Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Cortex Mori Radicis Attenuates Streptozotocin-induced Diabetic Renal Injury in Mice via Regulation of Transient Receptor Potential Canonical Channel 6

Author(s): Yi Zhai, Dan Li, Zhigang Wang, Luyao Shao, Nina Yin* and Weihua Li*

Volume 22, Issue 8, 2022

Published on: 22 April, 2022

Page: [862 - 873] Pages: 12

DOI: 10.2174/1871530322666220110161458

Price: $65

Abstract

Objective: Cortex Mori Radicis (CMR) has been reported to possess antipyretic, anticonvulsant, anti-allergic, anti-inflammatory, and anti-diabetic effects. In this study, we aimed to investigate the effect of CMR on streptozotocin (STZ)-induced diabetic renal injury in mice and explore the underlying mechanism.

Methods: Mice were gavaged with different doses of CMR for continuous 7 days. Then, STZ (50 mg/kg) was applied to induce renal injury associated with type 1 diabetes. Firstly, blood glucose levels and metabolic parameters were evaluated, including weight, food intake, and excrement. HE and PAS staining were performed to examine renal histological changes. Renal inflammation, fibrosis, and oxidative stress were assayed by real-time PCR and ELISA, separately. Additionally, podocyte- related markers, such as nephrin and wilms' tumor-1 (WT-1), were detected by immunohistochemical staining and Western blot separately. Lastly, expression of transient receptor potential canonical channel 6 (TRPC6) and activation of MAPK signaling pathways were assayed.

Results: CMR pretreatment significantly lowered the blood glucose levels, suppressed renal inflammation, fibrosis, and oxidative stress, and relieved renal pathological injury, accompanying the inhibition of nephrin and WT-1 expression in STZ-induced diabetic mice. Moreover, CMR decreased the expression of TRPC6 and suppressed the phosphorylation of ERK, but not P38 MAPK and JNK. Notably, the application of hyperforin, a specific activator of TRPC6, significantly abrogated the hypoglycemic effect of CMR and reversed the suppression of CMR on TRPC6 expression and ERK activation in the diabetic mice.

Conclusion: Our findings indicated that CMR attenuated early renal injury in STZ-induced diabetic mice by inhibiting ERK signaling via regulation of TRPC6, suggesting that CMR can be considered as a promising candidate for the management of diabetes-related renal complications.

Keywords: Cortex mori radicis, renal injury, diabetes, TRPC6, ERK signaling, diabetes-related renal complications.

Graphical Abstract

[1]
Katsarou, A.; Gudbjörnsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B.J.; Jacobsen, L.M.; Schatz, D.A.; Lernmark, Å. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers, 2017, 3, 17016.
[http://dx.doi.org/10.1038/nrdp.2017.16] [PMID: 28358037]
[2]
Chaudhuri, A.; Ghanim, H.; Arora, P. Improving the residual risk of renal and cardiovascular outcomes in diabetic kidney disease: A re-view of pathophysiology, mechanisms, and evidence from recent trials. Diabetes Obes. Metab., 2021, 24(3), 365-376.
[http://dx.doi.org/10.1111/dom.14601] [PMID: 34779091]
[3]
Bhattacharjee, N.; Barma, S.; Konwar, N.; Dewanjee, S.; Manna, P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update. Eur. J. Pharmacol., 2016, 791, 8-24.
[http://dx.doi.org/10.1016/j.ejphar.2016.08.022] [PMID: 27568833]
[4]
Bjornstad, P.; Cherney, D.; Maahs, D.M. Early diabetic nephropathy in type 1 diabetes: new insights. Curr. Opin. Endocrinol. Diabetes Obes., 2014, 21(4), 279-286.
[http://dx.doi.org/10.1097/MED.0000000000000074] [PMID: 24983394]
[5]
Papadopoulou-Marketou, N.; Chrousos, G.P.; Kanaka-Gantenbein, C. Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab. Res. Rev., 2017, 33(2)
[http://dx.doi.org/10.1002/dmrr.2841] [PMID: 27457509]
[6]
Dryer, S.E.; Roshanravan, H.; Kim, E.Y. TRPC channels: Regulation, dysregulation and contributions to chronic kidney disease. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(6), 1041-1066.
[http://dx.doi.org/10.1016/j.bbadis.2019.04.001] [PMID: 30953689]
[7]
Ilatovskaya, D.V.; Staruschenko, A. TRPC6 channel as an emerging determinant of the podocyte injury susceptibility in kidney diseases. Am. J. Physiol. Renal Physiol., 2015, 309(5), F393-F397.
[http://dx.doi.org/10.1152/ajprenal.00186.2015] [PMID: 26084930]
[8]
Szrejder, M.; Rachubik, P.; Rogacka, D.; Audzeyenka, I.; Rychłowski, M.; Kreft, E.; Angielski, S.; Piwkowska, A. Metformin reduces TRPC6 expression through AMPK activation and modulates cytoskeleton dynamics in podocytes under diabetic conditions. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(3), 165610.
[http://dx.doi.org/10.1016/j.bbadis.2019.165610] [PMID: 31778750]
[9]
Lu, X.Y.; Liu, B.C.; Cao, Y.Z.; Song, C.; Su, H.; Chen, G.; Klein, J.D.; Zhang, H.X.; Wang, L.H.; Ma, H.P. High glucose reduces expression of podocin in cultured human podocytes by stimulating TRPC6. Am. J. Physiol. Renal Physiol., 2019, 317(6), F1605-F1611.
[http://dx.doi.org/10.1152/ajprenal.00215.2019] [PMID: 31566428]
[10]
Wang, L.; Chang, J.H.; Buckley, A.F.; Spurney, R.F. Knockout of TRPC6 promotes insulin resistance and exacerbates glomerular injury in Akita mice. Kidney Int., 2019, 95(2), 321-332.
[http://dx.doi.org/10.1016/j.kint.2018.09.026] [PMID: 30665571]
[11]
Spires, D.; Ilatovskaya, D.V.; Levchenko, V.; North, P.E.; Geurts, A.M.; Palygin, O.; Staruschenko, A. Protective role of Trpc6 knockout in the progression of diabetic kidney disease. Am. J. Physiol. Renal Physiol., 2018, 315(4), F1091-F1097.
[http://dx.doi.org/10.1152/ajprenal.00155.2018] [PMID: 29923767]
[12]
Seo, C.S.; Lim, H.S.; Jeong, S.J.; Ha, H.; Shin, H.K. HPLC-PDA analysis and anti-inflammatory effects of Mori Cortex Radicis. Nat. Prod. Commun., 2013, 8(10), 1443-1446.
[http://dx.doi.org/10.1177/1934578X1300801027] [PMID: 24354197]
[13]
Kim, H.J.; Lee, H.J.; Jeong, S.J.; Lee, H.J.; Kim, S.H.; Park, E.J. Cortex Mori Radicis extract exerts antiasthmatic effects via enhancement of CD4(+)CD25(+)Foxp3(+) regulatory T cells and inhibition of Th2 cytokines in a mouse asthma model. J. Ethnopharmacol., 2011, 138(1), 40-46.
[http://dx.doi.org/10.1016/j.jep.2011.08.021] [PMID: 21875661]
[14]
Lu, M.; Yi, T.; Xiong, Y.; Wang, Q.; Yin, N. Cortex Mori Radicis extract promotes neurite outgrowth in diabetic rats by activating PI3K/AKT signaling and inhibiting Ca2+ influx associated with the upregulation of transient receptor potential canonical channel 1. Mol. Med. Rep., 2020, 21(1), 320-328.
[http://dx.doi.org/10.3892/mmr.2020.11008] [PMID: 31939614]
[15]
You, S.; Kim, G.H. Protective effect of Mori Cortex radicis extract against high glucose-induced oxidative stress in PC12 cells. Biosci. Biotechnol. Biochem., 2019, 83(10), 1893-1900.
[http://dx.doi.org/10.1080/09168451.2019.1621154] [PMID: 31130105]
[16]
You, S.; Jang, M.; Kim, G.H. Mori cortex radicis attenuates high fat diet-induced cognitive impairment via an IRS/Akt signaling pathway. Nutrients, 2020, 12(6), 1851.
[http://dx.doi.org/10.3390/nu12061851] [PMID: 32575897]
[17]
Lian, J.; Chen, J.; Yuan, Y.; Chen, J.; Daud, M. Sayed, M.; Luo, L.; Zhu, Y.; Li, S.; Bu, S. Cortex Mori Radicis extract attenuates myocardial damages in diabetic rats by regulating ERS. Biomed. Pharmacother., 2017, 90, 777-785.
[http://dx.doi.org/10.1016/j.biopha.2017.03.097] [PMID: 28427040]
[18]
Impellizzeri, D.; Peritore, A.F.; Cordaro, M.; Gugliandolo, E.; Siracusa, R.; Crupi, R.; D’Amico, R.; Fusco, R.; Evangelista, M.; Cuzzocrea, S.; Di Paola, R. The neuroprotective effects of micronized PEA (PEA-m) formulation on diabetic peripheral neuropathy in mice. FASEB J., 2019, 33(10), 11364-11380.
[http://dx.doi.org/10.1096/fj.201900538R] [PMID: 31344333]
[19]
Leuner, K.; Kazanski, V.; Müller, M.; Essin, K.; Henke, B.; Gollasch, M.; Harteneck, C.; Müller, W.E. Hyperforin--a key constituent of St. John’s wort specifically activates TRPC6 channels. FASEB J., 2007, 21(14), 4101-4111.
[http://dx.doi.org/10.1096/fj.07-8110com] [PMID: 17666455]
[20]
Tu, P.; Gibon, J.; Bouron, A. The TRPC6 channel activator hyperforin induces the release of zinc and calcium from mitochondria. J. Neurochem., 2010, 112(1), 204-213.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06446.x] [PMID: 19845832]
[21]
Yang, K.; Bai, Y.; Yu, N.; Lu, B.; Han, G.; Yin, C.; Pang, Z. Huidouba improved podocyte injury by down-regulating Nox4 expression in rats with diabetic nephropathy. Front. Pharmacol., 2020, 11, 587995.
[http://dx.doi.org/10.3389/fphar.2020.587995] [PMID: 33390962]
[22]
Chen, F.; Nakashima, N.; Kimura, I.; Kimura, M. Hypoglycemic activity and mechanisms of extracts from mulberry leaves (folium mori) and cortex mori radicis in streptozotocin-induced diabetic mice. Yakugaku Zasshi, 1995, 115(6), 476-482.
[http://dx.doi.org/10.1248/yakushi1947.115.6_476] [PMID: 7666358]
[23]
George, S.K.; Abolbashari, M.; Jackson, J.D.; Aboushwareb, T.; Atala, A.; Yoo, J.J. Potential use of autologous renal cells from diseased kidneys for the treatment of renal failure. PLoS One, 2016, 11(10), e0164997.
[http://dx.doi.org/10.1371/journal.pone.0164997] [PMID: 27776163]
[24]
Luna-Antonio, B.I.; Rodriguez-Muñoz, R.; Namorado-Tonix, C.; Vergara, P.; Segovia, J.; Reyes, J.L. Gas1 expression in parietal cells of Bowman’s capsule in experimental diabetic nephropathy. Histochem. Cell Biol., 2017, 148(1), 33-47.
[http://dx.doi.org/10.1007/s00418-017-1550-z] [PMID: 28315934]
[25]
Yang, H.; Xie, T.; Li, D.; Du, X.; Wang, T.; Li, C.; Song, X.; Xu, L.; Yi, F.; Liang, X.; Gao, L.; Yang, X.; Ma, C. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway. Mol. Metab., 2019, 23, 24-36.
[http://dx.doi.org/10.1016/j.molmet.2019.02.007] [PMID: 30862474]
[26]
Li, J.J.; Kwak, S.J.; Jung, D.S.; Kim, J.J.; Yoo, T.H.; Ryu, D.R.; Han, S.H.; Choi, H.Y.; Lee, J.E.; Moon, S.J.; Kim, D.K.; Han, D.S.; Kang, S.W. Podocyte biology in diabetic nephropathy. Kidney Int. Suppl., 2007, (106), S36-S42.
[http://dx.doi.org/10.1038/sj.ki.5002384] [PMID: 17653209]
[27]
Petermann, A.T.; Pippin, J.; Durvasula, R.; Pichler, R.; Hiromura, K.; Monkawa, T.; Couser, W.G.; Shankland, S.J. Mechanical stretch in-duces podocyte hypertrophy in vitro. Kidney Int., 2005, 67(1), 157-166.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00066.x] [PMID: 15610239]
[28]
Lee, S.H.; Moon, S.J.; Paeng, J.; Kang, H.Y.; Nam, B.Y.; Kim, S.; Kim, C.H.; Lee, M.J.; Oh, H.J.; Park, J.T.; Han, S.H.; Yoo, T.H.; Kang, S.W. Podocyte hypertrophy precedes apoptosis under experimental diabetic conditions. Apoptosis, 2015, 20(8), 1056-1071.
[http://dx.doi.org/10.1007/s10495-015-1134-0] [PMID: 25953318]
[29]
Mundel, P.; Shankland, S.J. Podocyte biology and response to injury. J. Am. Soc. Nephrol., 2002, 13(12), 3005-3015.
[http://dx.doi.org/10.1097/01.ASN.0000039661.06947.FD] [PMID: 12444221]
[30]
Farmer, L.K.; Rollason, R.; Whitcomb, D.J.; Ni, L.; Goodliff, A.; Lay, A.C.; Birnbaumer, L.; Heesom, K.J.; Xu, S.Z.; Saleem, M.A.; Welsh, G.I. TRPC6 binds to and activates calpain, independent of its channel activity, and regulates podocyte cytoskeleton, cell adhesion, and mo-tility. J. Am. Soc. Nephrol., 2019, 30(10), 1910-1924.
[http://dx.doi.org/10.1681/ASN.2018070729] [PMID: 31416818]
[31]
Hassanzadeh Khayyat, N.; Kim, E.Y.; Dryer, S.E. TRPC6 inactivation does not protect against diabetic kidney disease in streptozotocin (STZ)-treated Sprague-Dawley rats. FASEB Bioadv., 2019, 1(12), 773-782.
[http://dx.doi.org/10.1096/fba.2019-00077] [PMID: 32123821]
[32]
Möller, C.C.; Flesche, J.; Reiser, J. Sensitizing the Slit Diaphragm with TRPC6 ion channels. J. Am. Soc. Nephrol., 2009, 20(5), 950-953.
[http://dx.doi.org/10.1681/ASN.2008030329] [PMID: 18784209]
[33]
Yang, H.; Zhao, B.; Liao, C.; Zhang, R.; Meng, K.; Xu, J.; Jiao, J. High glucose-induced apoptosis in cultured podocytes involves TRPC6-dependent calcium entry via the RhoA/ROCK pathway. Biochem. Biophys. Res. Commun., 2013, 434(2), 394-400.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.087] [PMID: 23570668]
[34]
Liu, B.; He, X.; Li, S.; Xu, B.; Birnbaumer, L.; Liao, Y. Deletion of diacylglycerol-responsive TRPC genes attenuates diabetic nephropathy by inhibiting activation of the TGFβ1 signaling pathway. Am. J. Transl. Res., 2017, 9(12), 5619-5630.
[PMID: 29312514]
[35]
Dietrich, A.; Chubanov, V.; Gudermann, T. Renal TRPathies. J. Am. Soc. Nephrol., 2010, 21(5), 736-744.
[http://dx.doi.org/10.1681/ASN.2009090948] [PMID: 20395377]
[36]
Shankland, S.J. The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int., 2006, 69(12), 2131-2147.
[http://dx.doi.org/10.1038/sj.ki.5000410] [PMID: 16688120]
[37]
Kang, J.S.; Lee, S.J.; Lee, J.H.; Kim, J.H.; Son, S.S.; Cha, S.K.; Lee, E.S.; Chung, C.H.; Lee, E.Y. Angiotensin II-mediated MYH9 downregu-lation causes structural and functional podocyte injury in diabetic kidney disease. Sci. Rep., 2019, 9(1), 7679.
[http://dx.doi.org/10.1038/s41598-019-44194-3] [PMID: 31118506]
[38]
Ma, R.; Liu, L.; Jiang, W.; Yu, Y.; Song, H. FK506 ameliorates podocyte injury in type 2 diabetic nephropathy by down-regulating TRPC6 and NFAT expression. Int. J. Clin. Exp. Pathol., 2015, 8(11), 14063-14074.
[PMID: 26823720]
[39]
Zhang, X.; Song, Z.; Guo, Y.; Zhou, M. The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats. Mol. Cell. Biochem., 2015, 399(1-2), 155-165.
[http://dx.doi.org/10.1007/s11010-014-2242-9] [PMID: 25292315]
[40]
Yin, N.; Hong, X.; Han, Y.; Duan, Y.; Zhang, Y.; Chen, Z. Cortex Mori Radicis Extract induces neurite outgrowth in PC12 cells activating ERK signaling pathway via inhibiting Ca(2+) influx. Int. J. Clin. Exp. Med., 2015, 8(4), 5022-5032.
[PMID: 26131075]
[41]
Shopit, A.; Niu, M.; Wang, H.; Tang, Z.; Li, X.; Tesfaldet, T.; Ai, J.; Ahmad, N.; Al-Azab, M.; Tang, Z. Protection of diabetes-induced kid-ney injury by phosphocreatine via the regulation of ERK/Nrf2/HO-1 signaling pathway. Life Sci., 2020, 242, 117248.
[http://dx.doi.org/10.1016/j.lfs.2019.117248] [PMID: 31899224]
[42]
Shao, X.; Kong, W.X.; Li, Y.T. MiR-133 inhibits kidney injury in rats with diabetic nephropathy via MAPK/ERK pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(24), 10957-10963.
[http://dx.doi.org/10.26355/eurrev_201912_19799] [PMID: 31858564]
[43]
Liu, Y.; Zhang, J.; Wang, Y.; Zeng, X. Apelin involved in progression of diabetic nephropathy by inhibiting autophagy in podocytes. Cell Death Dis., 2017, 8(8), e3006.
[http://dx.doi.org/10.1038/cddis.2017.414] [PMID: 28837139]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy