Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Perspective

The Pathogenic Role of Foam Cells in Atherogenesis: Do They Represent Novel Therapeutic Targets?

Author(s): Giuseppe Lisco, Vito Angelo Giagulli, Giovanni De Pergola, Edoardo Guastamacchia, Emilio Jirillo* and Vincenzo Triggiani

Volume 22, Issue 7, 2022

Published on: 21 April, 2022

Page: [765 - 777] Pages: 13

DOI: 10.2174/1871530322666220107114313

Abstract

Background: Foam cells, mainly derived from monocytes-macrophages, contain lipid droplets essentially composed of cholesterol in their cytoplasm. They infiltrate the intima of arteries, contributing to the formation of atherosclerotic plaques.

Pathogenesis: Foam cells damage the arterial cell wall via the release of proinflammatory cytokines, free radicals, and matrix metalloproteinases, enhancing the plaque size up to its rupture.

Therapy: A correct dietary regimen seems to be the most appropriate therapeutic approach to minimize obesity, which is associated with the formation of foam cells. At the same time, different types of antioxidants have been evaluated to arrest the formation of foam cells, even if the results are still contradictory. In any case, a combination of antioxidants seems to be more efficient in the prevention of atherosclerosis.

Keywords: Atherosclerosis, cholesterol, low-density lipoproteins, foam cells, obesity, atheromatic plaques, antioxidants.

[1]
García-Montero, C.; Fraile-Martínez, O.; Gómez-Lahoz, A.M.; Pekarek, L.; Castellanos, A.J.; Noguerales-Fraguas, F.; Coca, S.; Guijarro, L.G.; García-Honduvilla, N.; Asúnsolo, A.; Sanchez-Trujillo, L.; Lahera, G.; Bujan, J.; Monserrat, J.; Álvarez-Mon, M.; Álvarez-Mon, M.A.; Ortega, M.A. Nutritional components in western diet versus mediterranean diet at the gut microbiota-immune system interplay. Implications for health and disease. Nutrients, 2021, 13(2), 699.
[http://dx.doi.org/10.3390/nu13020699] [PMID: 33671569]
[2]
Kim, J.Y.; He, F.; Karin, M. From liver fat to cancer: Perils of the western diet. Cancers (Basel), 2021, 13(5), 1095.
[http://dx.doi.org/10.3390/cancers13051095]
[3]
Giglio, R.V.; Pantea Stoian, A.; Al-Rasadi, K.; Banach, M.; Patti, A.M.; Ciaccio, M.; Rizvi, A.A.; Rizzo, M. Novel therapeutical approaches to managing atherosclerotic risk. Int. J. Mol. Sci., 2021, 22(9), 4633.
[http://dx.doi.org/10.3390/ijms22094633] [PMID: 33924893]
[4]
Chang, X.; Lochner, A.; Wang, H.H.; Wang, S.; Zhu, H.; Ren, J.; Zhou, H. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Theranostics, 2021, 11(14), 6766-6785.
[http://dx.doi.org/10.7150/thno.60143] [PMID: 34093852]
[5]
Childs, B.G.; Baker, D.J.; Wijshake, T.; Conover, C.A.; Campisi, J.; van Deursen, J.M. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science, 2016, 354(6311), 472-477.
[http://dx.doi.org/10.1126/science.aaf6659] [PMID: 27789842]
[6]
Bornfeldt, K.E.; Tabas, I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab., 2011, 14(5), 575-585.
[http://dx.doi.org/10.1016/j.cmet.2011.07.015] [PMID: 22055501]
[7]
Rallidis, L.S.; Kosmas, N.; Tsirebolos, G.; Rallidi, M.; Kiouri, E.; Kalpakos, D. Prevalence of heterozygous familial hypercholesterolemia and combined hyperlipidemia phenotype in very young survivors of myocardial infarction and their association with the severity of atheromatous burden. J. Clin. Lipidol., 2019, 13(3), 502-508.
[http://dx.doi.org/10.1016/j.jacl.2019.02.007] [PMID: 30956097]
[8]
Shapiro, H.; Pecht, T.; Shaco-Levy, R.; Harman-Boehm, I.; Kirshtein, B.; Kuperman, Y.; Chen, A.; Blüher, M.; Shai, I.; Rudich, A. Adipose tissue foam cells are present in human obesity. J. Clin. Endocrinol. Metab., 2013, 98(3), 1173-1181.
[http://dx.doi.org/10.1210/jc.2012-2745] [PMID: 23372170]
[9]
Kostopoulou, M.; Nikolopoulos, D.; Parodis, I.; Bertsias, G. Cardiovascular disease in systemic lupus erythematosus: Recent data on epidemiology, risk factors and prevention. Curr. Vasc. Pharmacol., 2020, 18(6), 549-565.
[http://dx.doi.org/10.2174/1570161118666191227101636] [PMID: 31880245]
[10]
England, B.R.; Thiele, G.M.; Anderson, D.R.; Mikuls, T.R. Increased cardiovascular risk in rheumatoid arthritis: Mechanisms and implications. BMJ, 2018, 361, k1036.
[http://dx.doi.org/10.1136/bmj.k1036] [PMID: 29685876]
[11]
Larsson, J.; Graff, P.; Bryngelsson, I.L.; Vihlborg, P. Sarcoidosis and increased risk of comorbidities and mortality in sweden. Sarcoidosis Vasc. Diffuse Lung Dis., 2020, 37(2), 104-135.
[http://dx.doi.org/10.36141/svdld.v37i2.9142] [PMID: 33093776]
[12]
Bigeh, A.; Sanchez, A.; Maestas, C.; Gulati, M. Inflammatory bowel disease and the risk for cardiovascular disease: Does all inflammation lead to heart disease? Trends Cardiovasc. Med., 2020, 30(8), 463-469.
[http://dx.doi.org/10.1016/j.tcm.2019.10.001] [PMID: 31653485]
[13]
Guerrini, V.; Prideaux, B.; Blanc, L.; Bruiners, N.; Arrigucci, R.; Singh, S.; Ho-Liang, H.P.; Salamon, H.; Chen, P.Y.; Lakehal, K.; Subbian, S.; O’Brien, P. via, L.E.; Barry, C.E., III; Dartois, V.; Gennaro, M.L. Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathog., 2018, 14(8), e1007223.
[http://dx.doi.org/10.1371/journal.ppat.1007223] [PMID: 30161232]
[14]
Grajchen, E.; Hendriks, J.J.A.; Bogie, J.F.J. The physiology of foamy phagocytes in multiple sclerosis. Acta Neuropathol. Commun., 2018, 6(1), 124.
[http://dx.doi.org/10.1186/s40478-018-0628-8] [PMID: 30454040]
[15]
Ye, H.; Zhou, Q.; Zheng, S.; Li, G.; Lin, Q.; Wei, L.; Fu, Z.; Zhang, B.; Liu, Y.; Li, Z.; Chen, R. Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma. Cell Death Dis., 2018, 9(5), 453.
[http://dx.doi.org/10.1038/s41419-018-0486-0] [PMID: 29670110]
[16]
den Brok, M.H.; Raaijmakers, T.K.; Collado-Camps, E.; Adema, G.J. Lipid droplets as immune modulators in myeloid cells. Trends Immunol., 2018, 39(5), 380-392.
[http://dx.doi.org/10.1016/j.it.2018.01.012] [PMID: 29478771]
[17]
Wang, C.W. Lipid droplets, lipophagy, and beyond. Biochim. Biophys. Acta, 2016, 1861(8 Pt B), 793-805.
[http://dx.doi.org/10.1016/j.bbalip.2015.12.010] [PMID: 26713677]
[18]
Bozza, P.T.; Magalhães, K.G.; Weller, P.F. Leukocyte lipid bodies - Biogenesis and functions in inflammation. Biochim. Biophys. Acta, 2009, 1791(6), 540-551.
[http://dx.doi.org/10.1016/j.bbalip.2009.01.005] [PMID: 19416659]
[19]
Veglia, F.; Tyurin, V.A.; Mohammadyani, D.; Blasi, M.; Duperret, E.K.; Donthireddy, L.; Hashimoto, A.; Kapralov, A.; Amoscato, A.; Angelini, R.; Patel, S.; Alicea-Torres, K.; Weiner, D.; Murphy, M.E.; Klein-Seetharaman, J.; Celis, E.; Kagan, V.E.; Gabrilovich, D.I. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat. Commun., 2017, 8(1), 2122.
[http://dx.doi.org/10.1038/s41467-017-02186-9] [PMID: 29242535]
[20]
Herker, E.; Vieyres, G.; Beller, M.; Krahmer, N.; Bohnert, M. Lipid droplet contact sites in health and disease. Trends Cell Biol., 2021, 31(5), 345-358.
[http://dx.doi.org/10.1016/j.tcb.2021.01.004] [PMID: 33546922]
[21]
Guerrini, V.; Gennaro, M.L. Foam cells: One size doesn’t fit all. Trends Immunol., 2019, 40(12), 1163-1179.
[http://dx.doi.org/10.1016/j.it.2019.10.002] [PMID: 31732284]
[22]
Goldstein, J.L.; Brown, M.S. A century of cholesterol and coronaries: From plaques to genes to statins. Cell, 2015, 161(1), 161-172.
[http://dx.doi.org/10.1016/j.cell.2015.01.036] [PMID: 25815993]
[23]
Lightbody, R.J.; Taylor, J.M.W.; Dempsie, Y.; Graham, A. MicroRNA sequences modulating inflammation and lipid accumulation in macrophage “foam” cells: Implications for atherosclerosis. World J. Cardiol., 2020, 12(7), 303-333.
[http://dx.doi.org/10.4330/wjc.v12.i7.303] [PMID: 32843934]
[24]
Vasile, E.; Simionescu, M.; Simionescu, N. Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J. Cell Biol., 1983, 96(6), 1677-1689.
[http://dx.doi.org/10.1083/jcb.96.6.1677] [PMID: 6853599]
[25]
Jang, E.; Robert, J.; Rohrer, L.; von Eckardstein, A.; Lee, W.L. Transendothelial transport of lipoproteins. Atherosclerosis, 2020, 315, 111-125.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.09.020] [PMID: 33032832]
[26]
Yamagishi, K.; Iso, H. Soluble vascular cell adhesion molecule and cardiovascular disease: An epidemiological view. J. Atheroscler. Thromb., 2017, 24(8), 791-792.
[http://dx.doi.org/10.5551/jat.ED074] [PMID: 28496046]
[27]
Fernandez-Ruiz, I.; Puchalska, P.; Narasimhulu, C.A.; Sengupta, B.; Parthasarathy, S. Differential lipid metabolism in monocytes and macrophages: Influence of cholesterol loading. J. Lipid Res., 2016, 57(4), 574-586.
[http://dx.doi.org/10.1194/jlr.M062752] [PMID: 26839333]
[28]
van Eijk, M.; Aerts, J.M.F.G. The Unique Phenotype of Lipid-Laden Macrophages. Int. J. Mol. Sci., 2021, 22(8), 4039.
[http://dx.doi.org/10.3390/ijms22084039] [PMID: 33919858]
[29]
Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of plaque formation and rupture. Circ. Res., 2014, 114(12), 1852-1866.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302721] [PMID: 24902970]
[30]
Allahverdian, S.; Chaabane, C.; Boukais, K.; Francis, G.A.; Bochaton-Piallat, M.L. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc. Res., 2018, 114(4), 540-550.
[http://dx.doi.org/10.1093/cvr/cvy022] [PMID: 29385543]
[31]
Fahed, A.C.; Jang, I.K. Plaque erosion and acute coronary syndromes: Phenotype, molecular characteristics and future directions. Nat. Rev. Cardiol., 2021, 18(10), 724-734.
[http://dx.doi.org/10.1038/s41569-021-00542-3] [PMID: 33953381]
[32]
Butoi, E.; Gan, A.M.; Tucureanu, M.M.; Stan, D.; Macarie, R.D.; Constantinescu, C.; Calin, M.; Simionescu, M.; Manduteanu, I. Cross-talk between macrophages and smooth muscle cells impairs collagen and metalloprotease synthesis and promotes angiogenesis. Biochim. Biophys. Acta, 2016, 1863(7 Pt A), 1568-1578.
[http://dx.doi.org/10.1016/j.bbamcr.2016.04.001] [PMID: 27060293]
[33]
Poredos, P.; Gregoric, I.D.; Jezovnik, M.K. Inflammation of carotid plaques and risk of cerebrovascular events. Ann. Transl. Med., 2020, 8(19), 1281.
[http://dx.doi.org/10.21037/atm-2020-cass-15] [PMID: 33178813]
[34]
Finn, A.V.; Nakano, M.; Narula, J.; Kolodgie, F.D.; Virmani, R. Concept of vulnerable/unstable plaque. Arterioscler. Thromb. Vasc. Biol., 2010, 30(7), 1282-1292.
[http://dx.doi.org/10.1161/ATVBAHA.108.179739] [PMID: 20554950]
[35]
Melo, R.C.; D’Avila, H.; Wan, H.C.; Bozza, P.T.; Dvorak, A.M.; Weller, P.F. Lipid bodies in inflammatory cells: Structure, function, and current imaging techniques. J. Histochem. Cytochem., 2011, 59(5), 540-556.
[http://dx.doi.org/10.1369/0022155411404073] [PMID: 21430261]
[36]
Pereira-Dutra, F.S.; Teixeira, L.; de Souza Costa, M.F.; Bozza, P.T. Fat, fight, and beyond: The multiple roles of lipid droplets in infections and inflammation. J. Leukoc. Biol., 2019, 106(3), 563-580.
[http://dx.doi.org/10.1002/JLB.4MR0119-035R] [PMID: 31121077]
[37]
Silva, A.R.; Pacheco, P.; Vieira-de-Abreu, A.; Maya-Monteiro, C.M.; D’Alegria, B.; Magalhães, K.G.; de Assis, E.F.; Bandeira-Melo, C.; Castro-Faria-Neto, H.C.; Bozza, P.T. Lipid bodies in oxidized LDL-induced foam cells are leukotriene-synthesizing organelles: A MCP-1/CCL2 regulated phenomenon. Biochim. Biophys. Acta, 2009, 1791(11), 1066-1075.
[http://dx.doi.org/10.1016/j.bbalip.2009.06.004] [PMID: 19573621]
[38]
D’Avila, H.; Melo, R.C.; Parreira, G.G.; Werneck-Barroso, E.; Castro-Faria-Neto, H.C.; Bozza, P.T. Mycobacterium bovis bacillus Calmette-Guérin induces TLR2-mediated formation of lipid bodies: Intracellular domains for eicosanoid synthesis in vivo. J. Immunol., 2006, 176(5), 3087-3097.
[http://dx.doi.org/10.4049/jimmunol.176.5.3087] [PMID: 16493068]
[39]
Almeida, P.E.; Silva, A.R.; Maya-Monteiro, C.M.; Töröcsik, D.; D’Avila, H.; Dezsö, B.; Magalhães, K.G.; Castro-Faria-Neto, H.C.; Nagy, L.; Bozza, P.T. Mycobacterium bovis bacillus Calmette-Guérin infection induces TLR2-dependent peroxisome proliferator-activated receptor gamma expression and activation: Functions in inflammation, lipid metabolism, and pathogenesis. J. Immunol., 2009, 183(2), 1337-1345.
[http://dx.doi.org/10.4049/jimmunol.0900365] [PMID: 19561094]
[40]
Roingeard, P.; Melo, R.C. Lipid droplet hijacking by intracellular pathogens. Cell. Microbiol., 2017, 19(1), C12688.
[http://dx.doi.org/10.1111/cmi.12688] [PMID: 27794207]
[41]
Divangahi, M.; Chen, M.; Gan, H.; Desjardins, D.; Hickman, T.T.; Lee, D.M.; Fortune, S.; Behar, S.M.; Remold, H.G. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat. Immunol., 2009, 10(8), 899-906.
[http://dx.doi.org/10.1038/ni.1758] [PMID: 19561612]
[42]
Stewart, C.R.; Stuart, L.M.; Wilkinson, K.; van Gils, J.M.; Deng, J.; Halle, A.; Rayner, K.J.; Boyer, L.; Zhong, R.; Frazier, W.A.; Lacy-Hulbert, A.; El Khoury, J.; Golenbock, D.T.; Moore, K.J. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol., 2010, 11(2), 155-161.
[http://dx.doi.org/10.1038/ni.1836] [PMID: 20037584]
[43]
Glatz, J.F.C.; Luiken, J.J.F.P.; Nabben, M. CD36 (SR-B2) as a target to treat lipid overload-induced cardiac dysfunction. J. Lipid Atheroscler., 2020, 9(1), 66-78.
[http://dx.doi.org/10.12997/jla.2020.9.1.66] [PMID: 32821722]
[44]
Lancaster, G.I.; Langley, K.G.; Berglund, N.A.; Kammoun, H.L.; Reibe, S.; Estevez, E.; Weir, J.; Mellett, N.A.; Pernes, G.; Conway, J.R.W.; Lee, M.K.S.; Timpson, P.; Murphy, A.J.; Masters, S.L.; Gerondakis, S.; Bartonicek, N.; Kaczorowski, D.C.; Dinger, M.E.; Meikle, P.J.; Bond, P.J.; Febbraio, M.A. Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab., 2018, 27(5), 1096-1110.e5.
[http://dx.doi.org/10.1016/j.cmet.2018.03.014] [PMID: 29681442]
[45]
Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; Espevik, T.; Lien, E.; Fitzgerald, K.A.; Rock, K.L.; Moore, K.J.; Wright, S.D.; Hornung, V.; Latz, E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464(7293), 1357-1361.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[46]
Robblee, M.M.; Kim, C.C.; Porter Abate, J.; Valdearcos, M.; Sandlund, K.L.; Shenoy, M.K.; Volmer, R.; Iwawaki, T.; Koliwad, S.K. Saturated fatty acids engage an ire1α-dependent pathway to activate the nlrp3 inflammasome in myeloid cells. Cell Rep., 2016, 14(11), 2611-2623.
[http://dx.doi.org/10.1016/j.celrep.2016.02.053] [PMID: 26971994]
[47]
Emanuel, R.; Sergin, I.; Bhattacharya, S.; Turner, J.; Epelman, S.; Settembre, C.; Diwan, A.; Ballabio, A.; Razani, B. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arterioscler. Thromb. Vasc. Biol., 2014, 34(9), 1942-1952.
[http://dx.doi.org/10.1161/ATVBAHA.114.303342] [PMID: 25060788]
[48]
Dang, E.V.; McDonald, J.G.; Russell, D.W.; Cyster, J.G. Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell, 2017, 171(5), 1057-1071.e11.
[http://dx.doi.org/10.1016/j.cell.2017.09.029] [PMID: 29033131]
[49]
Razani, B.; Feng, C.; Coleman, T.; Emanuel, R.; Wen, H.; Hwang, S.; Ting, J.P.; Virgin, H.W.; Kastan, M.B.; Semenkovich, C.F. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab., 2012, 15(4), 534-544.
[http://dx.doi.org/10.1016/j.cmet.2012.02.011] [PMID: 22440612]
[50]
Lehti, S.; Nguyen, S.D.; Belevich, I.; Vihinen, H.; Heikkilä, H.M.; Soliymani, R.; Käkelä, R.; Saksi, J.; Jauhiainen, M.; Grabowski, G.A.; Kummu, O.; Hörkkö, S.; Baumann, M.; Lindsberg, P.J.; Jokitalo, E.; Kovanen, P.T.; Öörni, K. Extracellular lipids accumulate in human carotid arteries as distinct three-dimensional structures and have proinflammatory properties. Am. J. Pathol., 2018, 188(2), 525-538.
[http://dx.doi.org/10.1016/j.ajpath.2017.09.019] [PMID: 29154769]
[51]
Kim, K.; Shim, D.; Lee, J.S.; Zaitsev, K.; Williams, J.W.; Kim, K.W.; Jang, M.Y.; Seok Jang, H.; Yun, T.J.; Lee, S.H.; Yoon, W.K.; Prat, A.; Seidah, N.G.; Choi, J.; Lee, S.P.; Yoon, S.H.; Nam, J.W.; Seong, J.K.; Oh, G.T.; Randolph, G.J.; Artyomov, M.N.; Cheong, C.; Choi, J.H. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ. Res., 2018, 123(10), 1127-1142.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312804] [PMID: 30359200]
[52]
Saenz-Pipaon, G.; Martinez-Aguilar, E.; Orbe, J.; González Miqueo, A.; Fernandez-Alonso, L.; Paramo, J.A.; Roncal, C. The role of circulating biomarkers in peripheral arterial disease. Int. J. Mol. Sci., 2021, 22(7), 3601.
[http://dx.doi.org/10.3390/ijms22073601] [PMID: 33808453]
[53]
Johnson, J.L.; Jenkins, N.P.; Huang, W.C.; Di Gregoli, K.; Sala-Newby, G.B.; Scholtes, V.P.; Moll, F.L.; Pasterkamp, G.; Newby, A.C. Relationship of MMP-14 and TIMP-3 expression with macrophage activation and human atherosclerotic plaque vulnerability. Mediators Inflamm., 2014, 2014, 276457.
[http://dx.doi.org/10.1155/2014/276457] [PMID: 25301980]
[54]
Crisby, M.; Nordin-Fredriksson, G.; Shah, P.K.; Yano, J.; Zhu, J.; Nilsson, J. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: Implications for plaque stabilization. Circulation, 2001, 103(7), 926-933.
[http://dx.doi.org/10.1161/01.CIR.103.7.926] [PMID: 11181465]
[55]
Niu, C.; Wang, X.; Zhao, M.; Cai, T.; Liu, P.; Li, J.; Willard, B.; Zu, L.; Zhou, E.; Li, Y.; Pan, B.; Yang, F.; Zheng, L. Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. J. Am. Heart Assoc., 2016, 5(10), e004099.
[http://dx.doi.org/10.1161/JAHA.116.004099] [PMID: 27792649]
[56]
Nguyen, M.A.; Karunakaran, D.; Geoffrion, M.; Cheng, H.S.; Tandoc, K.; Perisic Matic, L.; Hedin, U.; Maegdefessel, L.; Fish, J.E.; Rayner, K.J. Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration. Arterioscler. Thromb. Vasc. Biol., 2018, 38(1), 49-63.
[http://dx.doi.org/10.1161/ATVBAHA.117.309795] [PMID: 28882869]
[57]
Otsuka, F.; Yasuda, S.; Noguchi, T.; Ishibashi-Ueda, H. Pathology of coronary atherosclerosis and thrombosis. Cardiovasc. Diagn. Ther., 2016, 6(4), 396-408.
[http://dx.doi.org/10.21037/cdt.2016.06.01] [PMID: 27500096]
[58]
Pagán, A.J.; Ramakrishnan, L. Immunity and immunopathology in the tuberculous granuloma. Cold Spring Harb. Perspect. Med., 2014, 5(9), a018499.
[http://dx.doi.org/10.1101/cshperspect.a018499] [PMID: 25377142]
[59]
Hotamisligil, G.S. Endoplasmic reticulum stress and atherosclerosis. Nat. Med., 2010, 16(4), 396-399.
[http://dx.doi.org/10.1038/nm0410-396] [PMID: 20376052]
[60]
Brophy, M.L.; Dong, Y.; Wu, H.; Rahman, H.N.; Song, K.; Chen, H. Eating the dead to keep atherosclerosis at bay. Front. Cardiovasc. Med., 2017, 4, 2.
[http://dx.doi.org/10.3389/fcvm.2017.00002] [PMID: 28194400]
[61]
Kojima, Y.; Volkmer, J.P.; McKenna, K.; Civelek, M.; Lusis, A.J.; Miller, C.L.; Direnzo, D.; Nanda, V.; Ye, J.; Connolly, A.J.; Schadt, E.E.; Quertermous, T.; Betancur, P.; Maegdefessel, L.; Matic, L.P.; Hedin, U.; Weissman, I.L.; Leeper, N.J. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature, 2016, 536(7614), 86-90.
[http://dx.doi.org/10.1038/nature18935] [PMID: 27437576]
[62]
Driscoll, W.S.; Vaisar, T.; Tang, J.; Wilson, C.L.; Raines, E.W. Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype. Circ. Res., 2013, 113(1), 52-61.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.300683] [PMID: 23584255]
[63]
Cai, B.; Thorp, E.B.; Doran, A.C.; Sansbury, B.E.; Daemen, M.J.; Dorweiler, B.; Spite, M.; Fredman, G.; Tabas, I. MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. J. Clin. Invest., 2017, 127(2), 564-568.
[http://dx.doi.org/10.1172/JCI90520] [PMID: 28067670]
[64]
Pulanco, M.C.; Cosman, J.; Ho, M.M.; Huynh, J.; Fing, K.; Turcu, J.; Fraser, D.A. Complement protein C1q enhances macrophage foam cell survival and efferocytosis. J. Immunol., 2017, 198(1), 472-480.
[http://dx.doi.org/10.4049/jimmunol.1601445] [PMID: 27895181]
[65]
Liao, X.; Sluimer, J.C.; Wang, Y.; Subramanian, M.; Brown, K.; Pattison, J.S.; Robbins, J.; Martinez, J.; Tabas, I. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab., 2012, 15(4), 545-553.
[http://dx.doi.org/10.1016/j.cmet.2012.01.022] [PMID: 22445600]
[66]
Ravimohan, S.; Kornfeld, H.; Weissman, D.; Bisson, G.P. Tuberculosis and lung damage: From epidemiology to pathophysiology. Eur. Respir. Rev., 2018, 27(147), 170077.
[http://dx.doi.org/10.1183/16000617.0077-2017] [PMID: 29491034]
[67]
Kim, H.W.; Shi, H.; Winkler, M.A.; Lee, R.; Weintraub, N.L. Perivascular adipose tissue and vascular perturbation/atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2020, 40(11), 2569-2576.
[http://dx.doi.org/10.1161/ATVBAHA.120.312470] [PMID: 32878476]
[68]
Asghar, A.; Sheikh, N. Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell. Immunol., 2017, 315, 18-26.
[http://dx.doi.org/10.1016/j.cellimm.2017.03.001] [PMID: 28285710]
[69]
Villarroya, F.; Cereijo, R.; Gavaldà-Navarro, A.; Villarroya, J.; Giralt, M. Inflammation of brown/beige adipose tissues in obesity and metabolic disease. J. Intern. Med., 2018, 284(5), 492-504.
[http://dx.doi.org/10.1111/joim.12803] [PMID: 29923291]
[70]
Aouadi, M.; Vangala, P.; Yawe, J.C.; Tencerova, M.; Nicoloro, S.M.; Cohen, J.L.; Shen, Y.; Czech, M.P. Lipid storage by adipose tissue macrophages regulates systemic glucose tolerance. Am. J. Physiol. Endocrinol. Metab., 2014, 307(4), E374-E383.
[http://dx.doi.org/10.1152/ajpendo.00187.2014] [PMID: 24986598]
[71]
Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med., 2013, 11, 117.
[http://dx.doi.org/10.1186/1741-7015-11-117] [PMID: 23635324]
[72]
Summerhill, V.I.; Grechko, A.V.; Yet, S.F.; Sobenin, I.A.; Orekhov, A.N. The atherogenic role of circulating modified lipids in atherosclerosis. Int. J. Mol. Sci., 2019, 20(14), 3561.
[http://dx.doi.org/10.3390/ijms20143561] [PMID: 31330845]
[73]
Poznyak, A.V.; Wu, W.K.; Melnichenko, A.A.; Wetzker, R.; Sukhorukov, V.; Markin, A.M.; Khotina, V.A.; Orekhov, A.N. Signaling pathways and key genes involved in regulation of foam cell formation in atherosclerosis. Cells, 2020, 9(3), 584.
[http://dx.doi.org/10.3390/cells9030584] [PMID: 32121535]
[74]
Erqou, S.; Kaptoge, S.; Perry, P.L.; Di Angelantonio, E.; Thompson, A.; White, I.R.; Marcovina, S.M.; Collins, R.; Thompson, S.G.; Danesh, J. Emerging Risk Factors Collaboration. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA, 2009, 302(4), 412-423.
[http://dx.doi.org/10.1001/jama.2009.1063] [PMID: 19622820]
[75]
Moore, K.J.; Freeman, M.W. Scavenger receptors in atherosclerosis: Beyond lipid uptake. Arterioscler. Thromb. Vasc. Biol., 2006, 26(8), 1702-1711.
[http://dx.doi.org/10.1161/01.ATV.0000229218.97976.43] [PMID: 16728653]
[76]
Virella, G.; Wilson, K.; Elkes, J.; Hammad, S.M.; Rajab, H.A.; Li, Y.; Chassereau, C.; Huang, Y.; Lopes-Virella, M. Immune complexes containing malondialdehyde (MDA) LDL induce apoptosis in human macrophages. Clin. Immunol., 2018, 187, 1-9.
[http://dx.doi.org/10.1016/j.clim.2017.06.010] [PMID: 28689783]
[77]
Park, Y.M. CD36, a scavenger receptor implicated in atherosclerosis. Exp. Mol. Med., 2014, 46(6), e99.
[http://dx.doi.org/10.1038/emm.2014.38] [PMID: 24903227]
[78]
Ackers, I.; Szymanski, C.; Duckett, K.J.; Consitt, L.A.; Silver, M.J.; Malgor, R. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis. Cardiovasc. Pathol., 2018, 34, 1-8.
[http://dx.doi.org/10.1016/j.carpath.2018.01.008] [PMID: 29474941]
[79]
Reustle, A.; Torzewski, M. Role of p38 MAPK in atherosclerosis and aortic valve sclerosis. Int. J. Mol. Sci., 2018, 19(12), 3761.
[http://dx.doi.org/10.3390/ijms19123761] [PMID: 30486366]
[80]
Banerjee, D.; Sinha, A.; Saikia, S.; Gogoi, B.; Rathore, A.K.; Das, A.S.; Pal, D.; Buragohain, A.K.; Dasgupta, S. Inflammation-induced mTORC2-Akt-mTORC1 signaling promotes macrophage foam cell formation. Biochimie, 2018, 151, 139-149.
[http://dx.doi.org/10.1016/j.biochi.2018.06.001] [PMID: 29883748]
[81]
Singh, R.K.; Haka, A.S.; Asmal, A.; Barbosa-Lorenzi, V.C.; Grosheva, I.; Chin, H.F.; Xiong, Y.; Hla, T.; Maxfield, F.R. TLR4 (Toll-Like Receptor 4)-dependent signaling drives extracellular catabolism of LDL (Low-Density Lipoprotein). Aggregates. Arterioscler. Thromb. Vasc. Biol., 2020, 40(1), 86-102.
[http://dx.doi.org/10.1161/ATVBAHA.119.313200] [PMID: 31597445]
[82]
Sorrentino, R.; Morello, S.; Chen, S.; Bonavita, E.; Pinto, A. The activation of liver X receptors inhibits toll-like receptor-9-induced foam cell formation. J. Cell. Physiol., 2010, 223(1), 158-167.
[http://dx.doi.org/10.1002/jcp.22022] [PMID: 20049870]
[83]
Tertov, V.V.; Sobenin, I.A.; Gabbasov, Z.A.; Popov, E.G.; Orekhov, A.N. Lipoprotein aggregation as an essential condition of intracellular lipid accumulation caused by modified low density lipoproteins. Biochem. Biophys. Res. Commun., 1989, 163(1), 489-494.
[http://dx.doi.org/10.1016/0006-291X(89)92163-3] [PMID: 2775281]
[84]
Tertov, V.V.; Orekhov, A.N.; Sobenin, I.A.; Gabbasov, Z.A.; Popov, E.G.; Yaroslavov, A.A.; Smirnov, V.N. Three types of naturally occurring modified lipoproteins induce intracellular lipid accumulation due to lipoprotein aggregation. Circ. Res., 1992, 71(1), 218-228.
[http://dx.doi.org/10.1161/01.RES.71.1.218] [PMID: 1606664]
[85]
McLaren, J.E.; Michael, D.R.; Ashlin, T.G.; Ramji, D.P. Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Prog. Lipid Res., 2011, 50(4), 331-347.
[http://dx.doi.org/10.1016/j.plipres.2011.04.002] [PMID: 21601592]
[86]
Phillips, M.C. Molecular mechanisms of cellular cholesterol efflux. J. Biol. Chem., 2014, 289(35), 24020-24029.
[http://dx.doi.org/10.1074/jbc.R114.583658] [PMID: 25074931]
[87]
Jiang, M.; Sun, X.; Liu, S.; Tang, Y.; Shi, Y.; Bai, Y.; Wang, Y.; Yang, Q.; Yang, Q.; Jiang, W.; Yuan, H.; Jiang, Q.; Cai, J. Caspase-11-gasdermin D-mediated pyroptosis is involved in the pathogenesis of atherosclerosis. Front. Pharmacol., 2021, 12, 657486.
[http://dx.doi.org/10.3389/fphar.2021.657486] [PMID: 33981234]
[88]
Yu, X.H.; Qian, K.; Jiang, N.; Zheng, X.L.; Cayabyab, F.S.; Tang, C.K. ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin. Chim. Acta, 2014, 428, 82-88.
[http://dx.doi.org/10.1016/j.cca.2013.11.010] [PMID: 24252657]
[89]
Nègre-Salvayre, A.; Fitoussi, G.; Réaud, V.; Pieraggi, M.T.; Thiers, J.C.; Salvayre, R. A delayed and sustained rise of cytosolic calcium is elicited by oxidized LDL in cultured bovine aortic endothelial cells. FEBS Lett., 1992, 299(1), 60-65.
[http://dx.doi.org/10.1016/0014-5793(92)80101-L] [PMID: 1544476]
[90]
Zhao, B.; Ehringer, W.D.; Dierichs, R.; Miller, F.N. Oxidized low-density lipoprotein increases endothelial intracellular calcium and alters cytoskeletal f-actin distribution. Eur. J. Clin. Invest., 1997, 27(1), 48-54.
[http://dx.doi.org/10.1046/j.1365-2362.1997.750628.x] [PMID: 9041377]
[91]
Liu, J.; Thewke, D.P.; Su, Y.R.; Linton, M.F.; Fazio, S.; Sinensky, M.S. Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler. Thromb. Vasc. Biol., 2005, 25(1), 174-179.
[http://dx.doi.org/10.1161/01.ATV.0000148548.47755.22] [PMID: 15499039]
[92]
Arai, S.; Shelton, J.M.; Chen, M.; Bradley, M.N.; Castrillo, A.; Bookout, A.L.; Mak, P.A.; Edwards, P.A.; Mangelsdorf, D.J.; Tontonoz, P.; Miyazaki, T. A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development. Cell Metab., 2005, 1(3), 201-213.
[http://dx.doi.org/10.1016/j.cmet.2005.02.002] [PMID: 16054063]
[93]
Thorp, E.; Li, Y.; Bao, L.; Yao, P.M.; Kuriakose, G.; Rong, J.; Fisher, E.A.; Tabas, I. Brief report: Increased apoptosis in advanced atherosclerotic lesions of Apoe-/- mice lacking macrophage Bcl-2. Arterioscler. Thromb. Vasc. Biol., 2009, 29(2), 169-172.
[http://dx.doi.org/10.1161/ATVBAHA.108.176495] [PMID: 18988889]
[94]
Tabas, I. Macrophage apoptosis in atherosclerosis: Consequences on plaque progression and the role of endoplasmic reticulum stress. Antioxid. Redox Signal., 2009, 11(9), 2333-2339.
[http://dx.doi.org/10.1089/ars.2009.2469] [PMID: 19243235]
[95]
Yin, C.; Heit, B. Cellular Responses to the Efferocytosis of Apoptotic Cells. Front. Immunol., 2021, 12, 631714.
[http://dx.doi.org/10.3389/fimmu.2021.631714] [PMID: 33959122]
[96]
A-González. N.; Castrillo, A. Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim. Biophys. Acta, 2011, 1812(8), 982-994.
[http://dx.doi.org/10.1016/j.bbadis.2010.12.015] [PMID: 21193033]
[97]
Zahuczky, G.; Kristóf, E.; Majai, G.; Fésüs, L. Differentiation and glucocorticoid regulated apopto-phagocytic gene expression patterns in human macrophages. Role of Mertk in enhanced phagocytosis. PLoS One, 2011, 6(6), e21349.
[http://dx.doi.org/10.1371/journal.pone.0021349] [PMID: 21731712]
[98]
Majai, G.; Sarang, Z.; Csomós, K.; Zahuczky, G.; Fésüs, L. PPARgamma-dependent regulation of human macrophages in phagocytosis of apoptotic cells. Eur. J. Immunol., 2007, 37(5), 1343-1354.
[http://dx.doi.org/10.1002/eji.200636398] [PMID: 17407194]
[99]
Joffre, J.; Potteaux, S.; Zeboudj, L.; Loyer, X.; Boufenzer, A.; Laurans, L.; Esposito, B.; Vandestienne, M.; de Jager, S.C.; Hénique, C.; Zlatanova, I.; Taleb, S.; Bruneval, P.; Tedgui, A.; Mallat, Z.; Gibot, S.; Ait-Oufella, H. Genetic and pharmacological inhibition of TREM-1 limits the development of experimental atherosclerosis. J. Am. Coll. Cardiol., 2016, 68(25), 2776-2793.
[http://dx.doi.org/10.1016/j.jacc.2016.10.015] [PMID: 28007141]
[100]
Istvan, E.S.; Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science, 2001, 292(5519), 1160-1164.
[http://dx.doi.org/10.1126/science.1059344] [PMID: 11349148]
[101]
Reynolds, T.M.; Pottle, A.; Quoraishi, S.H. Current perspectives on the attainment of lipid modification goals relating to the use of statins and ezetimibe for the prevention of cardiovascular disease in the united kingdom. Vasc. Health Risk Manag., 2021, 17, 227-237.
[http://dx.doi.org/10.2147/VHRM.S269879] [PMID: 34054297]
[102]
Hofnagel, O.; Luechtenborg, B.; Weissen-Plenz, G.; Robenek, H. Statins and foam cell formation: Impact on LDL oxidation and uptake of oxidized lipoproteins via scavenger receptors. Biochim. Biophys. Acta, 2007, 1771(9), 1117-1124.
[http://dx.doi.org/10.1016/j.bbalip.2007.06.003] [PMID: 17690011]
[103]
Blake, G.J.; Ridker, P.M. Are statins anti-inflammatory? Curr. Control. Trials Cardiovasc. Med., 2000, 1(3), 161-165.
[http://dx.doi.org/10.1186/CVM-1-3-161] [PMID: 11714433]
[104]
Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M., Jr; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; Nordestgaard, B.G.; Shepherd, J.; Willerson, J.T.; Glynn, R.J. JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med., 2008, 359(21), 2195-2207.
[http://dx.doi.org/10.1056/NEJMoa0807646] [PMID: 18997196]
[105]
Baetta, R.; Camera, M.; Comparato, C.; Altana, C.; Ezekowitz, M.D.; Tremoli, E. Fluvastatin reduces tissue factor expression and macrophage accumulation in carotid lesions of cholesterol-fed rabbits in the absence of lipid lowering. Arterioscler. Thromb. Vasc. Biol., 2002, 22(4), 692-698.
[http://dx.doi.org/10.1161/01.ATV.0000012802.69414.A8] [PMID: 11950712]
[106]
Xenos, E.S.; Stevens, S.L.; Freeman, M.B.; Cassada, D.C.; Goldman, M.H. Nitric oxide mediates the effect of fluvastatin on intercellular adhesion molecule-1 and platelet endothelial cell adhesion molecule-1 expression on human endothelial cells. Ann. Vasc. Surg., 2005, 19(3), 386-392.
[http://dx.doi.org/10.1007/s10016-005-0011-7] [PMID: 15818460]
[107]
Weitz-Schmidt, G.; Welzenbach, K.; Brinkmann, V.; Kamata, T.; Kallen, J.; Bruns, C.; Cottens, S.; Takada, Y.; Hommel, U. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat. Med., 2001, 7(6), 687-692.
[http://dx.doi.org/10.1038/89058] [PMID: 11385505]
[108]
Umetani, N.; Kanayama, Y.; Okamura, M.; Negoro, N.; Takeda, T. Lovastatin inhibits gene expression of type-I scavenger receptor in THP-1 human macrophages. Biochim. Biophys. Acta, 1996, 1303(3), 199-206.
[http://dx.doi.org/10.1016/0005-2760(96)00098-7] [PMID: 8908154]
[109]
Martinet, W.; Coornaert, I.; Puylaert, P.; De Meyer, G.R.Y. macrophage death as a pharmacological target in atherosclerosis. Front. Pharmacol., 2019, 10, 306.
[http://dx.doi.org/10.3389/fphar.2019.00306] [PMID: 31019462]
[110]
Becirovic-Agic, M.; Chalise, U.; Daseke, M.J., II; Konfrst, S.; Salomon, J.D.; Mishra, P.K.; Lindsey, M.L. Infarct in the heart: what’s MMP-9 got to do with it? Biomolecules, 2021, 11(4), 491.
[http://dx.doi.org/10.3390/biom11040491] [PMID: 33805901]
[111]
Peeters, W.; Moll, F.L.; Vink, A.; van der Spek, P.J.; de Kleijn, D.P.; de Vries, J.P.; Verheijen, J.H.; Newby, A.C.; Pasterkamp, G. Collagenase matrix metalloproteinase-8 expressed in atherosclerotic carotid plaques is associated with systemic cardiovascular outcome. Eur. Heart J., 2011, 32(18), 2314-2325.
[http://dx.doi.org/10.1093/eurheartj/ehq517] [PMID: 21289041]
[112]
Laxton, R.C.; Hu, Y.; Duchene, J.; Zhang, F.; Zhang, Z.; Leung, K.Y.; Xiao, Q.; Scotland, R.S.; Hodgkinson, C.P.; Smith, K.; Willeit, J.; López-Otín, C.; Simpson, I.A.; Kiechl, S.; Ahluwalia, A.; Xu, Q.; Ye, S. A role of matrix metalloproteinase-8 in atherosclerosis. Circ. Res., 2009, 105(9), 921-929. [Erratum in: Circ Res. 2010, 106]. [1]. [, e1].
[http://dx.doi.org/10.1161/CIRCRESAHA.109.200279] [PMID: 19745165]
[113]
Wen, G.; An, W.; Chen, J.; Maguire, E.M.; Chen, Q.; Yang, F.; Pearce, S.W.A.; Kyriakides, M.; Zhang, L.; Ye, S.; Nourshargh, S.; Xiao, Q. Genetic and pharmacologic inhibition of the neutrophil elastase inhibits experimental atherosclerosis. J. Am. Heart Assoc., 2018, 7(4), e008187.
[http://dx.doi.org/10.1161/JAHA.117.008187] [PMID: 29437605]
[114]
Orozco, L.D.; Kapturczak, M.H.; Barajas, B.; Wang, X.; Weinstein, M.M.; Wong, J.; Deshane, J.; Bolisetty, S.; Shaposhnik, Z.; Shih, D.M.; Agarwal, A.; Lusis, A.J.; Araujo, J.A. Heme oxygenase-1 expression in macrophages plays a beneficial role in atherosclerosis. Circ. Res., 2007, 100(12), 1703-1711.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.151720] [PMID: 17495224]
[115]
Tsai, J.Y.; Su, K.H.; Shyue, S.K.; Kou, Y.R.; Yu, Y.B.; Hsiao, S.H.; Chiang, A.N.; Wu, Y.L.; Ching, L.C.; Lee, T.S. EGb761 ameliorates the formation of foam cells by regulating the expression of SR-A and ABCA1: role of haem oxygenase-1. Cardiovasc. Res., 2010, 88(3), 415-423.
[http://dx.doi.org/10.1093/cvr/cvq226] [PMID: 20615914]
[116]
Durante, W. Targeting heme oxygenase-1 in the arterial response to injury and disease. Antioxidants, 2020, 9(9), 829.
[http://dx.doi.org/10.3390/antiox9090829] [PMID: 32899732]
[117]
Chaea, H.J.; Kim, H.R.; Kang, Y.J.; Hyun, K.C.; Kim, H.J.; Seo, H.G.; Lee, J.H.; Yun-Choi, H.S.; Chang, K.C. Heme oxygenase-1 induction by (S)-enantiomer of YS-51 (YS-51S), a synthetic isoquinoline alkaloid, inhibits nitric oxide production and nuclear factor-kappaB translocation in ROS 17/2.8 cells activated with inflammatory stimulants. Int. Immunopharmacol., 2007, 7(12), 1559-1568.
[http://dx.doi.org/10.1016/j.intimp.2007.07.023] [PMID: 17920533]
[118]
Datla, S.R.; Dusting, G.J.; Mori, T.A.; Taylor, C.J.; Croft, K.D.; Jiang, F. Induction of heme oxygenase-1 in vivo suppresses NADPH oxidase derived oxidative stress. Hypertension, 2007, 50(4), 636-642.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.092296] [PMID: 17679649]
[119]
Mo, Z.C.; Xiao, J.; Liu, X.H.; Hu, Y.W.; Li, X.X.; Yi, G.H.; Wang, Z.; Tang, Y.L.; Liao, D.F.; Tang, C.K. AOPPs inhibits cholesterol efflux by down-regulating ABCA1 expression in a JAK/STAT signaling pathway-dependent manner. J. Atheroscler. Thromb., 2011, 18(9), 796-807.
[http://dx.doi.org/10.5551/jat.6569] [PMID: 21670559]
[120]
Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Rosuvastatin blocks advanced glycation end products-elicited reduction of macrophage cholesterol efflux by suppressing NADPH oxidase activity via inhibition of geranylgeranylation of Rac-1. Horm. Metab. Res., 2011, 43(9), 619-624.
[http://dx.doi.org/10.1055/s-0031-1283148] [PMID: 21823057]
[121]
Ziegler, D.; Ametov, A.; Barinov, A.; Dyck, P.J.; Gurieva, I.; Low, P.A.; Munzel, U.; Yakhno, N.; Raz, I.; Novosadova, M.; Maus, J.; Samigullin, R. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care, 2006, 29(11), 2365-2370.
[http://dx.doi.org/10.2337/dc06-1216] [PMID: 17065669]
[122]
Lee, W.R.; Kim, A.; Kim, K.S.; Park, Y.Y.; Park, J.H.; Kim, K.H.; Kim, S.J.; Park, K.K. Alpha-lipoic acid attenuates atherosclerotic lesions and inhibits proliferation of vascular smooth muscle cells through targeting of the Ras/MEK/ERK signaling pathway. Mol. Biol. Rep., 2012, 39(6), 6857-6866.
[http://dx.doi.org/10.1007/s11033-012-1511-5] [PMID: 22302393]
[123]
DiNicolantonio, J.J.; Bhat, A.G. OKeefe, J. Effects of spirulina on weight loss and blood lipids: a review. Open Heart, 2020, 7(1), e001003.
[http://dx.doi.org/10.1136/openhrt-2018-001003] [PMID: 32201580]
[124]
Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D. Kuča, K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch. Toxicol., 2016, 90(8), 1817-1840.
[http://dx.doi.org/10.1007/s00204-016-1744-5] [PMID: 27259333]
[125]
Riss, J.; Décordé, K.; Sutra, T.; Delage, M.; Baccou, J.C.; Jouy, N.; Brune, J.P.; Oréal, H.; Cristol, J.P.; Rouanet, J.M. Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J. Agric. Food Chem., 2007, 55(19), 7962-7967.
[http://dx.doi.org/10.1021/jf070529g] [PMID: 17696484]
[126]
McCarty, M.F. Salsalate may have broad utility in the prevention and treatment of vascular disorders and the metabolic syndrome. Med. Hypotheses, 2010, 75(3), 276-281.
[http://dx.doi.org/10.1016/j.mehy.2009.12.027] [PMID: 20080359]
[127]
Lu, L.; Liu, H.; Peng, J.; Gan, L.; Shen, L.; Zhang, Q.; Li, L.; Zhang, L.; Su, C.; Jiang, Y. Regulations of the key mediators in inflammation and atherosclerosis by aspirin in human macrophages. Lipids Health Dis., 2010, 9, 16.
[http://dx.doi.org/10.1186/1476-511X-9-16] [PMID: 20137092]
[128]
Goldfine, A.B.; Fonseca, V.; Jablonski, K.A.; Pyle, L.; Staten, M.A.; Shoelson, S.E. TINSAL-T2D (Targeting Inflammation Using Salsalate in Type 2 Diabetes) Study Team. The effects of salsalate on glycemic control in patients with type 2 diabetes: A randomized trial. Ann. Intern. Med., 2010, 152(6), 346-357.
[http://dx.doi.org/10.7326/0003-4819-152-6-201003160-00004] [PMID: 20231565]
[129]
Rocca, B.; Patrono, C. Aspirin in the primary prevention of cardiovascular disease in diabetes mellitus: A new perspective. Diabetes Res. Clin. Pract., 2020, 160, 108008.
[http://dx.doi.org/10.1016/j.diabres.2020.108008] [PMID: 31926190]
[130]
Dong, Y.; Li, X.; Liu, Y.; Gao, J.; Tao, J. The molecular targets of taurine confer anti-hyperlipidemic effects. Life Sci., 2021, 278, 119579.
[http://dx.doi.org/10.1016/j.lfs.2021.119579] [PMID: 33961852]
[131]
Li, X.; Yeh, V.; Molteni, V. Liver X receptor modulators: A review of recently patented compounds (2007 - 2009). Expert Opin. Ther. Pat., 2010, 20(4), 535-562.
[http://dx.doi.org/10.1517/13543771003621269] [PMID: 20302451]
[132]
Murakami, S. Taurine and atherosclerosis. Amino Acids, 2014, 46(1), 73-80.
[http://dx.doi.org/10.1007/s00726-012-1432-6] [PMID: 23224908]
[133]
Yamori, Y.; Taguchi, T.; Hamada, A.; Kunimasa, K.; Mori, H.; Mori, M. Taurine in health and diseases: Consistent evidence from experimental and epidemiological studies. J. Biomed. Sci., 2010, 17(1), S6.
[http://dx.doi.org/10.1186/1423-0127-17-S1-S6]
[134]
Cai, Y.; Xin, Q.; Lu, J.; Miao, Y.; Lin, Q.; Cong, W.; Chen, K. A New Therapeutic Candidate for Cardiovascular Diseases: Berberine. Front. Pharmacol., 2021, 12, 631100.
[http://dx.doi.org/10.3389/fphar.2021.631100] [PMID: 33815112]
[135]
Li, K.; Yao, W.; Zheng, X.; Liao, K. Berberine promotes the development of atherosclerosis and foam cell formation by inducing scavenger receptor A expression in macrophage. Cell Res., 2009, 19(8), 1006-1017.
[http://dx.doi.org/10.1038/cr.2009.76] [PMID: 19546885]
[136]
Huang, Z.; Dong, F.; Li, S.; Chu, M.; Zhou, H.; Lu, Z.; Huang, W. Berberine-induced inhibition of adipocyte enhancer-binding protein 1 attenuates oxidized low-density lipoprotein accumulation and foam cell formation in phorbol 12-myristate 13-acetate-induced macrophages. Eur. J. Pharmacol., 2012, 690(1-3), 164-169.
[http://dx.doi.org/10.1016/j.ejphar.2012.07.009] [PMID: 22796454]
[137]
Wang, S.; Xu, Z.; Cai, B.; Chen, Q. Berberine as a Potential Multi-Target Agent for Metabolic Diseases: A Review of Investigations for Berberine. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(6), 971-979.
[http://dx.doi.org/10.2174/1871530320666200910105612] [PMID: 32914727]
[138]
Malekmohammad, K.; Sewell, R.D.E.; Rafieian-Kopaei, M. Antioxidants and Atherosclerosis: Mechanistic Aspects. Biomolecules, 2019, 9(8), 301.
[http://dx.doi.org/10.3390/biom9080301] [PMID: 31349600]
[139]
Goszcz, K.; Deakin, S.J.; Duthie, G.G.; Stewart, D.; Leslie, S.J.; Megson, I.L. Antioxidants in Cardiovascular Therapy: Panacea or False Hope? Front. Cardiovasc. Med., 2015, 2, 29.
[http://dx.doi.org/10.3389/fcvm.2015.00029] [PMID: 26664900]
[140]
Lu, W.; Shi, Y.; Wang, R.; Su, D.; Tang, M.; Liu, Y.; Li, Z. Antioxidant activity and healthy benefits of natural pigments in fruits: a review. Int. J. Mol. Sci., 2021, 22(9), 4945.
[http://dx.doi.org/10.3390/ijms22094945] [PMID: 34066601]
[141]
Fuhrman, B.; Elis, A.; Aviram, M. Hypocholesterolemic effect of lycopene and beta-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophages. Biochem. Biophys. Res. Commun., 1997, 233(3), 658-662.
[http://dx.doi.org/10.1006/bbrc.1997.6520] [PMID: 9168909]
[142]
Rao, A.V. Lycopene, tomatoes, and the prevention of coronary heart disease. Exp. Biol. Med. (Maywood), 2002, 227(10), 908-913.
[http://dx.doi.org/10.1177/153537020222701011] [PMID: 12424333]
[143]
Carazo, A.; Macáková, K.; Matoušová, K. Krčmová, L.K.; Protti, M.; Mladěnka, P. Vitamin A update: Forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity. Nutrients, 1703, 13(5), 1703.
[http://dx.doi.org/10.3390/nu13051703]
[144]
Joshi, R.; Adhikari, S.; Patro, B.S.; Chattopadhyay, S.; Mukherjee, T. Free radical scavenging behavior of folic acid: Evidence for possible antioxidant activity. Free Radic. Biol. Med., 2001, 30(12), 1390-1399.
[http://dx.doi.org/10.1016/S0891-5849(01)00543-3] [PMID: 11390184]
[145]
Kataria, N.; Yadav, P.; Kumar, R.; Kumar, N.; Singh, M.; Kant, R.; Kalyani, V. Effect of vitamin B6, B9, and B12 supplementation on homocysteine level and cardiovascular outcomes in stroke patients: A meta-analysis of randomized controlled trials. Cureus, 2021, 13(5), e14958.
[http://dx.doi.org/10.7759/cureus.14958] [PMID: 34123655]
[146]
Thomson, M.J.; Puntmann, V.; Kaski, J.C. Atherosclerosis and oxidant stress: The end of the road for antioxidant vitamin treatment? Cardiovasc. Drugs Ther., 2007, 21(3), 195-210.
[http://dx.doi.org/10.1007/s10557-007-6027-1] [PMID: 17484034]
[147]
Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.K.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L.; Mladěnka, P. On Behalf Of The Oemonom. Vitamin C-sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients, 2021, 13(2), 615.
[http://dx.doi.org/10.3390/nu13020615] [PMID: 33668681]
[148]
Lykkesfeldt, J.; Christen, S.; Wallock, L.M.; Chang, H.H.; Jacob, R.A.; Ames, B.N. Ascorbate is depleted by smoking and repleted by moderate supplementation: A study in male smokers and nonsmokers with matched dietary antioxidant intakes. Am. J. Clin. Nutr., 2000, 71(2), 530-536.
[http://dx.doi.org/10.1093/ajcn/71.2.530] [PMID: 10648268]
[149]
Munteanu, A.; Zingg, J.M. Cellular, molecular and clinical aspects of vitamin E on atherosclerosis prevention. Mol. Aspects Med., 2007, 28(5-6), 538-590.
[http://dx.doi.org/10.1016/j.mam.2007.07.001] [PMID: 17825403]
[150]
Venugopal, S.K.; Devaraj, S.; Jialal, I. RRR-alpha-tocopherol decreases the expression of the major scavenger receptor, CD36, in human macrophages via inhibition of tyrosine kinase (Tyk2). Atherosclerosis, 2004, 175(2), 213-220.
[http://dx.doi.org/10.1016/j.atherosclerosis.2004.03.012] [PMID: 15262176]
[151]
Ungurianu, A.; Zanfirescu, A. Nițulescu, G.; Margină D. Vitamin e beyond its antioxidant label. Antioxidants, 2021, 10(5), 634.
[http://dx.doi.org/10.3390/antiox10050634] [PMID: 33919211]
[152]
Casas, R.; Castro-Barquero, S.; Estruch, R.; Sacanella, E. Nutrition and cardiovascular health. Int. J. Mol. Sci., 2018, 19(12), 3988.
[http://dx.doi.org/10.3390/ijms19123988] [PMID: 30544955]
[153]
Casas, R.; Estruch, R.; Sacanella, E. The protective effects of extra virgin olive oil on immune-mediated inflammatory responses. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(1), 23-35.
[http://dx.doi.org/10.2174/1871530317666171114115632] [PMID: 29141575]
[154]
Magrone, T.; Spagnoletta, A.; Salvatore, R.; Magrone, M.; Dentamaro, F.; Russo, M.A.; Difonzo, G.; Summo, C.; Caponio, F.; Jirillo, E. olive leaf extracts act as modulators of the human immune response. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(1), 85-93.
[http://dx.doi.org/10.2174/1871530317666171116110537] [PMID: 29149822]
[155]
Magrone, T.; Panaro, M.A.; Jirillo, E.; Covelli, V. Molecular effects elicited in vitro by red wine on human healthy peripheral blood mononuclear cells: Potential therapeutical application of polyphenols to diet-related chronic diseases. Curr. Pharm. Des., 2008, 14(26), 2758-2766.
[http://dx.doi.org/10.2174/138161208786264179] [PMID: 18991694]
[156]
Fraga, C.G.; Galleano, M.; Verstraeten, S.V.; Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med., 2010, 31(6), 435-445.
[http://dx.doi.org/10.1016/j.mam.2010.09.006] [PMID: 20854840]
[157]
Auger, C.; Kim, J.H.; Trinh, S.; Chataigneau, T.; Popken, A.M.; Schini-Kerth, V.B. Fruit juice-induced endothelium-dependent relaxations in isolated porcine coronary arteries: Evaluation of different fruit juices and purees and optimization of a red fruit juice blend. Food Funct., 2011, 2(5), 245-250.
[http://dx.doi.org/10.1039/c1fo10040h] [PMID: 21779562]
[158]
Grassi, D.; Desideri, G.; Ferri, C. Flavonoids: Antioxidants against atherosclerosis. Nutrients, 2010, 2(8), 889-902.
[http://dx.doi.org/10.3390/nu2080889] [PMID: 22254061]
[159]
Marzulli, G.; Magrone, T.; Kawaguchi, K.; Kumazawa, Y.; Jirillo, E. Fermented grape marc (FGM): Immunomodulating properties and its potential exploitation in the treatment of neurodegenerative diseases. Curr. Pharm. Des., 2012, 18(1), 43-50.
[http://dx.doi.org/10.2174/138161212798919011] [PMID: 22211687]
[160]
Magrone, T.; Magrone, M.; Russo, M.A.; Jirillo, E. Taking advantage of plant defense mechanisms to promote human health. exploitation of plant natural products for preventing or treating human disease. Second of two parts. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(11), 1961-1973.
[http://dx.doi.org/10.2174/1871530321666201229125400] [PMID: 33372886]
[161]
Rivera, L.; Morón, R.; Zarzuelo, A.; Galisteo, M. Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem. Pharmacol., 2009, 77(6), 1053-1063.
[http://dx.doi.org/10.1016/j.bcp.2008.11.027] [PMID: 19100718]
[162]
Du, Q.H.; Peng, C.; Zhang, H. Polydatin: A review of pharmacology and pharmacokinetics. Pharm. Biol., 2013, 51(11), 1347-1354.
[http://dx.doi.org/10.3109/13880209.2013.792849] [PMID: 23862567]
[163]
Ahmad, P.; Alvi, S.S.; Iqbal, D.; Khan, M.S. Insights into pharmacological mechanisms of polydatin in targeting risk factors-mediated atherosclerosis. Life Sci., 2020, 254, 117756.
[http://dx.doi.org/10.1016/j.lfs.2020.117756] [PMID: 32389832]
[164]
Mohammadian Haftcheshmeh, S.; Karimzadeh, M.R.; Azhdari, S.; Vahedi, P.; Abdollahi, E.; Momtazi-Borojeni, A.A. Modulatory effects of curcumin on the atherogenic activities of inflammatory monocytes: Evidence from in vitro and animal models of human atherosclerosis. Biofactors, 2020, 46(3), 341-355.
[http://dx.doi.org/10.1002/biof.1603] [PMID: 31875344]
[165]
Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr., 2005, 81(2), 341-354.
[http://dx.doi.org/10.1093/ajcn.81.2.341] [PMID: 15699220]
[166]
Casas, R.; Sacanella, E.; Estruch, R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr. Metab. Immune Disord. Drug Targets, 2014, 14(4), 245-254.
[http://dx.doi.org/10.2174/1871530314666140922153350] [PMID: 25244229]
[167]
Nocella, C.; Cammisotto, V.; Fianchini, L.; D’Amico, A.; Novo, M.; Castellani, V.; Stefanini, L.; Violi, F.; Carnevale, R. Extra virgin olive oil and cardiovascular diseases: benefits for human health. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(1), 4-13.
[http://dx.doi.org/10.2174/1871530317666171114121533] [PMID: 29141571]

© 2024 Bentham Science Publishers | Privacy Policy