Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Catalytic Applications of Recent and Improved Covalent Organic Frameworks

Author(s): Venu Sharma, Meena Nemiwal and Dinesh Kumar*

Volume 19, Issue 7, 2022

Published on: 25 March, 2022

Page: [815 - 825] Pages: 11

DOI: 10.2174/1570193X19666220105144523

Price: $65

conference banner
Abstract

Covalent Organic Frameworks (COFs) are porous crystalline materials that have emerged as promising molecular materials in optoelectronics, catalysis, and gas storage applications. COFs exhibit unique features, such as adaptability for various substrates, high chemical stability, tunability, ease of working, and recyclability, making them efficient catalysts. The current mini-review article discusses the synthesis and applications of COFs as catalysts. We hope that the present review will be highly beneficial for researchers working in the area of COFs and their applications in catalysis.

Keywords: Covalent organic frameworks (COFs), crystalline porous materials, heterogeneous catalysis, 2D and 3D polymers, physiochemical properties, PXRD.

Graphical Abstract

[1]
Nemiwal, M.; Gosu, V.; Zhang, T.C.; Kumar, D. Metal organic frameworks as electrocatalysts: Hydrogen evolution reactions and overall water splitting. Int. J. Hydrogen Energy, 2021, 46(17), 10216-10238.
[http://dx.doi.org/10.1016/j.ijhydene.2020.12.146]
[2]
Nemiwal, M.; Kumar, D. Metal organic frameworks as water harvester from air: Hydrolytic stability and adsorption isotherms. Inorg. Chem. Commun., 2020, 122, 108279.
[http://dx.doi.org/10.1016/j.inoche.2020.108279]
[3]
Nemiwal, M.; Sharma, V.; Kumar, D. Improved designs of multifunctional covalent-organic frameworks: Hydrogen storage, methane storage and water harvesting. Mini Rev. Org. Chem., 2021, 18, 1026-1036.
[4]
Côté, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751), 1166-1170.
[http://dx.doi.org/10.1126/science.1120411] [PMID: 16293756]
[5]
Diercks, C.S.; Yaghi, O.M. The atom, the molecule, and the covalent organic framework. Science, 2017, 355(6328), 355.
[http://dx.doi.org/10.1126/science.aal1585] [PMID: 28254887]
[6]
El-Kaderi, H.M.; Hunt, J.R.; Mendoza-Cortés, J.L.; Côté, A.P.; Taylor, R.E.; O’Keeffe, M.; Yaghi, O.M. Designed synthesis of 3D covalent organic frameworks. Science, 2007, 316(5822), 268-272.
[http://dx.doi.org/10.1126/science.1139915] [PMID: 17431178]
[7]
Jin, Y.; Hu, Y.; Zhang, W. Tessellated multiporous two-dimensional covalent organic frameworks. Nat. Rev. Chem., 2017, 1, 0056.
[http://dx.doi.org/10.1038/s41570-017-0056]
[8]
Sharma, R.K.; Yadav, P.; Yadav, M.; Gupta, R.; Rana, P.; Srivastava, A.; Zbořil, R.; Varma, R.S.; Antonietti, M.; Gawande, M.B. Recent development of covalent organic frameworks (cofs): Synthesis and catalytic (organic-electro-photo) applications. Mater. Horiz., 2020, 7, 411-454.
[http://dx.doi.org/10.1039/C9MH00856J]
[9]
Nath, I.; Chakraborty, J.; Verpoort, F. Metal organic frameworks mimicking natural enzymes: A structural and functional analogy. Chem. Soc. Rev., 2016, 45(15), 4127-4170.
[http://dx.doi.org/10.1039/C6CS00047A] [PMID: 27251115]
[10]
Waller, P.J.; Gándara, F.; Yaghi, O.M. Chemistry of covalent organic frameworks. Acc. Chem. Res., 2015, 48(12), 3053-3063.
[http://dx.doi.org/10.1021/acs.accounts.5b00369] [PMID: 26580002]
[11]
Feng, X.; Ding, X.; Jiang, D. Covalent organic frameworks. Chem. Soc. Rev., 2012, 41(18), 6010-6022.
[http://dx.doi.org/10.1039/c2cs35157a] [PMID: 22821129]
[12]
Cooper, A.I. Covalent organic frameworks. CrystEngComm, 2013, 15, 1483-1483.
[http://dx.doi.org/10.1039/c2ce90122f]
[13]
Côté, A.P.; El-Kaderi, H.M.; Furukawa, H.; Hunt, J.R.; Yaghi, O.M. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc., 2007, 129(43), 12914-12915.
[http://dx.doi.org/10.1021/ja0751781] [PMID: 17918943]
[14]
Ding, S.-Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev., 2013, 42(2), 548-568.
[http://dx.doi.org/10.1039/C2CS35072F] [PMID: 23060270]
[15]
Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomäcker, R.; Thomas, A.; Schmidt, J. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc., 2018, 140(4), 1423-1427.
[http://dx.doi.org/10.1021/jacs.7b11255] [PMID: 29287143]
[16]
Zwaneveld, N.A.; Pawlak, R.; Abel, M.; Catalin, D.; Gigmes, D.; Bertin, D.; Porte, L. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc., 2008, 130(21), 6678-6679.
[http://dx.doi.org/10.1021/ja800906f] [PMID: 18444643]
[17]
Ding, S.Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.G.; Su, C.Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc., 2011, 133(49), 19816-19822.
[http://dx.doi.org/10.1021/ja206846p] [PMID: 22026454]
[18]
Fang, Q.; Gu, S.; Zheng, J.; Zhuang, Z.; Qiu, S.; Yan, Y. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew. Chem. Int. Ed. Engl., 2014, 53(11), 2878-2882.
[http://dx.doi.org/10.1002/anie.201310500] [PMID: 24604810]
[19]
Lin, S.; Diercks, C.S.; Zhang, Y.B.; Kornienko, N.; Nichols, E.M.; Zhao, Y.; Paris, A.R.; Kim, D.; Yang, P.; Yaghi, O.M.; Chang, C.J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO₂ reduction in water. Science, 2015, 349(6253), 1208-1213.
[http://dx.doi.org/10.1126/science.aac8343] [PMID: 26292706]
[20]
Ma, D.; Wang, Y.W.; Liu, A.; Li, S.; Lu, C.; Chen, C. Covalent organic frameworks: Promising materials as heterogeneous catalysts for cc bond formations. Catalysts, 2018, 8, 404.
[http://dx.doi.org/10.3390/catal8090404]
[21]
Xu, H.; Gao, J.; Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem., 2015, 7(11), 905-912.
[http://dx.doi.org/10.1038/nchem.2352] [PMID: 26492011]
[22]
Bai, L.; Phua, S.Z.; Lim, W.Q.; Jana, A.; Luo, Z.; Tham, H.P.; Zhao, L.; Gao, Q.; Zhao, Y. Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chem. Commun. (Camb.), 2016, 52(22), 4128-4131.
[http://dx.doi.org/10.1039/C6CC00853D] [PMID: 26877025]
[23]
Fang, Q.; Wang, J.; Gu, S.; Kaspar, R.B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S.; Yan, Y. 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc., 2015, 137(26), 8352-8355.
[http://dx.doi.org/10.1021/jacs.5b04147] [PMID: 26099722]
[24]
Vyas, V.S.; Vishwakarma, M.; Moudrakovski, I.; Haase, F.; Savasci, G.; Ochsenfeld, C.; Spatz, J.P.; Lotsch, B.V. Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Adv. Mater., 2016, 28(39), 8749-8754.
[http://dx.doi.org/10.1002/adma.201603006] [PMID: 27545588]
[25]
Wu, M.X.; Yang, Y.W. Applications of covalent organic frameworks (cofs): From gas storage and separation to drug delivery. Chin. Chem. Lett., 2017, 28, 1135-1143.
[http://dx.doi.org/10.1016/j.cclet.2017.03.026]
[26]
Zhao, H.; Jin, Z.; Su, H.; Jing, X.; Sun, F.; Zhu, G. Targeted synthesis of a 2D ordered porous organic framework for drug release. Chem. Commun. (Camb.), 2011, 47(22), 6389-6391.
[http://dx.doi.org/10.1039/c1cc00084e] [PMID: 21552587]
[27]
Han, S.S.; Furukawa, H.; Yaghi, O.M.; Goddard, W.A., III Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc., 2008, 130(35), 11580-11581.
[http://dx.doi.org/10.1021/ja803247y] [PMID: 18683924]
[28]
Huang, N.; Chen, X.; Krishna, R.; Jiang, D. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew. Chem. Int. Ed. Engl., 2015, 54(10), 2986-2990.
[http://dx.doi.org/10.1002/anie.201411262] [PMID: 25613010]
[29]
Das, G.; Biswal, B.P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chemical sensing in two dimensional porous covalent organic nanosheets. Chem. Sci. (Camb.), 2015, 6(7), 3931-3939.
[http://dx.doi.org/10.1039/C5SC00512D] [PMID: 29218164]
[30]
Ding, S.Y.; Dong, M.; Wang, Y.W.; Chen, Y.T.; Wang, H.Z.; Su, C.Y.; Wang, W. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J. Am. Chem. Soc., 2016, 138(9), 3031-3037.
[http://dx.doi.org/10.1021/jacs.5b10754] [PMID: 26878337]
[31]
Huang, N.; Zhai, L.; Xu, H.; Jiang, D. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J. Am. Chem. Soc., 2017, 139(6), 2428-2434.
[http://dx.doi.org/10.1021/jacs.6b12328] [PMID: 28121142]
[32]
Sun, Q.; Aguila, B.; Perman, J.; Earl, L.D.; Abney, C.W.; Cheng, Y.; Wei, H.; Nguyen, N.; Wojtas, L.; Ma, S. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J. Am. Chem. Soc., 2017, 139(7), 2786-2793.
[http://dx.doi.org/10.1021/jacs.6b12885] [PMID: 28222608]
[33]
Ding, X.; Guo, J.; Feng, X.; Honsho, Y.; Guo, J.; Seki, S.; Maitarad, P.; Saeki, A.; Nagase, S.; Jiang, D. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew. Chem. Int. Ed. Engl., 2011, 50(6), 1289-1293.
[http://dx.doi.org/10.1002/anie.201005919] [PMID: 21290495]
[34]
Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D.; Hartschuh, A.; Knochel, P.; Bein, T. A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew. Chem. Int. Ed. Engl., 2013, 52(10), 2920-2924.
[http://dx.doi.org/10.1002/anie.201208514] [PMID: 23382014]
[35]
Wang, H.; Zeng, Z.; Xu, P.; Li, L.; Zeng, G.; Xiao, R.; Tang, Z.; Huang, D.; Tang, L.; Lai, C.; Jiang, D.; Liu, Y.; Yi, H.; Qin, L.; Ye, S.; Ren, X.; Tang, W. Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem. Soc. Rev., 2019, 48(2), 488-516.
[http://dx.doi.org/10.1039/C8CS00376A] [PMID: 30565610]
[36]
Chong, S.Y. Synthesis of chemically stable covalent organic frameworks in water. IUCrJ, 2016, 3(Pt 6), 391-392.
[http://dx.doi.org/10.1107/S2052252516016900] [PMID: 27840677]
[37]
Lohse, M.S.; Bein, T. Covalent organic frameworks: Structures, synthesis, and applications. Adv. Funct. Mater., 2018, 28, 1705553.
[http://dx.doi.org/10.1002/adfm.201705553]
[38]
Xiang, Z.; Cao, D. Porous covalent–organic materials: Synthesis, clean energy application and design. J. Mater. Chem., 2013, 1, 2691-2718.
[http://dx.doi.org/10.1039/C2TA00063F]
[39]
Hunt, J.R.; Doonan, C.J.; LeVangie, J.D.; Côté, A.P.; Yaghi, O.M. Reticular synthesis of covalent organic borosilicate frameworks. J. Am. Chem. Soc., 2008, 130(36), 11872-11873.
[http://dx.doi.org/10.1021/ja805064f] [PMID: 18707184]
[40]
Guo, J.; Jiang, D. Covalent organic frameworks for heterogeneous catalysis: Principle, current status, and challenges. ACS Cent. Sci., 2020, 6(6), 869-879.
[http://dx.doi.org/10.1021/acscentsci.0c00463] [PMID: 32607434]
[41]
Nagai, A.; Chen, X.; Feng, X.; Ding, X.; Guo, Z.; Jiang, D. A squaraine-linked mesoporous covalent organic framework. Angew. Chem. Int. Ed. Engl., 2013, 52(13), 3770-3774.
[http://dx.doi.org/10.1002/anie.201300256] [PMID: 23436400]
[42]
Vardhan, H.; Verma, G.; Ramani, S.; Nafady, A.; Al-Enizi, A.M.; Pan, Y.; Yang, Z.; Yang, H.; Ma, S. Covalent organic framework decorated with vanadium as a new platform for prins reaction and sulfide oxidation. ACS Appl. Mater. Interfaces, 2019, 11(3), 3070-3079.
[http://dx.doi.org/10.1021/acsami.8b19352] [PMID: 30585715]
[43]
Xu, H.; Chen, X.; Gao, J.; Lin, J.; Addicoat, M.; Irle, S.; Jiang, D. Catalytic covalent organic frameworks via pore surface engineering. Chem. Commun. (Camb.), 2014, 50(11), 1292-1294.
[http://dx.doi.org/10.1039/C3CC48813F] [PMID: 24352109]
[44]
Zhi, Y.; Wang, Z.; Zhang, H.L.; Zhang, Q. Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts. Small, 2020, 16(24), e2001070.
[http://dx.doi.org/10.1002/smll.202001070] [PMID: 32419332]
[45]
Xu, H.S.; Ding, S.Y.; An, W.K.; Wu, H.; Wang, W. Constructing crystalline covalent organic frameworks from chiral building blocks. J. Am. Chem. Soc., 2016, 138(36), 11489-11492.
[http://dx.doi.org/10.1021/jacs.6b07516] [PMID: 27585120]
[46]
Liu, J.; Wang, N.; Ma, L. Recent advances in covalent organic frameworks for catalysis. Chem. Asian J., 2020, 15(3), 338-351.
[http://dx.doi.org/10.1002/asia.201901527] [PMID: 31837196]
[47]
Mi, Z.; Yang, P.; Wang, R.; Unruangsri, J.; Yang, W.; Wang, C.; Guo, J. Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion. J. Am. Chem. Soc., 2019, 141(36), 14433-14442.
[http://dx.doi.org/10.1021/jacs.9b07695] [PMID: 31426635]
[48]
Zhang, J.; Han, X.; Wu, X.; Liu, Y.; Cui, Y. Multivariate chiral covalent organic frameworks with controlled crystallinity and stability for asymmetric catalysis. J. Am. Chem. Soc., 2017, 139(24), 8277-8285.
[http://dx.doi.org/10.1021/jacs.7b03352] [PMID: 28537721]
[49]
Wang, L.K.; Zhou, J.J.; Lan, Y.B.; Ding, S.Y.; Yu, W.; Wang, W. Divergent synthesis of chiral covalent organic frameworks. Angew. Chem. Int. Ed. Engl., 2019, 58(28), 9443-9447.
[http://dx.doi.org/10.1002/anie.201903534] [PMID: 31090130]
[50]
Guan, Q.; Zhou, L.L.; Li, Y.A.; Li, W.Y.; Wang, S.; Song, C.; Dong, Y.B. Nanoscale covalent organic framework for combinatorial antitumor photodynamic and photothermal therapy. ACS Nano, 2019, 13(11), 13304-13316.
[http://dx.doi.org/10.1021/acsnano.9b06467] [PMID: 31689082]
[51]
Guan, Q.; Zhou, L.L.; Li, W.Y.; Li, Y.A.; Dong, Y.B. Covalent organic frameworks (COFs) for cancer therapeutics. Chemistry, 2020, 26(25), 5583-5591.
[http://dx.doi.org/10.1002/chem.201905150] [PMID: 31880368]
[52]
Huang, N.; Krishna, R.; Jiang, D. Tailor-made pore surface engineering in covalent organic frameworks: Systematic functionalization for performance screening. J. Am. Chem. Soc., 2015, 137(22), 7079-7082.
[http://dx.doi.org/10.1021/jacs.5b04300] [PMID: 26028183]
[53]
Tomar, V.; Upadhyay, Y.; Srivastava, A.K.; Nemiwal, M.; Joshi, R.K.; Mathur, P. Selenated NHC-Pd(II) catalyzed Suzuki-Miyaura coupling of ferrocene substituted β -chloro-cinnamaldehydes, acrylonitriles and malononitriles for the synthesis of novel ferrocene derivatives and their solvatochromic studies. J. Organomet. Chem., 2021, 940, 121752.
[http://dx.doi.org/10.1016/j.jorganchem.2021.121752]
[54]
Mullangi, D.; Nandi, S.; Shalini, S.; Sreedhala, S.; Vinod, C.P.; Vaidhyanathan, R. Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation. Sci. Rep., 2015, 5, 10876.
[http://dx.doi.org/10.1038/srep10876] [PMID: 26057044]
[55]
Gonçalves, R.S.B.; de Oliveira, A.B.V.; Sindra, H.C.; Archanjo, B.S.; Mendoza, M.E.; Carneiro, L.S.A.; Buarque, C.D.; Esteves, P.M. Heterogeneous catalysis by covalent organic frameworks (COF): Pd(OAC)2@COF-300 in cross-coupling reactions. ChemCatChem, 2016, 8, 743-750.
[http://dx.doi.org/10.1002/cctc.201500926]
[56]
Lu, S.; Hu, Y.; Wan, S.; McCaffrey, R.; Jin, Y.; Gu, H.; Zhang, W. Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications. J. Am. Chem. Soc., 2017, 139(47), 17082-17088.
[http://dx.doi.org/10.1021/jacs.7b07918] [PMID: 29095604]
[57]
Wang, F.; Mielby, J.; Richter, F.H.; Wang, G.; Prieto, G.; Kasama, T.; Weidenthaler, C.; Bongard, H.J.; Kegnæs, S.; Fürstner, A.; Schüth, F. A polyphenylene support for Pd catalysts with exceptional catalytic activity. Angew. Chem. Int. Ed. Engl., 2014, 53(33), 8645-8648.
[http://dx.doi.org/10.1002/anie.201404912] [PMID: 25044615]
[58]
Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R.; Jiang, D. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci. Rep., 2015, 5(1), 8225.
[http://dx.doi.org/10.1038/srep08225] [PMID: 25650133]
[59]
Shi, X.; Yao, Y.; Xu, X.; Liu, K.; Zhu, G.; Chi, L.; Lu, G. Imparting catalytic activity to a covalent organic framework material by nanoparticle encapsulation. ACS Appl. Mater. Interfaces, 2017, 9(8), 7481-7488.
[http://dx.doi.org/10.1021/acsami.6b16267]
[60]
Tan, J.; Namuangruk, S.; Kong, W.; Kungwan, N.; Guo, J.; Wang, C. Manipulation of amorphous-to-crystalline transformation: towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability. Angew. Chem. Int. Ed. Engl., 2016, 55(45), 13979-13984.
[http://dx.doi.org/10.1002/anie.201606155] [PMID: 27709769]
[61]
Chan-Thaw, C.E.; Villa, A.; Katekomol, P.; Su, D.; Thomas, A.; Prati, L. Covalent triazine framework as catalytic support for liquid phase reaction. Nano Lett., 2010, 10(2), 537-541.
[http://dx.doi.org/10.1021/nl904082k] [PMID: 20085344]
[62]
Shi, X.; Yao, Y.; Xu, Y.; Liu, K.; Zhu, G.; Chi, L.; Lu, G. Imparting catalytic activity to a covalent organic framework material by nanoparticle encapsulation. ACS Appl. Mater. Interfaces, 2017, 9(8), 7481-7488.
[http://dx.doi.org/10.1021/acsami.6b16267] [PMID: 28198614]
[63]
Joshi, P.; Nemiwal, M.; Al-Kahtani, A.A.; Ubaidullah, M.; Kumar, D. Biogenic AgNPs for the non-cross-linking detection of aluminum in aqueous systems. J. King Saud Univ. Sci., 2021, 33(6), 101527.
[http://dx.doi.org/10.1016/j.jksus.2021.101527]
[64]
Bolm, C.; Rantanen, T.; Schiffers, I.; Zani, L. Protonated chiral catalysts: Versatile tools for asymmetric synthesis. Angew. Chem. Int. Ed., 2005, 44(12), 1758-1763.
[http://dx.doi.org/10.1002/anie.200500154] [PMID: 15754311]
[65]
Pellissier, H. Asymmetric domino reactions. Part b: Reactions based on the use of chiral catalysts and biocatalysts. Tetrahedron, 2006, 10, 2143-2173.
[http://dx.doi.org/10.1016/j.tet.2005.10.041]
[66]
Ma, H.C.; Kan, J.L.; Chen, G.J.; Chen, C.X.; Dong, Y.B. Pd nps-loaded homochiral covalent organic framework for heterogeneous asymmetric catalysis. Chem. Mater., 2017, 29, 6518-6524.
[http://dx.doi.org/10.1021/acs.chemmater.7b02131]
[67]
Liu, W.; Su, Q.; Ju, P.; Guo, B.; Zhou, H.; Li, G.; Wu, Q. A hydrazone-based covalent organic framework as an efficient and reusable photocatalyst for the cross-dehydrogenative coupling reaction of n-aryltetrahydroisoquinolines. ChemSusChem, 2017, 10(4), 664-669.
[http://dx.doi.org/10.1002/cssc.201601702] [PMID: 28033455]
[68]
Li, L.; Li, L.; Cui, C.; Fan, H.; Wang, R. Heteroatom-doped carbon spheres from hierarchical hollow covalent organic framework precursors for metal-free catalysis. ChemSusChem, 2017, 10(24), 4921-4926.
[http://dx.doi.org/10.1002/cssc.201700979] [PMID: 28664675]
[69]
Wu, Y.; Xu, H.; Chen, X.; Gao, J.; Jiang, D. A π-electronic covalent organic framework catalyst: π-walls as catalytic beds for Diels-Alder reactions under ambient conditions. Chem. Commun. (Camb.), 2015, 51(50), 10096-10098.
[http://dx.doi.org/10.1039/C5CC03457D] [PMID: 26000867]
[70]
Nakajima, K.; Miyake, Y.; Nishibayashi, Y. Synthetic utilization of α-aminoalkyl radicals and related species in visible light photoredox catalysis. Acc. Chem. Res., 2016, 49(9), 1946-1956.
[http://dx.doi.org/10.1021/acs.accounts.6b00251] [PMID: 27505299]
[71]
Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev., 2013, 113(7), 5322-5363.
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883]
[72]
Staveness, D.; Bosque, I.; Stephenson, C.R.J. Free radical chemistry enabled by visible light-induced electron transfer. Acc. Chem. Res., 2016, 49(10), 2295-2306.
[http://dx.doi.org/10.1021/acs.accounts.6b00270] [PMID: 27529484]
[73]
Zhang, T.; Lin, W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 2014, 43(16), 5982-5993.
[http://dx.doi.org/10.1039/C4CS00103F] [PMID: 24769551]
[74]
Nemiwal, M.; Subbaramaiah, V.; Zhang, T.C.; Kumar, D. Recent advances in visible-light-driven carbon dioxide reduction by metal-organic frameworks. Sci. Total Environ., 2021, 762, 144101.
[http://dx.doi.org/10.1016/j.scitotenv.2020.144101] [PMID: 33360464]
[75]
Nemiwal, M.; Zhang, T.C.; Kumar, D. Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity. Sci. Total Environ., 2021, 767, 144896.
[http://dx.doi.org/10.1016/j.scitotenv.2020.144896] [PMID: 33636763]
[76]
Jindal, H.; Kumar, D.; Sillanpaa, M.; Nemiwal, M. Current progress in polymeric graphitic carbon nitride-based photocatalysts for dye degradation. Inorg. Chem. Commun., 2021, 131, 108786.
[http://dx.doi.org/10.1016/j.inoche.2021.108786]
[77]
Nemiwal, M.; Kumar, D. TiO2 and SiO2 encapsulated metal nanoparticles: Synthetic strategies, properties, and photocatalytic applications. Inorg. Chem. Commun., 2021, 128, 108602.
[http://dx.doi.org/10.1016/j.inoche.2021.108602]
[78]
Feng, X.; Liu, L.; Honsho, Y.; Saeki, A.; Seki, S.; Irle, S.; Dong, Y.; Nagai, A.; Jiang, D. High-rate charge-carrier transport in porphyrin covalent organic frameworks: Switching from hole to electron to ambipolar conduction. Angew. Chem. Int. Ed. Engl., 2012, 51(11), 2618-2622.
[http://dx.doi.org/10.1002/anie.201106203] [PMID: 22290932]
[79]
Jin, S.; Supur, M.; Addicoat, M.; Furukawa, K.; Chen, L.; Nakamura, T.; Fukuzumi, S.; Irle, S.; Jiang, D. Creation of superheterojunction polymers via direct polycondensation: Segregated and bicontinuous donor-acceptor π-columnar arrays in covalent organic frameworks for long-lived charge separation. J. Am. Chem. Soc., 2015, 137(24), 7817-7827.
[http://dx.doi.org/10.1021/jacs.5b03553] [PMID: 26030399]
[80]
Wan, S.; Gándara, F.; Asano, A.; Furukawa, H.; Saeki, A.; Dey, S.K.; Liao, L.; Ambrogio, M.W.; Botros, Y.Y.; Duan, X. Covalent organic frameworks with high charge carrier mobility. Chem. Mater., 2011, 23, 4094-4097.
[http://dx.doi.org/10.1021/cm201140r]
[81]
Zhi, Y.; Li, Z.; Feng, X.; Xia, H.; Zhang, Y.; Shi, Z.; Mu, Y.; Liu, X. Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 22933-22938.
[http://dx.doi.org/10.1039/C7TA07691F]
[82]
Li, Z.; Han, S.S.; Li, C.; Shao, P.; Xia, H.; Li, H.; Chen, X.; Feng, X.; Liu, X. Screening metal-free photocatalysts from isomorphic covalent organic frameworks for the c-3 functionalization of indoles. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8, 8706-8715.
[http://dx.doi.org/10.1039/D0TA02164D]
[83]
Wei, P.F.; Qi, M.Z.; Wang, Z.P.; Ding, S.Y.; Yu, W.; Liu, Q.; Wang, L.K.; Wang, H.Z.; An, W.K.; Wang, W. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J. Am. Chem. Soc., 2018, 140(13), 4623-4631.
[http://dx.doi.org/10.1021/jacs.8b00571] [PMID: 29584421]
[84]
Zhao, Y.; Liu, H.; Wu, C.; Zhang, Z.; Pan, Q.; Hu, F.; Wang, R.; Li, P.; Huang, X.; Li, Z. Fully conjugated two-dimensional sp(2) -carbon covalent organic frameworks as artificial photosystem i with high efficiency. Angew. Chem. Int. Ed. Engl., 2019, 58(16), 5376-5381.
[http://dx.doi.org/10.1002/anie.201901194] [PMID: 30761713]
[85]
Chen, R.; Shi, J.L.; Ma, Y.; Lin, G.; Lang, X.; Wang, C. Designed synthesis of a 2d porphyrin-based sp(2) carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem. Int. Ed. Engl., 2019, 58(19), 6430-6434.
[http://dx.doi.org/10.1002/anie.201902543] [PMID: 30884054]
[86]
Bhadra, M.; Kandambeth, S.; Sahoo, M.K.; Addicoat, M.; Balaraman, E.; Banerjee, R. Triazine functionalized porous covalent organic framework for photo-organocatalytic e–z isomerization of olefins. J. Am. Chem. Soc., 2019, 141(15), 6152-6156.
[http://dx.doi.org/10.1021/jacs.9b01891] [PMID: 30945862]
[87]
Jiménez-Almarza, A.; López-Magano, A.; Marzo, L.; Cabrera, S.; Mas-Ballesté, R.; Alemán, J. Imine-based covalent organic frameworks as photocatalysts for metal free oxidation processes under visible light conditions. ChemCatChem, 2019, 11, 4916-4922.
[http://dx.doi.org/10.1002/cctc.201901061]
[88]
Nemiwal, M.; Zhang, T.C.; Kumar, D. Graphene-based electrocatalysts: Hydrogen evolution reactions and overall water splitting. Int. J. Hydrogen Energy, 2021, 46(41), 21401-21418.
[http://dx.doi.org/10.1016/j.ijhydene.2021.04.008]
[89]
Nemiwal, M.; Kumar, D. Recent progress on electrochemical sensing strategies as comprehensive point-care method. Monatsh. Chem., 2021, 152, 1-18.
[http://dx.doi.org/10.1007/s00706-020-02732-0]
[90]
Kamiya, K. Selective single-atom electrocatalysts: A review with a focus on metal-doped covalent triazine frameworks. Chem. Sci. (Camb.), 2020, 11(32), 8339-8349.
[http://dx.doi.org/10.1039/D0SC03328F] [PMID: 34123097]
[91]
Rosca, V.; Duca, M.; de Groot, M.T.; Koper, M.T.M. Nitrogen cycle electrocatalysis. Chem. Rev., 2009, 109(6), 2209-2244.
[http://dx.doi.org/10.1021/cr8003696] [PMID: 19438198]
[92]
Yamaguchi, S.; Kamiya, K.; Hashimoto, K.; Nakanishi, S. Ru atom-modified covalent triazine framework as a robust electrocatalyst for selective alcohol oxidation in aqueous electrolytes. Chem. Commun. (Camb.), 2017, 53(75), 10437-10440.
[http://dx.doi.org/10.1039/C7CC05841A] [PMID: 28884777]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy