity of the Helicobacter pylori TlyA hemolysin. Biochem. Biophys. Res. Commun., 2019, 514(2), 365-371.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.096] [PMID: 31040022]
[51]
Dookie, N.; Rambaran, S.; Padayatchi, N.; Mahomed, S.; Naidoo, K. Evolution of drug resistance in Mycobacterium tuberculosis: A review on the molecular determinants of resistance and implications for personalized care. J. Antimicrob. Chemother., 2018, 73(5), 1138-1151.
[http://dx.doi.org/10.1093/jac/dkx506] [PMID: 29360989]
[52]
Miryala, S.K.; Anbarasu, A.; Ramaiah, S. Impact of bedaquiline and capreomycin on the gene expression patterns of multidrug-resistant Mycobacterium tuberculosis H37Rv strain and understanding the molecular mechanism of antibiotic resistance. J. Cell. Biochem., 2019, 120(9), 14499-14509.
[http://dx.doi.org/10.1002/jcb.28711] [PMID: 30989745]
[53]
Gaillard, J.L.; Berche, P.; Mounier, J.; Richard, S.; Sansonetti, P. In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect. Immun., 1987, 55(11), 2822-2829.
[http://dx.doi.org/10.1128/iai.55.11.2822-2829.1987] [PMID: 3117693]
[54]
Portnoy, D.A.; Jacks, P.S.; Hinrichs, D.J. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J. Exp. Med., 1988, 167(4), 1459-1471.
[http://dx.doi.org/10.1084/jem.167.4.1459] [PMID: 2833557]
[55]
Rahman, M.A.; Sobia, P.; Dwivedi, V.P.; Bhawsar, A.; Singh, D.K.; Sharma, P.; Moodley, P.; Van Kaer, L.; Bishai, W.R.; Das, G. Mycobacterium tuberculosis TlyA protein negatively regulates T Helper (Th) 1 and Th17 differentiation and promotes tuberculosis pathogenesis. J. Biol. Chem., 2015, 290(23), 14407-14417.
[http://dx.doi.org/10.1074/jbc.M115.653600] [PMID: 25847237]
[56]
Lata, K.; Chattopadhyay, K. Helicobacter pylori TlyA forms amyloid-like aggregates with potent cytotoxic activity. Biochemistry, 2015, 54(23), 3649-3659.
[http://dx.doi.org/10.1021/acs.biochem.5b00423] [PMID: 26015064]
[57]
Mittal, E.; Kumar, S.; Rahman, A.; Krishnasastry, M.V. Modulation of phagolysosome maturation by bacterial tlyA gene product. J. Biosci., 2014, 39(5), 821-834.
[http://dx.doi.org/10.1007/s12038-014-9472-6] [PMID: 25431411]
[58]
Ryan, K.; Byrd, T.F. Mycobacterium abscessus: Shapeshifter of the mycobacterial world. Front. Microbiol., 2018, 9(2642), 2642.
[http://dx.doi.org/10.3389/fmicb.2018.02642] [PMID: 30443245]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy