Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Eosinophils Restrict Diesel Exhaust Particles-induced Cell Proliferation of Lung Epithelial A549 Cells via Interleukin-13 Mediated Mechanisms: Implications for Tissue Remodeling and Fibrosis

Author(s): Rituraj Niranjan*, Subramanian Muthukumaravel, Devaraju Panneer and Sanjay Kumar Ojha

Volume 25, Issue 10, 2022

Published on: 06 April, 2022

Page: [1682 - 1694] Pages: 13

DOI: 10.2174/1386207325666220105150655

Price: $65

Abstract

Background: Diesel exhaust particles (DEPs) affect lung physiology and cause serious damage to the lungs. A number of studies demonstrated that eosinophils play a very important role in the development of tissue remodeling and fibrosis of the lungs. However, the exact mechanism of pathogenesis of tissue remodeling and fibrosis is not known.

Methods: Both in vitro and in vivo models were used in the study. HL-60 and A549 cells were also utilized in the study. 8 to 12 weeks old BALB/c mice were used for the in vivo study. Cell viability by MTT assay and RNA isolation by tri reagent was accomplished. mRNA expression of inflammatory genes was accomplished by real-time PCR or qPCR. Immunohistochemistry was done to assess the localization and expressions of proteins. One-way ANOVA followed by a post hoc test was done for the statistical analysis. Graph-Pad prism 5 software was used for statistical analysis.

Results: For the first time, we demonstrate that interleukin-13 plays a very important role in the development of tissue remodeling and fibrosis. We report that diesel exhaust particles significantly induce eosinophils cell proliferation and interleukin-13 release in in vitro culture conditions. Supernatant collected from DEP-induced eosinophils cells significantly restricts cell proliferation of epithelial cells in response to exposure to diesel exhaust particles. Furthermore, purified interleukin-13 decreases the proliferation of A549 cells, highlighting the involvement of IL- 13 in tissue remodeling. Notably, Etoricoxib (selective COX-2 inhibitor) did not inhibit the DEPtriggered release of interleukin-13, suggesting another cell signaling pathway. The in vivo exposure of DEP to the lungs of mice resulted in a high level of eosinophils degranulation as depicted by the EPX-1 immunostaining and altered level of mRNA expressions of inflammatory genes. We also found that a-SMA, fibroblast specific protein (FSP-1), has been changed in response to DEP in the mice lungs along with the mediators of inflammation.

Conclusion: Altogether, we elucidated the mechanistic role of eosinophils and IL-13 in the DEP-triggered proliferation of lungs cells, thus providing an insight into the pathophysiology of tissue remodeling and fibrosis of lungs.

Keywords: Diesel exhaust particles, interleukin-13, tissue remodeling and fibrosis, cell proliferation, lung epithelial cells, eosinophils.

Graphical Abstract

[1]
Baulig, A.; Blanchet, S.; Rumelhard, M.; Lacroix, G.; Marano, F.; Baeza-Squiban, A. Fine urban atmospheric particulate matter modulates inflammatory gene and protein expression in human bronchial epithelial cells. Front. Biosci., 2007, 12, 771-782.
[http://dx.doi.org/10.2741/2100] [PMID: 17127337]
[2]
Liu, J.; Ye, X.; Ji, D.; Zhou, X.; Qiu, C.; Liu, W.; Yu, L. Diesel exhaust inhalation exposure induces pulmonary arterial hypertension in mice. Environ. Pollut., 2018, 237, 747-755.
[http://dx.doi.org/10.1016/j.envpol.2017.10.121] [PMID: 29137886]
[3]
Niranjan, R.; Thakur, A.K. The toxicological mechanisms of environmental soot (black carbon) and carbon black: Focus on oxidative stress and inflammatory pathways. Front. Immunol., 2017, 8, 763.
[http://dx.doi.org/10.3389/fimmu.2017.00763] [PMID: 28713383]
[4]
Kim, B.G.; Lee, P.H.; Lee, S.H.; Kim, Y.E.; Shin, M.Y.; Kang, Y.; Bae, S.H.; Kim, M.J.; Rhim, T.; Park, C.S.; Jang, A.S. Long-term effects of diesel exhaust particles on airway inflammation and remodeling in a mouse model. Allergy Asthma Immunol. Res., 2016, 8(3), 246-256.
[http://dx.doi.org/10.4168/aair.2016.8.3.246] [PMID: 26922935]
[5]
Van Winkle, L.S.; Brown, C.D.; Shimizu, J.A.; Gunderson, A.D.; Evans, M.J.; Plopper, C.G. Impaired recovery from naphthalene-induced bronchiolar epithelial injury in mice exposed to aged and diluted sidestream cigarette smoke. Toxicol. Lett., 2004, 154(1-2), 1-9.
[http://dx.doi.org/10.1016/j.toxlet.2004.06.007] [PMID: 15475173]
[6]
Wichmann, H.E. Diesel exhaust particles. Inhal. Toxicol., 2007, 19(Suppl. 1), 241-244.
[http://dx.doi.org/10.1080/08958370701498075] [PMID: 17886072]
[7]
Gregory, D.J.; Kobzik, L.; Yang, Z.; McGuire, C.C.; Fedulov, A.V. Transgenerational transmission of asthma risk after exposure to envi-ronmental particles during pregnancy. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 313(2), L395-L405.
[http://dx.doi.org/10.1152/ajplung.00035.2017] [PMID: 28495853]
[8]
Peden, D.B.; Bush, R.K. Advances in environmental and occupational disorders in 2013. J. Allergy Clin. Immunol., 2014, 133(5), 1265-1269.
[http://dx.doi.org/10.1016/j.jaci.2014.02.027] [PMID: 24766874]
[9]
Alexis, N.E.; Carlsten, C. Interplay of air pollution and asthma immunopathogenesis: A focused review of diesel exhaust and ozone. Int. Immunopharmacol., 2014, 23(1), 347-355.
[http://dx.doi.org/10.1016/j.intimp.2014.08.009] [PMID: 25194677]
[10]
Inoue, K.; Takano, H.; Ichinose, T.; Tomura, S.; Yanagisawa, R.; Sakurai, M.; Sumi, D.; Cho, A.K.; Hiyoshi, K.; Kumagai, Y. Effects of naphthoquinone on airway responsiveness in the presence or absence of antigen in mice. Arch. Toxicol., 2007, 81(8), 575-581.
[http://dx.doi.org/10.1007/s00204-007-0186-5] [PMID: 17318628]
[11]
Amin, K.; Ekberg-Jansson, A.; Löfdahl, C.G.; Venge, P. Relationship between inflammatory cells and structural changes in the lungs of asymptomatic and never smokers: A biopsy study. Thorax, 2003, 58(2), 135-142.
[http://dx.doi.org/10.1136/thorax.58.2.135] [PMID: 12554896]
[12]
Wooding, D.J.; Ryu, M.H.; Li, H.; Alexis, N.E.; Pena, O.; Carlsten, C. Acute air pollution exposure alters neutrophils in never-smokers and at-risk humans. Eur. Respir. J., 2020, 55(4), 55.
[http://dx.doi.org/10.1183/13993003.01495-2019] [PMID: 31806722]
[13]
Van Den Broucke, S.; Vanoirbeek, J.; Alfaro-Moreno, E.; Hoet, P. Contribution of mast cells in irritant-induced airway epithelial barrier impairment in vitro. Toxicol. Ind. Health, 2020, 36(10), 823-834.
[http://dx.doi.org/10.1177/0748233720948771] [PMID: 32840447]
[14]
Mavi, P.; Niranjan, R.; Dutt, P.; Zaidi, A.; Shukla, J.S.; Korfhagen, T.; Mishra, A. Allergen-induced resistin-like molecule-α promotes esophageal epithelial cell hyperplasia in eosinophilic esophagitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307(5), G499-G507.
[http://dx.doi.org/10.1152/ajpgi.00141.2014] [PMID: 24994859]
[15]
Venkateshaiah, S.U.; Mishra, A.; Manohar, M.; Verma, A.K.; Rajavelu, P.; Niranjan, R.; Wild, L.G.; Parada, N.A.; Blecker, U.; Lasky, J.A.; Mishra, A. A critical role for IL-18 in transformation and maturation of naive eosinophils to pathogenic eosinophils. J. Allergy Clin. Immunol., 2018, 142(1), 301-305.
[http://dx.doi.org/10.1016/j.jaci.2018.02.011] [PMID: 29499224]
[16]
Mavi, P.; Niranjan, R.; Dutt, P.; Zaidi, A.; Shukla, J.S.; Korfhagen, T.; Mishra, A. Allergen-induced resistin-like molecule- promotes esophageal epithelial cell hyperplasia in eosinophilic esophagitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2015, 309(4), G281.
[PMID: 26276974]
[17]
Vohralik, E.J.; Psaila, A.M.; Knights, A.J.; Quinlan, K.G.R. EoTHINophils: Eosinophils as key players in adipose tissue homeostasis. Clin. Exp. Pharmacol. Physiol., 2020, 47(8), 1495-1505.
[http://dx.doi.org/10.1111/1440-1681.13304] [PMID: 32163614]
[18]
Clark, K.; Simson, L.; Newcombe, N.; Koskinen, A.M.; Mattes, J.; Lee, N.A.; Lee, J.J.; Dent, L.A.; Matthaei, K.I.; Foster, P.S. Eosinophil degranulation in the allergic lung of mice primarily occurs in the airway lumen. J. Leukoc. Biol., 2004, 75(6), 1001-1009.
[http://dx.doi.org/10.1189/jlb.0803391] [PMID: 15020648]
[19]
Upparahalli Venkateshaiah, S.; Niranjan, R.; Manohar, M.; Verma, A.K.; Kandikattu, H.K.; Lasky, J.A.; Mishra, A. Attenuation of aller-gen-, IL-13-, and TGF-α-induced lung fibrosis after the treatment of rIL-15 in mice. Am. J. Respir. Cell Mol. Biol., 2019, 61(1), 97-109.
[http://dx.doi.org/10.1165/rcmb.2018-0254OC] [PMID: 30702923]
[20]
Yanagisawa, R.; Koike, E.; Ichinose, T.; Takano, H. Obese mice are resistant to eosinophilic airway inflammation induced by diesel ex-haust particles. J. Appl. Toxicol., 2014, 34(6), 688-694.
[http://dx.doi.org/10.1002/jat.2925] [PMID: 24105835]
[21]
Niranjan, R.; Mishra, K.P.; Tripathi, S.N.; Thakur, A.K. Proliferation of lung epithelial cells is regulated by the mechanisms of autophagy upon exposure of soots. Front. Cell Dev. Biol., 2021, 9, 662597.
[http://dx.doi.org/10.3389/fcell.2021.662597] [PMID: 34368122]
[22]
Qian, Q.; Chowdhury, B.P.; Sun, Z.; Lenberg, J.; Alam, R.; Vivier, E.; Gorska, M.M. Maternal diesel particle exposure promotes offspring asthma through NK cell-derived granzyme B. J. Clin. Invest., 2020, 130(8), 4133-4151.
[http://dx.doi.org/10.1172/JCI130324] [PMID: 32407293]
[23]
Lee, H.S.; Park, D.E.; Lee, J.W.; Sohn, K.H.; Cho, S.H.; Park, H.W. Role of interleukin-23 in the development of nonallergic eosinophilic inflammation in a murine model of asthma. Exp. Mol. Med., 2020, 52(1), 92-104.
[http://dx.doi.org/10.1038/s12276-019-0361-9] [PMID: 31956268]
[24]
Brandt, E.B.; Bolcas, P.E.; Ruff, B.P.; Khurana Hershey, G.K. IL33 contributes to diesel pollution-mediated increase in experimental asthma severity. Allergy, 2020, 75(9), 2254-2266.
[http://dx.doi.org/10.1111/all.14181] [PMID: 31922608]
[25]
Wang, X.; Xu, C.; Ji, J.; Cai, Y.; Shu, Y.; Chao, Y.; Wu, X.; Zou, C.; Wu, X.; Tang, L. IL-4/IL-13 upregulates Sonic hedgehog expression to induce allergic airway epithelial remodeling. Am. J. Physiol. Lung Cell. Mol. Physiol., 2020, 318(5), L888-L899.
[http://dx.doi.org/10.1152/ajplung.00186.2019] [PMID: 32130032]
[26]
Niranjan, R.; Rayapudi, M.; Mishra, A.; Dutt, P.; Dynda, S.; Mishra, A. Pathogenesis of allergen-induced eosinophilic esophagitis is inde-pendent of interleukin (IL)-13. Immunol. Cell Biol., 2013, 91(6), 408-415.
[http://dx.doi.org/10.1038/icb.2013.21] [PMID: 23689305]
[27]
Abe, S.; Sato, S.; Aono, Y.; Azuma, M.; Kishi, M.; Koyama, K.; Takahashi, N.; Kagawa, K.; Kawano, H.; Nishioka, Y. Functional analysis of human fibrocytes derived from monocytes reveals their profibrotic phenotype through paracrine effects. J. Med. Invest., 2020, 67(1.2), 102-112.
[http://dx.doi.org/10.2152/jmi.67.102] [PMID: 32378592]
[28]
Acharya, K.R.; Ackerman, S.J. Eosinophil granule proteins: Form and function. J. Biol. Chem., 2014, 289(25), 17406-17415.
[http://dx.doi.org/10.1074/jbc.R113.546218] [PMID: 24802755]
[29]
Alvarez-Simón, D.; Muñoz, X.; Gómez-Ollés, S.; de Homdedeu, M.; Untoria, M.D.; Cruz, M.J. Effects of diesel exhaust particle exposure on a murine model of asthma due to soybean. PLoS One, 2017, 12(6), e0179569.
[http://dx.doi.org/10.1371/journal.pone.0179569] [PMID: 28628664]
[30]
Babu, D.; Morgan, A.G.; Reiz, B.; Whittal, R.M.; Almas, S.; Lacy, P.; Siraki, A.G. Eosinophil peroxidase oxidizes isoniazid to form the active metabolite against M. tuberculosis, isoniazid-NAD. Chem. Biol. Interact., 2019, 305, 48-53.
[http://dx.doi.org/10.1016/j.cbi.2019.03.019] [PMID: 30922765]
[31]
Bjornsson, E.; Janson, C.; Hakansson, L.; Enander, I.; Venge, P.; Boman, G. Eosinophil peroxidase: A new serum marker of atopy and bronchial hyper-responsiveness. Respir. Med., 1996, 90(1), 39-46.
[http://dx.doi.org/10.1016/S0954-6111(96)90243-7] [PMID: 8857325]
[32]
Niranjan, R.; Thakur, A.K.; Mishra, A. Food allergy and eosinophilic esophagitis in India: Lack of diagnosis. Indian J. Gastroenterol., 2016, 35(1), 72-73.
[http://dx.doi.org/10.1007/s12664-016-0629-0] [PMID: 26873086]
[33]
Duguet, A.; Iijima, H.; Eum, S.Y.; Hamid, Q.; Eidelman, D.H. Eosinophil peroxidase mediates protein nitration in allergic airway inflam-mation in mice. Am. J. Respir. Crit. Care Med., 2001, 164(7), 1119-1126.
[http://dx.doi.org/10.1164/ajrccm.164.7.2010085] [PMID: 11673196]
[34]
Yan, D.; Liu, X.; Xu, H.; Guo, S.W. Platelets induce endothelial-mesenchymal transition and subsequent fibrogenesis in endometriosis. Reprod. Biomed. Online, 2020, 41(3), 500-517.
[http://dx.doi.org/10.1016/j.rbmo.2020.03.020] [PMID: 32709523]
[35]
Niranjan, R.; Nath, C.; Shukla, R. Guggulipid and nimesulide differentially regulated inflammatory genes mRNA expressions via inhibition of NF-kB and CHOP activation in LPS-stimulated rat astrocytoma cells, C6. Cell. Mol. Neurobiol., 2011, 31(5), 755-764.
[http://dx.doi.org/10.1007/s10571-011-9684-3] [PMID: 21461920]
[36]
Niranjan, R.; Nagarajan, R.; Hanif, K.; Nath, C.; Shukla, R. LPS induces mediators of neuroinflammation, cell proliferation, and GFAP expression in human astrocytoma cells U373MG: The anti-inflammatory and anti-proliferative effect of guggulipid. Neurol. Sci., 2014, 35(3), 409-414.
[http://dx.doi.org/10.1007/s10072-013-1530-6] [PMID: 24013551]
[37]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[38]
Konstantinidis, A.K.; Puddicombe, S.M.; Mochizuki, A.; Sheth, P.D.; Yang, I.A.; Yoshisue, H.; Wilson, S.J.; Davies, D.E.; Holgate, S.T.; Holloway, J.W. Cellular localization of interleukin 13 receptor alpha2 in human primary bronchial epithelial cells and fibroblasts. J. Investig. Allergol. Clin. Immunol., 2008, 18(3), 174-180.
[PMID: 18564628]
[39]
Niranjan, R.; Rajavelu, P.; Ventateshaiah, S.U.; Shukla, J.S.; Zaidi, A.; Mariswamy, S.J.; Mattner, J.; Fortgang, I.; Kowalczyk, M.; Balart, L.; Shukla, A.; Mishra, A. Involvement of interleukin-18 in the pathogenesis of human eosinophilic esophagitis. Clin. Immunol., 2015, 157(2), 103-113.
[http://dx.doi.org/10.1016/j.clim.2015.01.007] [PMID: 25638412]
[40]
Han, X.P.; Zhang, F.Q.; Tan, X.S.; Liu, L.; Ma, W.X.; Ou-Yang, H.F.; Wu, C.G. EPO modified MSCs can inhibit asthmatic airway remodel-ing in an animal model. J. Cell. Biochem., 2018, 119(1), 1008-1016.
[http://dx.doi.org/10.1002/jcb.26268] [PMID: 28686347]
[41]
Lee, M.Y.; Ahn, K.S.; Kwon, O.K.; Kim, M.J.; Kim, M.K.; Lee, I.Y.; Oh, S.R.; Lee, H.K. Anti-inflammatory and anti-allergic effects of kefir in a mouse asthma model. Immunobiology, 2007, 212(8), 647-654.
[http://dx.doi.org/10.1016/j.imbio.2007.05.004] [PMID: 17869642]
[42]
Rayapudi, M.; Rajavelu, P.; Zhu, X.; Kaul, A.; Niranjan, R.; Dynda, S.; Mishra, A.; Mattner, J.; Zaidi, A.; Dutt, P.; Mishra, A. Invariant natural killer T-cell neutralization is a possible novel therapy for human eosinophilic esophagitis. Clin. Transl. Immunology, 2014, 3(1), e9.
[http://dx.doi.org/10.1038/cti.2013.13] [PMID: 25505954]
[43]
Ma, Y.; Halayko, A.J.; Basu, S.; Guan, Q.; Weiss, C.R.; Ma, A.G. HayGlass, K.T.; Becker, A.B.; Warrington, R.J.; Peng, Z. Sustained sup-pression of IL-13 by a vaccine attenuates airway inflammation and remodeling in mice. Am. J. Respir. Cell Mol. Biol., 2013, 48(5), 540-549.
[http://dx.doi.org/10.1165/rcmb.2012-0060OC] [PMID: 23470628]
[44]
Zuo, L.; Fulkerson, P.C.; Finkelman, F.D.; Mingler, M.; Fischetti, C.A.; Blanchard, C.; Rothenberg, M.E. IL-13 induces esophageal remod-eling and gene expression by an eosinophil-independent, IL-13R alpha 2-inhibited pathway. J. Immunol., 2010, 185(1), 660-669.
[http://dx.doi.org/10.4049/jimmunol.1000471] [PMID: 20543112]
[45]
Cooper, P.R.; Poll, C.T.; Barnes, P.J.; Sturton, R.G. Involvement of IL-13 in tobacco smoke-induced changes in the structure and function of rat intrapulmonary airways. Am. J. Respir. Cell Mol. Biol., 2010, 43(2), 220-226.
[http://dx.doi.org/10.1165/rcmb.2009-0117OC] [PMID: 19783789]
[46]
Lee, P.J.; Zhang, X.; Shan, P.; Ma, B.; Lee, C.G.; Homer, R.J.; Zhu, Z.; Rincon, M.; Mossman, B.T.; Elias, J.A. ERK1/2 mitogen-activated protein kinase selectively mediates IL-13-induced lung inflammation and remodeling in vivo. J. Clin. Invest., 2006, 116(1), 163-173.
[http://dx.doi.org/10.1172/JCI25711] [PMID: 16374521]
[47]
Blease, K.; Jakubzick, C.; Westwick, J.; Lukacs, N.; Kunkel, S.L.; Hogaboam, C.M. Therapeutic effect of IL-13 immunoneutralization during chronic experimental fungal asthma. J. Immunol., 2001, 166(8), 5219-5224.
[http://dx.doi.org/10.4049/jimmunol.166.8.5219] [PMID: 11290806]
[48]
Wadsworth, S.J.; Atsuta, R.; McIntyre, J.O.; Hackett, T.L.; Singhera, G.K.; Dorscheid, D.R. IL-13 and TH2 cytokine exposure triggers matrix metalloproteinase 7-mediated Fas ligand cleavage from bronchial epithelial cells. J. Allergy Clin. Immunol., 2010, 126, 366-374.
[49]
Mori, S.; Maher, P.; Conti, B. Neuroimmunology of the interleukins 13 and 4. Brain Sci., 2016, 6(2), 6.
[http://dx.doi.org/10.3390/brainsci6020018] [PMID: 27304970]
[50]
Offner, H.; Subramanian, S.; Wang, C.; Afentoulis, M.; Vandenbark, A.A.; Huan, J.; Burrows, G.G. Treatment of passive experimental autoimmune encephalomyelitis in SJL mice with a recombinant TCR ligand induces IL-13 and prevents axonal injury. J. Immunol., 2005, 175(6), 4103-4111.
[http://dx.doi.org/10.4049/jimmunol.175.6.4103] [PMID: 16148160]
[51]
Koning, N.; van Eijk, M.; Pouwels, W.; Brouwer, M.S.; Voehringer, D.; Huitinga, I.; Hoek, R.M.; Raes, G.; Hamann, J. Expression of the inhibitory CD200 receptor is associated with alternative macrophage activation. J. Innate Immun., 2010, 2(2), 195-200.
[http://dx.doi.org/10.1159/000252803] [PMID: 20375636]
[52]
Onoe, Y.; Miyaura, C.; Kaminakayashiki, T.; Nagai, Y.; Noguchi, K.; Chen, Q.R.; Seo, H.; Ohta, H.; Nozawa, S.; Kudo, I.; Suda, T. IL-13 and IL-4 inhibit bone resorption by suppressing cyclooxygenase-2-dependent prostaglandin synthesis in osteoblasts. J. Immunol., 1996, 156(2), 758-764.
[PMID: 8543830]
[53]
Saito, A.; Okazaki, H.; Sugawara, I.; Yamamoto, K.; Takizawa, H. Potential action of IL-4 and IL-13 as fibrogenic factors on lung fibro-blasts in vitro. Int. Arch. Allergy Immunol., 2003, 132(2), 168-176.
[http://dx.doi.org/10.1159/000073718] [PMID: 14600429]
[54]
Cho, W.; Kim, Y.; Jeoung, D.I.; Kim, Y.M.; Choe, J. IL-4 and IL-13 suppress prostaglandins production in human follicular dendritic cells by repressing COX-2 and mPGES-1 expression through JAK1 and STAT6. Mol. Immunol., 2011, 48(6-7), 966-972.
[http://dx.doi.org/10.1016/j.molimm.2011.01.007] [PMID: 21277633]
[55]
Wills-Karp, M.; Karp, C.L. Biomedicine. Eosinophils in asthma: Remodeling a tangled tale. Science, 2004, 305(5691), 1726-1729.
[http://dx.doi.org/10.1126/science.1104134] [PMID: 15375256]
[56]
Percopo, C.M.; Krumholz, J.O.; Fischer, E.R.; Kraemer, L.S.; Ma, M.; Laky, K.; Rosenberg, H.F. Impact of eosinophil-peroxidase (EPX) deficiency on eosinophil structure and function in mouse airways. J. Leukoc. Biol., 2019, 105(1), 151-161.
[http://dx.doi.org/10.1002/JLB.3AB0318-090RR] [PMID: 30285291]
[57]
Wright, B.L. Image analysis of eosinophil peroxidase immunohistochemistry for diagnosis of eosinophilic esophagitis. Dig. Dis. Sci., 2021, 66(3), 775-783.
[PMID: 32248390]
[58]
Jacobsen, E.A.; Ochkur, S.I.; Doyle, A.D.; LeSuer, W.E.; Li, W.; Protheroe, C.A.; Colbert, D.; Zellner, K.R.; Shen, H.H.; Irvin, C.G.; Lee, J.J.; Lee, N.A. Lung pathologies in a chronic inflammation mouse model are independent of eosinophil degranulation. Am. J. Respir. Crit. Care Med., 2017, 195(10), 1321-1332.
[http://dx.doi.org/10.1164/rccm.201606-1129OC] [PMID: 27922744]
[59]
Cardot-Ruffino, V.; Chauvet, V.; Caligaris, C.; Bertrand-Chapel, A.; Chuvin, N.; Pommier, R.M.; Valcourt, U.; Vincent, D.; Martel, S.; Aires, S.; Kaniewski, B.; Dubus, P.; Cassier, P.; Sentis, S.; Bartholin, L. Generation of an Fsp1 (fibroblast-specific protein 1)-Flpo trans-genic mouse strain. Genesis, 2020, 58(5), e23359.
[http://dx.doi.org/10.1002/dvg.23359] [PMID: 32191380]
[60]
Venkateshaiah, S.U.; Zhu, X.; Rajavelu, P.; Niranjan, R.; Manohar, M.; Verma, A.K.; Lasky, J.A.; Mishra, A. Regulatory effects of IL-15 on allergen-induced airway obstruction. J. Allergy Clin. Immunol., 2018, 141(3), 906-917.e6.
[http://dx.doi.org/10.1016/j.jaci.2017.05.025] [PMID: 28606589]
[61]
Zhang, W.; Ohno, S.; Steer, B.; Klee, S.; Staab-Weijnitz, C.A.; Wagner, D.; Lehmann, M.; Stoeger, T.; Königshoff, M.; Adler, H. S100a4 is secreted by alternatively activated alveolar macrophages and promotes activation of lung fibroblasts in pulmonary fibrosis. Front. Immunol., 2018, 9, 1216.
[http://dx.doi.org/10.3389/fimmu.2018.01216] [PMID: 29910813]
[62]
Harrop, C.A.; Gore, R.B.; Evans, C.M.; Thornton, D.J.; Herrick, S.E. TGF-β2 decreases baseline and IL-13-stimulated mucin production by primary human bronchial epithelial cells. Exp. Lung Res., 2013, 39(1), 39-47.
[http://dx.doi.org/10.3109/01902148.2012.748854] [PMID: 23249391]
[63]
Ingram, J.L.; Huggins, M.J.; Church, T.D.; Li, Y.; Francisco, D.C.; Degan, S.; Firszt, R.; Beaver, D.M.; Lugogo, N.L.; Wang, Y.; Sunday, M.E.; Noble, P.W.; Kraft, M. Airway fibroblasts in asthma manifest an invasive phenotype. Am. J. Respir. Crit. Care Med., 2011, 183(12), 1625-1632.
[http://dx.doi.org/10.1164/rccm.201009-1452OC] [PMID: 21471104]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy