摘要
葫芦素是一类广泛存在于多种植物科中的天然产物,尤其是葫芦科植物。在过去十年中,旨在确定葫芦素的新生物活性并描述其作用机制的研究显著增加。研究最多的药理活性是抗肿瘤和抗炎活性,并在最近首次进行了综述。本综述解释了葫芦素的抗炎、抗氧化和免疫调节能力,确定了该领域研究最多的化合物,并探索了其已研究的作用机制。对葫芦素的主要结构特征进行了简要报告,并对过去5年中葫芦素类的生物活性进行了更新。在免疫反应方面,葫芦素B和葫芦素E是研究最多的,它们在先天免疫和适应性免疫中都发挥作用。最常被引用的机制是抑制COX-2和NOS、减少氧化应激、抑制促炎细胞因子和调节获得性免疫蛋白。研究发现,葫芦素在寻求治疗创新方面是很有前途的分子,在免疫应答方面具有广泛的多功能性。
关键词: 葫芦素、细胞因子、巨噬细胞、COX-2、葫芦素B、葫芦素E、NF-κB、淋巴细胞。
[1]
Kaushik, U.; Aeri, V.; Mir, S.R. Cucurbitacins - An insight into medicinal leads from nature. Pharmacogn. Rev., 2015, 9(17), 12-18.
[http://dx.doi.org/10.4103/0973-7847.156314] [PMID: 26009687]
[http://dx.doi.org/10.4103/0973-7847.156314] [PMID: 26009687]
[2]
Ali, M.S.; Mukherjee, S.; Makar, S.; Pal, G. Cucurbitacins a vibrant triterpenoid: A review on its anticancer property. PharmaTuto, 2019, 7, 43.
[http://dx.doi.org/10.29161/PT.v7.i2.2019.43]
[http://dx.doi.org/10.29161/PT.v7.i2.2019.43]
[3]
Chen, J.C.; Chiu, M.H.; Nie, R.L.; Cordell, G.A.; Qiu, S.X. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat. Prod. Rep., 2005, 22(3), 386-399.
[http://dx.doi.org/10.1039/b418841c] [PMID: 16010347]
[http://dx.doi.org/10.1039/b418841c] [PMID: 16010347]
[4]
Morries, J.D. On the analysis of elaterium, and its active principle. Edinb. Med. Surg. J., 1831, 35(107), 339-342.
[PMID: 30329891]
[PMID: 30329891]
[5]
Miró, M. Cucurbitacins and their pharmacological effects. Phytother. Res., 1995, 9(3), 159-168.
[http://dx.doi.org/10.1002/ptr.2650090302]
[http://dx.doi.org/10.1002/ptr.2650090302]
[6]
Machado, V.R.; Lang, L.K.; Durán, F.J.; Cobrera, G.M.; Palermo, J.A.; Schenkel, E.P.; Bernardes, L.S.C. Di-hidrocucurbitacina B: Semi-síntese de novos derivados glicosilados. Quim. Nova, 2015, 38, 37-41.
[7]
Tannin-Spitz, T.; Bergman, M.; Grossman, S. Cucurbitacin glucosides: Antioxidant and free-radical scavenging activities. Biochem. Biophys. Res. Commun., 2007, 364(1), 181-186.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.075] [PMID: 17942079]
[http://dx.doi.org/10.1016/j.bbrc.2007.09.075] [PMID: 17942079]
[8]
Achenbach, H.; Waibel, R.; Hefter-Bübi, U.; Constenla, M.A. Constituents of Fevillea cordifolia: New norcucurbitacin and cucurbitacin glycosides. J. Nat. Prod., 1993, 388, 1506-1519.
[http://dx.doi.org/10.1021/np50099a009]
[http://dx.doi.org/10.1021/np50099a009]
[9]
Valente, L.M.M.; Gunatilaka, A.A.L.; Kingston, D.G.I.; Pinto, A.C. Norcucurbitacin gentiobiosides from Fevillea trilobata. J. Nat. Prod., 1994, 57(11), 1560-1563.
[http://dx.doi.org/10.1021/np50113a015] [PMID: 7853005]
[http://dx.doi.org/10.1021/np50113a015] [PMID: 7853005]
[10]
Himeno, E.; Nagao, T.; Honda, J.; Okabe, H.; Irino, N.; Nakasumi, T. Studies on the constituents of the root of Cayaponia tayuya (Vell.) Cogn. III. Structures of cayaponosides, 29-Nor-1,2,3,4,5,10-hexadehydrocucurbit-6-ene Glucosides. Chem. Pharm. Bull. (Tokyo), 1994, 42, 2370-2317.
[http://dx.doi.org/10.1248/cpb.42.2370]
[http://dx.doi.org/10.1248/cpb.42.2370]
[11]
Bhandari, P.; Kumar, N.; Singh, B.; Kaul, V.K. Cucurbitacins from Bacopa monnieri. Phytochemistry, 2007, 68(9), 1248-1254.
[http://dx.doi.org/10.1016/j.phytochem.2007.03.013] [PMID: 17442350]
[http://dx.doi.org/10.1016/j.phytochem.2007.03.013] [PMID: 17442350]
[12]
Wang, S.; Tang, L.; Guo, Y.; Yan, F.; Chen, F. Determination of momordicoside A in bitter melon by high-performance liquid chromatography after solid-phase extraction. Chromatographia, 2001, 53, 372-374.
[http://dx.doi.org/10.1007/BF02491069]
[http://dx.doi.org/10.1007/BF02491069]
[13]
Méndez-Cuesta, C.A.; Campos, A.L.E.; Sánchez, D.S.; González, C.P.; Gutiérrez, S.P. Cytotoxic and antitumoral activities of compounds isolated from Cucurbitaceae plants. In: Pharmacognosy - Medicinal Plants; Intechopen, 2018; pp. 1-18.
[14]
Morales-vela, K.; Pérez-Sánchez, F.C.; Padrón, J.M.; Márquez-Fernándes, O. Antiproliferative activity of Cucurbitaceae species extracts from southeast of Mexico. Preprints, 2019, 2019, 2019080127.
[http://dx.doi.org/10.20944/preprints201908.0127.v1]
[http://dx.doi.org/10.20944/preprints201908.0127.v1]
[15]
Ríos, J.L.; Escandell, J.M.; Recio, M.C. New insights into the bioactivity of cucurbitacins. Stud. Nat. Prod. Chem., 2005, 32, 429-469.
[http://dx.doi.org/10.1016/S1572-5995(05)80062-6]
[http://dx.doi.org/10.1016/S1572-5995(05)80062-6]
[16]
Cárdenas, P.D.; Almeida, A.; Bak, S. Evolution of structural diversity of triterpenoids. Front. Plant Sci., 2019, 10, 1523.
[http://dx.doi.org/10.3389/fpls.2019.01523] [PMID: 31921225]
[http://dx.doi.org/10.3389/fpls.2019.01523] [PMID: 31921225]
[17]
Cai, Y.; Fang, X.; He, C.; Li, P.; Xiao, F.; Wang, Y.; Chen, M. Cucurbitacins: A systematic review of the phytochemistry and anticancer activity. Am. J. Chin. Med., 2015, 43(7), 1331-1350.
[http://dx.doi.org/10.1142/S0192415X15500755] [PMID: 26503558]
[http://dx.doi.org/10.1142/S0192415X15500755] [PMID: 26503558]
[18]
Gamlath, C.B.; Gunatilaka, A.A.L.; Alvi, K.A.; -Rahman, Atta-Ur; Balasubramaniam, S. Cucurbitacins of Colocynthis vulgaris*. Phytochemistry, 1988, 27, 3225-3229.
[http://dx.doi.org/10.1016/0031-9422(88)80031-1]
[http://dx.doi.org/10.1016/0031-9422(88)80031-1]
[19]
Hylands, P.J.; Mansour, E.S.S. A revision of the structure of cucurbitacin from Bryonia dioica. Phytochemistry, 1982, 21, 2703-2707.
[http://dx.doi.org/10.1016/0031-9422(82)83102-6]
[http://dx.doi.org/10.1016/0031-9422(82)83102-6]
[20]
Jiang, H.Z.; Hu, S.; Tan, R.X.; Tan, R.; Jiao, R.H. Neocucurbitacin D, a novel lactone-type norcucurbitacin as xanthine oxidase inhibitor from Herpetospermum pedunculosum. Nat. Prod. Res., 2018, 34(12), 1728-1734.
[http://dx.doi.org/10.1080/14786419.2018.1528592] [PMID: 30450968]
[http://dx.doi.org/10.1080/14786419.2018.1528592] [PMID: 30450968]
[21]
Kawahara, N.; Kurata, A.; Hakamatsuka, T.; Sekita, S.; Satake, M. Two novel cucurbitacins, neocucurbitacins A and B, from the Brazilian folk medicine “Buchinha” (Luffa operculata) and their effect on PEBP2alphaA and OCIF gene expression in a human osteoblast-like Saos-2 cell line. Chem. Pharm. Bull. (Tokyo), 2001, 49(10), 1377-1379.
[http://dx.doi.org/10.1248/cpb.49.1377] [PMID: 11605678]
[http://dx.doi.org/10.1248/cpb.49.1377] [PMID: 11605678]
[22]
Kumar, R.P.; Roopa, L.; Nongthomba, U.; Sudheer Mohammed, M.M.; Kulkarni, N. Docking, molecular dynamics and QM/MM studies to delineate the mode of binding of CucurbitacinE to F-actin. J. Mol. Graph. Model., 2016, 63, 29-37.
[http://dx.doi.org/10.1016/j.jmgm.2015.11.007] [PMID: 26615469]
[http://dx.doi.org/10.1016/j.jmgm.2015.11.007] [PMID: 26615469]
[23]
Xu, J.; Chen, Y.; Yang, R.; Zhou, T.; Ke, W.; Si, Y.; Yang, S.; Zhang, T.; Liu, X.; Zhang, L. Cucurbitacin B inhibits gastric cancer progression by suppressing STAT3 activity. Arch. Biochem. Biophys., 2020, 684, 108314.
[http://dx.doi.org/10.1016/j.abb.2020.108314]
[http://dx.doi.org/10.1016/j.abb.2020.108314]
[24]
Chen, J.C.; Lau, C.B.S.; Chan, J.Y.W.; Fung, K.P.; Leung, P.C.; Liu, J.Q.; Zhou, L.; Xie, M.J.; Qiu, M.H. The antigluconeogenic activity of cucurbitacins from Momordica charantia. Planta Med., 2015, 81(4), 327-332.
[http://dx.doi.org/10.1055/s-0035-1545695] [PMID: 25760384]
[http://dx.doi.org/10.1055/s-0035-1545695] [PMID: 25760384]
[25]
Li, Y.; Zheng, Z.; Zhou, L.; Liu, Y.; Wang, H.; Li, L.; Yao, Q. Five new cucurbitane triterpenoids with cytotoxic activity from Hemsleya jinfushanensis. Phytochem. Lett., 2015, 14, 239-244.
[http://dx.doi.org/10.1016/j.phytol.2015.10.019]
[http://dx.doi.org/10.1016/j.phytol.2015.10.019]
[26]
Chawech, R.; Jarraya, R.; Girardi, C.; Vansteelandt, M.; Marti, G.; Nasri, I.; Racaud-Sultan, C.; Fabre, N. Cucurbitacins from the leaves of Citrullus colocynthis (L.) schrad. Molecules, 2015, 20(10), 18001-18015.
[http://dx.doi.org/10.3390/molecules201018001] [PMID: 26437392]
[http://dx.doi.org/10.3390/molecules201018001] [PMID: 26437392]
[27]
Song, F.; Dai, B.; Zhang, H.Y.; Xie, J.W.; Gu, C.Z.; Zhang, J. Two new cucurbitane-type triterpenoid saponins isolated from ethyl acetate extract of Citrullus colocynthis fruit. J. Asian Nat. Prod. Res., 2015, 17(8), 813-818.
[http://dx.doi.org/10.1080/10286020.2015.1015999] [PMID: 25761128]
[http://dx.doi.org/10.1080/10286020.2015.1015999] [PMID: 25761128]
[28]
Li, Y.D.; Yi, S.R.; Sun, X.B.; Zhou, X.Y.; Zhang, H.Y.; Wang, Y.Q.; Yang, J.S.; Xu, X.D.; Ma, G.X. Bioactive cucurbitane triterpenoids from the tubers of Hemsleya penxianensis. Phytochem. Lett., 2016, 18, 5-9.
[http://dx.doi.org/10.1016/j.phytol.2016.08.011]
[http://dx.doi.org/10.1016/j.phytol.2016.08.011]
[29]
Li, Y.; Wang, W.X.; Zheng, Z.F.; Mu, Y.L.; Liu, Y.J.; Wang, H.Y.; Li, L.; Yao, Q.Q. Eight new cucurbitane triterpenoids from “Xue Dan,” the roots of Hemsleya pengxianensis. J. Asian Nat. Prod. Res., 2018, 20(1), 36-48.
[http://dx.doi.org/10.1080/10286020.2017.1355363] [PMID: 28929786]
[http://dx.doi.org/10.1080/10286020.2017.1355363] [PMID: 28929786]
[30]
Wang, W.; Yang, H.; Li, Y.; Zheng, Z.; Liu, Y.; Wang, H.; Mu, Y.; Yao, Q. Identification of 16,25-O-diacetyl-cucurbitane F and 25-O-acetyl-23,24-dihydrocucurbitacin F as novel anti-cancer chemicals. R. Soc. Open Sci., 2018, 5(8), 180723.
[http://dx.doi.org/10.1098/rsos.180723] [PMID: 30225067]
[http://dx.doi.org/10.1098/rsos.180723] [PMID: 30225067]
[31]
Sun, Z.; Hu, M.; Zhu, N.; Huo, X.; Zhou, X.; Sun, Z.; Yang, J.; Ma, G.; Xu, X. Polyhydroxy cucurbitane triterpenes from Hemsleya penxianensis tubers. Sci. Rep., 2019, 9(1), 11835.
[http://dx.doi.org/10.1038/s41598-019-48365-0] [PMID: 31413307]
[http://dx.doi.org/10.1038/s41598-019-48365-0] [PMID: 31413307]
[32]
Douhoré, G.Y.T.; Attioua, K.B.; Soro, Y.; Kabran, F.A.; Kablan, L.C.A.; Vedrenne, M.; Mathieu, C.; Vaca-Garcia, C. Nor-cucurbitacins from the leaves of Mareya micrantha (Benth.) Müll. Arg. (Euphorbiaceae). Fitoterapia, 2020, 143, 104538.
[http://dx.doi.org/10.1016/j.fitote.2020.104538]
[http://dx.doi.org/10.1016/j.fitote.2020.104538]
[33]
Morikawa, T.; Inoue, N.; Nakanishi, Y.; Manse, Y.; Matsuura, H.; Okino, K.; Hamasaki, S.; Yoshikawa, M.; Muraoka, O.; Ninomiya, K. Collagen synthesis-promoting and collagenase inhibitory activities of constituents isolated from the rhizomes of Picrorhiza kurroa Royle ex Benth. Fitoterapia, 2020, 143, 104584.
[http://dx.doi.org/10.1016/j.fitote.2020.104584] [PMID: 32247053]
[http://dx.doi.org/10.1016/j.fitote.2020.104584] [PMID: 32247053]
[34]
Sallam, A.M.; Esmat, A.; Abdel-Naim, A.B. Cucurbitacin-B attenuates CCl4 -induced hepatic fibrosis in mice through inhibition of STAT-3. Chem. Biol. Drug Des., 2018, 91(4), 933-941.
[http://dx.doi.org/10.1111/cbdd.13160] [PMID: 29250925]
[http://dx.doi.org/10.1111/cbdd.13160] [PMID: 29250925]
[35]
Lin, Y.; Kotakeyama, Y.; Li, J.; Pan, Y.; Matsuura, A.; Ohya, Y.; Yoshida, M.; Xiang, L.; Qi, J. Cucurbitacin B exerts antiaging effects in yeast by regulating autophagy and oxidative stress. Oxid. Med. Cell. Longev., 2019, 2019, 4517091.
[http://dx.doi.org/10.1155/2019/4517091] [PMID: 31281576]
[http://dx.doi.org/10.1155/2019/4517091] [PMID: 31281576]
[36]
Xiao, Y.; Yang, Z.; Wu, Q.Q.; Jiang, X.H.; Yuan, Y.; Chang, W.; Bian, Z.Y.; Zhu, J.X.; Tang, Q.Z. Cucurbitacin B protects against pressure overload induced cardiac hypertrophy. J. Cell. Biochem., 2017, 118(11), 3899-3910.
[http://dx.doi.org/10.1002/jcb.26041] [PMID: 28390176]
[http://dx.doi.org/10.1002/jcb.26041] [PMID: 28390176]
[37]
Hassan, S.T.S.; Berchová-Bímová, K.; Petráš, J.; Hassan, K.T.S. Cucurbitacin B interacts synergistically with antibiotics against Staphylococcus aureus clinical isolates and exhibits antiviral activity against HSV-1. S. Afr. J. Bot., 2017, 108, 90-94.
[http://dx.doi.org/10.1016/j.sajb.2016.10.001]
[http://dx.doi.org/10.1016/j.sajb.2016.10.001]
[38]
Zhong, Y.; Xu, H.; Zhong, Y.; Zhang, X.; Zeng, T.; Li, L.; Xu, G.; Li, M.; Liu, J.; Yang, T. Identification and characterization of the Cucurbitacins, a novel class of small- molecule inhibitors of Tropomyosin receptor kinase a. BMC Complement. Altern. Med., 2019, 19(1), 295.
[http://dx.doi.org/10.1186/s12906-019-2709-z] [PMID: 31694615]
[http://dx.doi.org/10.1186/s12906-019-2709-z] [PMID: 31694615]
[39]
Li, J.; Sun, K.; Muroi, M.; Gao, L.; Chang, Y.T.; Osada, H.; Xiang, L.; Qi, J. Cucurbitacin B induces neurogenesis in PC12 cells and protects memory in APP/PS1 mice. J. Cell. Mol. Med., 2019, 23(9), 6283-6294.
[http://dx.doi.org/10.1111/jcmm.14514] [PMID: 31257716]
[http://dx.doi.org/10.1111/jcmm.14514] [PMID: 31257716]
[40]
Zhong, H.; Huang, Y.; Deng, X.; Liu, M.; Luo, W. Cucurbitacin B supplementation reduces inflammatory responses and alveolar bone loss via regulating MPO, COX-2 and RANK/RANKL/OPG signals in a rodent model of ligature-induced periodontitis. J. King Saud Univ. Sci., 2020, 32, 1889-1895.
[http://dx.doi.org/10.1016/j.jksus.2020.01.028]
[http://dx.doi.org/10.1016/j.jksus.2020.01.028]
[41]
Song, H.; Wang, Y.; Li, L.; Sui, H.; Wang, P.; Wang, F. Cucurbitacin E inhibits proliferation and migration of intestinal epithelial cells via activating cofilin. Front. Physiol., 2018, 9, 1090.
[http://dx.doi.org/10.3389/fphys.2018.01090] [PMID: 30131725]
[http://dx.doi.org/10.3389/fphys.2018.01090] [PMID: 30131725]
[42]
Murtaza, M.; Khan, G.; Aftab, M.F.; Afridi, S.K.; Ghaffar, S.; Ahmed, A.; Hafizur, R.M.; Waraich, R.S. Cucurbitacin E reduces obesity and related metabolic dysfunction in mice by targeting JAK-STAT5 signaling pathway. PLoS One, 2017, 12(6), e0178910.
[http://dx.doi.org/10.1371/journal.pone.0178910] [PMID: 28598969]
[http://dx.doi.org/10.1371/journal.pone.0178910] [PMID: 28598969]
[43]
Jeong, M.H.; Kim, S.J.; Kang, H.; Park, K.W.; Park, W.J.; Yang, S.Y.; Yang, D.K. Cucurbitacin I attenuates cardiomyocyte hypertrophy via inhibition of connective tissue growth factor (CCN2) and TGF- β/Smads signalings. PLoS One, 2015, 10(8), e0136236.
[http://dx.doi.org/10.1371/journal.pone.0136236] [PMID: 26296085]
[http://dx.doi.org/10.1371/journal.pone.0136236] [PMID: 26296085]
[44]
Zhou, S.M.; Guan, S.Y.; Yang, L.; Yang, L.K.; Wang, L.; Nie, H.F.; Li, X.; Zhao, M.G.; Yang, Q.; Wu, H. Cucurbitacin IIa exerts antidepressant-like effects on mice exposed to chronic unpredictable mild stress. Neuroreport, 2017, 28(5), 259-267.
[http://dx.doi.org/10.1097/WNR.0000000000000747] [PMID: 28240721]
[http://dx.doi.org/10.1097/WNR.0000000000000747] [PMID: 28240721]
[45]
Arjaibi, H.M.; Ahmed, M.S.; Halaweish, F.T. Mechanistic investigation of hepato-protective potential for cucurbitacins. Med. Chem. Res., 2017, 26, 1567-1573.
[http://dx.doi.org/10.1007/s00044-017-1872-3]
[http://dx.doi.org/10.1007/s00044-017-1872-3]
[46]
Liang, J.; Dan, C. Advances in research on the anticancer mechanism of the natural compound cucurbitacin from Cucurbitaceae plants: A review. Tradit. Med. Res., 2019, 4, 68-81.
[http://dx.doi.org/10.53388/TMR20190225102]
[http://dx.doi.org/10.53388/TMR20190225102]
[47]
Ferrer, M.D.; Busquets-Cortés, C.; Capó, X.; Tejada, S.; Tur, J.A.; Pons, A.; Sureda, A. Cyclooxigenase-2 inhibitors as a therapeutic target in inflammatory diseases. Curr. Med. Chem., 2019, 26(18), 3225-3241.
[http://dx.doi.org/10.2174/0929867325666180514112124] [PMID: 29756563]
[http://dx.doi.org/10.2174/0929867325666180514112124] [PMID: 29756563]
[48]
Yesilada, E.; Tanaka, S.; Sezik, E.; Tabata, M. Isolation of an anti-inflammatory principle from the fruit juice of Ecballium elaterium. J. Nat. Prod., 1988, 51(3), 504-508.
[http://dx.doi.org/10.1021/np50057a008] [PMID: 3404148]
[http://dx.doi.org/10.1021/np50057a008] [PMID: 3404148]
[49]
Almeida, F.R.C.; Rao, V.S.N.; Matos, M.E.O. Antiinflammatory, antitumour and antifertility effects in rodents of two nor-cucurbitacin glucosides from Wilbrandia species. Phytother. Res., 1992, 6, 189-193.
[http://dx.doi.org/10.1002/ptr.2650060405]
[http://dx.doi.org/10.1002/ptr.2650060405]
[50]
Cheng, S.E.; Lee, I.T.; Lin, C.C.; Wu, W.L.; Hsiao, L.D.; Yang, C.M. ATP mediates NADPH oxidase/ROS generation and COX-2/PGE2 expression in A549 cells: role of P2 receptor-dependent STAT3 activation. PLoS One, 2013, 8(1), e54125.
[http://dx.doi.org/10.1371/journal.pone.0054125] [PMID: 23326583]
[http://dx.doi.org/10.1371/journal.pone.0054125] [PMID: 23326583]
[51]
Hashemi Goradel, N.; Najafi, M.; Salehi, E.; Farhood, B.; Mortezaee, K. Cyclooxygenase-2 in cancer: A review. J. Cell. Physiol., 2019, 234(5), 5683-5699.
[http://dx.doi.org/10.1002/jcp.27411] [PMID: 30341914]
[http://dx.doi.org/10.1002/jcp.27411] [PMID: 30341914]
[52]
Jayaprakasam, B.; Seeram, N.P.; Nair, M.G. Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana. Cancer Lett., 2003, 189(1), 11-16.
[http://dx.doi.org/10.1016/S0304-3835(02)00497-4] [PMID: 12445672]
[http://dx.doi.org/10.1016/S0304-3835(02)00497-4] [PMID: 12445672]
[53]
Siqueira, J.M., Jr; Peters, R.R.; Gazola, A.C.; Krepsky, P.B.; Farias, M.R.; Rae, G.A.; de Brum-Fernandes, A.J.; Ribeiro-do-Valle, R.M. Anti-inflammatory effects of a triterpenoid isolated from Wilbrandia ebracteata Cogn. Life Sci., 2007, 80(15), 1382-1387.
[http://dx.doi.org/10.1016/j.lfs.2006.12.021] [PMID: 17286991]
[http://dx.doi.org/10.1016/j.lfs.2006.12.021] [PMID: 17286991]
[54]
Peters, R.R.; Baier Krepsky, P.; Siqueira-Junior, J.; da Silva Rocha, J.C.; Marques Bezerra, M.; de Albuquerque Ribeiro, R.; de Brum-Fernandes, A.J.; Rocha Farias, M.; Castro da Rocha, F.A.; Ribeiro-do-Valle, R.M. Nitric oxide and cyclooxygenase may participate in the analgesic and anti-inflammatory effect of the cucurbitacins fraction from Wilbrandia ebracteata. Life Sci., 2003, 73(17), 2185-2197.
[http://dx.doi.org/10.1016/S0024-3205(03)00602-7] [PMID: 12927589]
[http://dx.doi.org/10.1016/S0024-3205(03)00602-7] [PMID: 12927589]
[55]
Abdelwahab, S.I.; Hassan, L.E.A.; Sirat, H.M.; Yagi, S.M.A.; Koko, W.S.; Mohan, S.; Taha, M.M.E.; Ahmad, S.; Chuen, C.S.; Narrima, P.; Rais, M.M.; Hadi, A.H. Anti-inflammatory activities of cucurbitacin E isolated from Citrullus lanatus var. citroides: role of reactive nitrogen species and cyclooxygenase enzyme inhibition. Fitoterapia, 2011, 82(8), 1190-1197.
[http://dx.doi.org/10.1016/j.fitote.2011.08.002] [PMID: 21871542]
[http://dx.doi.org/10.1016/j.fitote.2011.08.002] [PMID: 21871542]
[56]
Hussein, M.A.; El-Gizawy, H.A-E.; Gobba, N.A.E.K.; Mosaad, Y.O. Synthesis of cinnamyl and caffeoyl derivatives of cucurbitacin-E glycoside isolated from Citrullus colocynthis fruits and their structures antioxidant and anti-inflammatory activities relationship. Curr. Pharm. Biotechnol., 2017, 18(8), 677-693.
[http://dx.doi.org/10.2174/1389201018666171004144615] [PMID: 28982326]
[http://dx.doi.org/10.2174/1389201018666171004144615] [PMID: 28982326]
[57]
Marzouk, B.; Mahjoub, M.A.; Bouraoui, A.; Fenina, N.; Aouni, M.; Marzouk, Z. Anti-inflammatory and analgesic activities of a new cucurbitacin isolated from Citrullus colocynthis seeds. Med. Chem. Res., 2013, 22, 3984-3990.
[http://dx.doi.org/10.1007/s00044-012-0406-2]
[http://dx.doi.org/10.1007/s00044-012-0406-2]
[58]
Gülçin, I. Antioxidant and antiradical activities of L-carnitine. Life Sci., 2006, 78(8), 803-811.
[http://dx.doi.org/10.1016/j.lfs.2005.05.103] [PMID: 16253281]
[http://dx.doi.org/10.1016/j.lfs.2005.05.103] [PMID: 16253281]
[59]
Attard, E.; Cuschieri, A.; Scicluna-Spiteri, A.; Brincat, M.P. The effects of cucurbitacin E on two lymphocyte models. Pharm. Biol., 2004, 42, 170-175.
[http://dx.doi.org/10.1080/13880200490512124]
[http://dx.doi.org/10.1080/13880200490512124]
[60]
Park, C.S.; Lim, H.; Han, K.J.; Baek, S.H.; Sohn, H.O.; Lee, D.W.; Kim, Y.G.; Yun, H.Y.; Baek, K.J.; Kwon, N.S. Inhibition of nitric oxide generation by 23,24-dihydrocucurbitacin D in mouse peritoneal macrophages. J. Pharmacol. Exp. Ther., 2004, 309(2), 705-710.
[http://dx.doi.org/10.1124/jpet.103.063693] [PMID: 14752064]
[http://dx.doi.org/10.1124/jpet.103.063693] [PMID: 14752064]
[61]
Escandell, J.M.; Recio, M.C.; Máñez, S.; Giner, R.M.; Cerdá-Nicolás, M.; Ríos, J.L. Cucurbitacin R reduces the inflammation and bone damage associated with adjuvant arthritis in lewis rats by suppression of tumor necrosis factor-α in T lymphocytes and macrophages. J. Pharmacol. Exp. Ther., 2007, 320(2), 581-590.
[http://dx.doi.org/10.1124/jpet.106.107003] [PMID: 17065367]
[http://dx.doi.org/10.1124/jpet.106.107003] [PMID: 17065367]
[62]
U-Pratya, Y.; Lueangamornnara, U.; Jiratchariyakul, W.; Kummalue, T. Immunosuppressive effects of cucurbitacin B on human peripheral blood lymphocytes. J. Med. Plants Res., 2010, 4, 2340-2347.
[http://dx.doi.org/10.5897/JMPR10.459]
[http://dx.doi.org/10.5897/JMPR10.459]
[63]
Escandell, J.M.; Recio, M.C.; Giner, R.M.; Máñez, S.; Cerdá-Nicolás, M.; Merfort, I.; Ríos, J.L. Inhibition of delayed-type hypersensitivity by Cucurbitacin R through the curbing of lymphocyte proliferation and cytokine expression by means of nuclear factor AT translocation to the nucleus. J. Pharmacol. Exp. Ther., 2010, 332(2), 352-363.
[http://dx.doi.org/10.1124/jpet.109.159327] [PMID: 19846588]
[http://dx.doi.org/10.1124/jpet.109.159327] [PMID: 19846588]
[64]
Escandell, J.M.; Recio, M.C.; Giner, R.M.; Máñez, S.; Ríos, J.L. Bcl-2 is a negative regulator of interleukin-1beta secretion in murine macrophages in pharmacological-induced apoptosis. Br. J. Pharmacol., 2010, 160(7), 1844-1856.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00856.x] [PMID: 20649584]
[http://dx.doi.org/10.1111/j.1476-5381.2010.00856.x] [PMID: 20649584]
[65]
Song, Y.; Ding, N.; Kanazawa, T.; Yamashita, U.; Yoshida, Y. Cucurbitacin D is a new inflammasome activator in macrophages. Int. Immunopharmacol., 2013, 17(4), 1044-1050.
[http://dx.doi.org/10.1016/j.intimp.2013.10.003] [PMID: 24140411]
[http://dx.doi.org/10.1016/j.intimp.2013.10.003] [PMID: 24140411]
[66]
Wang, Y.; Zhao, G.X.; Xu, L.H.; Liu, K.P.; Pan, H.; He, J.; Cai, J.Y.; Ouyang, D.Y.; He, X.H. Cucurbitacin IIb exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes. PLoS One, 2014, 9(2), e89751.
[http://dx.doi.org/10.1371/journal.pone.0089751] [PMID: 24587010]
[http://dx.doi.org/10.1371/journal.pone.0089751] [PMID: 24587010]
[67]
Park, S.Y.; Kim, Y.H.; Park, G. Cucurbitacins attenuate microglial activation and protect from neuroinflammatory injury through Nrf2/ARE activation and STAT/NF-κB inhibition. Neurosci. Lett., 2015, 609, 129-136.
[http://dx.doi.org/10.1016/j.neulet.2015.10.022] [PMID: 26472707]
[http://dx.doi.org/10.1016/j.neulet.2015.10.022] [PMID: 26472707]
[68]
Li, Z.J.; Shin, J.M.; Choi, D.K.; Lim, S.K.; Yoon, T.J.; Lee, Y.H.; Sohn, K.C.; Im, M.; Lee, Y.; Seo, Y.J.; Kim, C.D.; Lee, J.H. Inhibitory effect of cucurbitacin B on imiquimod-induced skin inflammation. Biochem. Biophys. Res. Commun., 2015, 459(4), 673-678.
[http://dx.doi.org/10.1016/j.bbrc.2015.03.001] [PMID: 25767074]
[http://dx.doi.org/10.1016/j.bbrc.2015.03.001] [PMID: 25767074]
[69]
Kim, M.; Park, S.Y.; Jin, M.L.; Park, G.; Son, H.J. Cucurbitacin B inhibits immunomodulatory function and the inflammatory response in macrophages. Immunopharmacol. Immunotoxicol., 2015, 37(5), 473-480.
[http://dx.doi.org/10.3109/08923973.2015.1085065] [PMID: 26466646]
[http://dx.doi.org/10.3109/08923973.2015.1085065] [PMID: 26466646]
[70]
Wang, L.; Li, C.; Lin, Q.; Zhang, X.; Pan, H.; Xu, L.; Shi, Z.; Ouyang, D.; He, X. Cucurbitacin E suppresses cytokine expression in human Jurkat T cells through down-regulating the NF-κB signaling. Acta Biochim. Biophys. Sin. (Shanghai), 2015, 47(6), 459-465.
[http://dx.doi.org/10.1093/abbs/gmv030] [PMID: 25921411]
[http://dx.doi.org/10.1093/abbs/gmv030] [PMID: 25921411]
[71]
Jia, Q.; Cheng, W.; Yue, Y.; Hu, Y.; Zhang, J.; Pan, X.; Xu, Z.; Zhang, P. Cucurbitacin E inhibits TNF-α-induced inflammatory cytokine production in human synoviocyte MH7A cells via suppression of PI3K/Akt/NF-κB pathways. Int. Immunopharmacol., 2015, 29(2), 884-890.
[http://dx.doi.org/10.1016/j.intimp.2015.08.026] [PMID: 26453509]
[http://dx.doi.org/10.1016/j.intimp.2015.08.026] [PMID: 26453509]
[72]
Jevtić, B.; Djedović, N.; Stanisavljević, S.; Despotović, J.; Miljković, D.; Timotijević, G. Cucurbitacin E potently modulates the activity of encephalitogenic cells. J. Agric. Food Chem., 2016, 64(24), 4900-4907.
[http://dx.doi.org/10.1021/acs.jafc.6b00951] [PMID: 27225664]
[http://dx.doi.org/10.1021/acs.jafc.6b00951] [PMID: 27225664]
[73]
Cui, L.; Bi, J.; Yan, D.; Ye, X.; Zheng, M.; Yu, G.; Wan, X. JSI-124 inhibits IgE production in an IgE B cell line. Biochem. Biophys. Res. Commun., 2017, 483(1), 669-673.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.085] [PMID: 27988336]
[http://dx.doi.org/10.1016/j.bbrc.2016.12.085] [PMID: 27988336]
[74]
Kim, S.Y.; Park, M.J.; Kwon, J.E.; Jung, K.A.; Jhun, J.Y.; Lee, S.Y.; Seo, H.B.; Ryu, J.Y.; Beak, J.A.; Choi, J.Y.; Cho, M.L. Cucurbitacin E ameliorates acute graft-versus-host disease by modulating Th17 cell subsets and inhibiting STAT3 activation. Immunol. Lett., 2018, 203, 62-69.
[http://dx.doi.org/10.1016/j.imlet.2018.09.012] [PMID: 30240636]
[http://dx.doi.org/10.1016/j.imlet.2018.09.012] [PMID: 30240636]
[75]
Shang, J.; Liu, W.; Yin, C.; Chu, H.; Zhang, M. Cucurbitacin E ameliorates lipopolysaccharide-evoked injury, inflammation and MUC5AC expression in bronchial epithelial cells by restraining the HMGB1-TLR4-NF-κB signaling. Mol. Immunol., 2019, 114, 571-577.
[http://dx.doi.org/10.1016/j.molimm.2019.09.008] [PMID: 31525576]
[http://dx.doi.org/10.1016/j.molimm.2019.09.008] [PMID: 31525576]
[76]
Du, Z.; Zhang, S.; Lin, Y.; Zhou, L.; Wang, Y.; Yan, G.; Zhang, M.; Wang, M.; Li, J.; Tong, Q.; Duan, Y.; Du, G. Momordicoside G regulates macrophage phenotypes to stimulate efficient repair of lung injury and prevent urethane-induced lung carcinoma lesions. Front. Pharmacol., 2019, 10, 321.
[http://dx.doi.org/10.3389/fphar.2019.00321] [PMID: 30984004]
[http://dx.doi.org/10.3389/fphar.2019.00321] [PMID: 30984004]
[77]
Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World, 2018, 11(5), 627-635.
[http://dx.doi.org/10.14202/vetworld.2018.627-635] [PMID: 29915501]
[http://dx.doi.org/10.14202/vetworld.2018.627-635] [PMID: 29915501]
[78]
Gupta, K.K.; Khan, M.A.; Singh, S.K. Constitutive inflammatory cytokine storm: A major threat to human health. J. Interferon Cytokine Res., 2020, 40(1), 19-23.
[http://dx.doi.org/10.1089/jir.2019.0085] [PMID: 31755797]
[http://dx.doi.org/10.1089/jir.2019.0085] [PMID: 31755797]
[79]
Qiao, J.; Xu, L.H.; He, J.; Ouyang, D.Y.; He, X.H. Cucurbitacin E exhibits anti-inflammatory effect in RAW 264.7 cells via suppression of NF-κB nuclear translocation. Inflamm. Res., 2013, 62(5), 461-469.
[http://dx.doi.org/10.1007/s00011-013-0598-z] [PMID: 23360962]
[http://dx.doi.org/10.1007/s00011-013-0598-z] [PMID: 23360962]
[80]
Hua, S.; Liu, X.; Lv, S.; Wang, Z. Protective effects of cucurbitacin B on acute lung injury induced by sepsis in rats. Med. Sci. Monit., 2017, 23, 1355-1362.
[http://dx.doi.org/10.12659/MSM.900523] [PMID: 28315572]
[http://dx.doi.org/10.12659/MSM.900523] [PMID: 28315572]
[81]
Lee, M.; Park, J. Regulation of NFAT activation: A potential therapeutic target for immunosuppression. Mol. Cells, 2006, 22(1), 1-7.
[PMID: 16951543]
[PMID: 16951543]
[82]
Nefedova, Y.; Nagaraj, S.; Rosenbauer, A.; Muro-Cacho, C.; Sebti, S.M.; Gabrilovich, D.I. Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res., 2005, 65(20), 9525-9535.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0529] [PMID: 16230418]
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0529] [PMID: 16230418]
[83]
Paiva-Oliveira, E. L.; Silva, A. C.; Silva, R. M.; Sevenini, L. A.; Melo, H. A.; Lagrota-Candido, J. M.; Quirico-Santos, T. Inflammasome and its clinical repercussion: literature review. J. Med. Biol. Sci, 2012, 11, 96-102.
[http://dx.doi.org/10.9771/cmbio.v11i1.6245]
[http://dx.doi.org/10.9771/cmbio.v11i1.6245]
[84]
Kanaya, S.; Nemoto, E.; Ogawa, T.; Shimauchi, H. Porphyromonas gingivalis lipopolysaccharides induce maturation of dendritic cells with CD14+CD16+ phenotype. Eur. J. Immunol., 2004, 34(5), 1451-1460.
[http://dx.doi.org/10.1002/eji.200324549] [PMID: 15114679]
[http://dx.doi.org/10.1002/eji.200324549] [PMID: 15114679]
[85]
Kambara, K.; Ohashi, W.; Tomita, K.; Takashina, M.; Fujisaka, S.; Hayashi, R.; Mori, H.; Tobe, K.; Hattori, Y. In vivo depletion of CD206+ M2 macrophages exaggerates lung injury in endotoxemic mice. Am. J. Pathol., 2015, 185(1), 162-171.
[http://dx.doi.org/10.1016/j.ajpath.2014.09.005] [PMID: 25447055]
[http://dx.doi.org/10.1016/j.ajpath.2014.09.005] [PMID: 25447055]
[86]
Sundin, M.; Tesi, B.; Sund Böhme, M.; Bryceson, Y.T.; Pütsep, K.; Chiang, S.C.; Thunberg, S.; Winiarski, J.; Wikström, A.C. Novel STAT3 mutation causing hyper-IgE syndrome: studies of the clinical course and immunopathology. J. Clin. Immunol., 2014, 34(4), 469-477.
[http://dx.doi.org/10.1007/s10875-014-0011-x] [PMID: 24627079]
[http://dx.doi.org/10.1007/s10875-014-0011-x] [PMID: 24627079]
[87]
Liu, M.; Yan, Q.; Peng, B.; Cai, Y.; Zeng, S.; Xu, Z.; Yan, Y.; Gong, Z. Use of cucurbitacins for lung cancer research and therapy. Cancer Chemother. Pharmacol., 2021, 88(1), 1-14.
[http://dx.doi.org/10.1007/s00280-021-04265-7] [PMID: 33825035]
[http://dx.doi.org/10.1007/s00280-021-04265-7] [PMID: 33825035]
[88]
Yang, K.; Wen, Y.; Wang, C. Clinical application of anticancer nanoparticles targeting metastasis foci of cervical lymph nodes in patients with oral carcinoma. Hua Xi Kou Qiang Yi Xue Za Zhi, 2003, 21(6), 447-450.
[89]
Lu, P.; Yu, B.; Xu, J. Cucurbitacin B regulates immature myeloid cell differentiation and enhances antitumor immunity in patients with lung cancer. Cancer Biother. Radiopharm., 2012, 27(8), 495-503.
[http://dx.doi.org/10.1089/cbr.2012.1219] [PMID: 22746287]
[http://dx.doi.org/10.1089/cbr.2012.1219] [PMID: 22746287]