Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Stimulants and Depressor Drugs in the Sleep-wake Cycle Modulation: The Case of Alcohol and Cannabinoids

Author(s): Eric Murillo-Rodríguez*, Cristina Carreón, Mario Eduardo Acosta-Hernández and Fabio García-García*

Volume 22, Issue 15, 2022

Published on: 15 February, 2022

Page: [1270 - 1279] Pages: 10

DOI: 10.2174/1568026622666220105105054

Price: $65

Abstract

A complex neurobiological network drives the sleep-wake cycle. In addition, external stimuli, including stimulants or depressor drugs, also influence the control of sleep. Here we review the recent advances that contribute to the comprehensive understanding of the actions of stimulants and depressor compounds, such as alcohol and cannabis, in sleep regulation. The objective of this review is to highlight the neurobiological mechanism engaged by alcohol and cannabis in sleep control.

Keywords: Alcohol, Cannabinoids, Caffeine, Sleep, Thalamus, Wakefulness.

Graphical Abstract

[1]
Alcohol Facts and Statistics | National Institute on Alcohol Abuse and Alcoholism (NIAAA). Available from: https://www.niaaa.nih.gov/publications/brochures-and-fact-sheets/alcohol-facts-and-statistics
[2]
M, R. Toxicology of ethyl alcohol. In: Advanced Toxicology; Diaz de Santos; Madrid, 1997; pp. 425-475.
[3]
Onyekwelu, K.C. Ethanol. In: Psychology of Health: Biopsychosocial Approach; Taukeni, S.G., Ed.; BoD: Norderstedt, 2019; pp. 35-50.
[http://dx.doi.org/10.5772/intechopen.79861]
[4]
Pawan, G.L.S. Metabolism of alcohol (ethanol) in man. Proc. Nutr. Soc., 1972, 31(2), 83-89.
[http://dx.doi.org/10.1079/PNS19720020] [PMID: 4563296]
[5]
Paton, A. Alcohol in the body. BMJ, 2005, 330(7482), 85-87.
[http://dx.doi.org/10.1136/bmj.330.7482.85] [PMID: 15637372]
[6]
Cederbaum, A.I. Alcohol metabolism. Clin. Liver Dis., 2012, 16(4), 667-685.
[http://dx.doi.org/10.1016/j.cld.2012.08.002] [PMID: 23101976]
[7]
Caballería, J. Current concepts in alcohol metabolism. Ann. Hepatol., 2003, 2(2), 60-68.
[http://dx.doi.org/10.1016/S1665-2681(19)32143-X] [PMID: 15041893]
[8]
Zakhari, S. Overview: how is alcohol metabolized by the body? Alcohol Res. Health, 2006, 29(4), 245-254.
[PMID: 17718403]
[9]
Lands, W.E.M. A review of alcohol clearance in humans. Alcohol, 1998, 15(2), 147-160.
[http://dx.doi.org/10.1016/S0741-8329(97)00110-9] [PMID: 9476961]
[10]
Upadhya, S.C.; Tirumalai, P.S.; Boyd, M.R.; Mori, T.; Ravindranath, V. Cytochrome P4502E (CYP2E) in brain: constitutive expression, induction by ethanol and localization by fluorescence in situ hybridization. Arch. Biochem. Biophys., 2000, 373(1), 23-34.
[http://dx.doi.org/10.1006/abbi.1999.1477] [PMID: 10620320]
[11]
Montoliu, C.; Vallés, S.; Renau-Piqueras, J.; Guerri, C. Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: effect of chronic alcohol consumption. J. Neurochem., 1994, 63(5), 1855-1862.
[http://dx.doi.org/10.1046/j.1471-4159.1994.63051855.x] [PMID: 7931342]
[12]
Aragon, C.M.G.; Rogan, F.; Amit, Z. Ethanol metabolism in rat brain homogenates by a catalase-H2O2 system. Biochem. Pharmacol., 1992, 44(1), 93-98.
[http://dx.doi.org/10.1016/0006-2952(92)90042-H] [PMID: 1632841]
[13]
Aragon, C.M.G.; Stotland, L.M.; Amit, Z. Studies on ethanol-brain catalase interaction: evidence for central ethanol oxidation. Alcohol. Clin. Exp. Res., 1991, 15(2), 165-169.
[http://dx.doi.org/10.1111/j.1530-0277.1991.tb01848.x] [PMID: 2058789]
[14]
Zimatkin, S.M.; Liopo, A.V.; Deitrich, R.A. Distribution and kinetics of ethanol metabolism in rat brain. Alcohol. Clin. Exp. Res., 1998, 22(8), 1623-1627.
[http://dx.doi.org/10.1111/j.1530-0277.1998.tb03958.x] [PMID: 9835273]
[15]
Smith, B. R.; Aragon, C. M. G.; Amit, Z. Catalase and the production of brain Acetaldehyde: a possible mediator of the psychopharmacological effects of ethanol. Addict. Biol., 1997, 277-290.
[http://dx.doi.org/10.1080/13556219772570]
[16]
Silczuk, A.; Habrat, B. Alcohol-induced thrombocytopenia: current review. Alcohol, 2020, 86, 9-16.
[http://dx.doi.org/10.1016/j.alcohol.2020.02.166] [PMID: 32330589]
[17]
Janicova, A.; Haag, F.; Xu, B.; Garza, A.P.; Dunay, I.R.; Neunaber, C.; Nowak, A.J.; Cavalli, P.; Marzi, I.; Sturm, R.; Relja, B. Acute alcohol intoxication modulates monocyte subsets and their functions in a time-dependent manner in healthy volunteers. Front. Immunol., 2021, 12, 652488.
[http://dx.doi.org/10.3389/fimmu.2021.652488] [PMID: 34084163]
[18]
Jang, H.D.; Hong, J.Y.; Han, K.; Lee, J.C.; Shin, B.J.; Choi, S.W.; Suh, S.W.; Yang, J.H.; Park, S.Y.; Bang, C. Relationship between bone mineral density and alcohol intake: a nationwide health survey analysis of postmenopausal women. PLoS One, 2017, 12(6), e0180132.
[http://dx.doi.org/10.1371/journal.pone.0180132] [PMID: 28662191]
[19]
Li, Y.; Zhang, F.; Modrak, S.; Little, A.; Zhang, H. Chronic alcohol consumption enhances skeletal muscle wasting in mice bearing cachectic cancers: the role of TNFα/myostatin axis. Alcohol. Clin. Exp. Res., 2020, 44(1), 66-77.
[http://dx.doi.org/10.1111/acer.14221] [PMID: 31657476]
[20]
Liu, Y.; Nguyen, N.; Colditz, G.A. Links between alcohol consumption and breast cancer: A look at the evidence. Womens Health (Lond. Engl.), 2015, 11(1), 65-77.
[http://dx.doi.org/10.2217/WHE.14.62] [PMID: 25581056]
[21]
McDonald, J.A.; Goyal, A.; Terry, M.B. Alcohol intake and breast cancer risk: weighing the overall evidence. Curr. Breast Cancer Rep., 2013, 5(3), 208-221.
[http://dx.doi.org/10.1007/s12609-013-0114-z] [PMID: 24265860]
[22]
Brust, J.C.M. Alcoholism. In: Merritt’s neurology; Rowland, L.P., Ed.; Lippincott Williams & Wilkins: Philadelphia, 2015; pp. 2120-2138.
[23]
Piano, M.R. Alcohol’s effects on the cardiovascular system. Alcohol Res., 2017, 38(2), 219-241.
[PMID: 28988575]
[24]
Hwang, C.L.; Piano, M.R.; Phillips, S.A. The effects of alcohol consumption on flow-mediated dilation in humans: A systematic review. Physiol. Rep., 2021, 9(10), e14872.
[http://dx.doi.org/10.14814/phy2.14872] [PMID: 34042304]
[25]
Eashwar, V.M.A.; Umadevi, R.; Gopalakrishnan, S. Alcohol consumption in India- an epidemiological review. J. Family Med. Prim. Care, 2020, 9(1), 49-55.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_873_19] [PMID: 32110564]
[26]
Osna, N.A.; Donohue, T.M., Jr; Kharbanda, K.K. Alcoholic liver disease: pathogenesis and current management. Alcohol Res., 2017, 38(2), 147-161.
[PMID: 28988570]
[27]
Klochkov, A.; Kudaravalli, P.; Lim, Y.; Sun, Y. Alcoholic Pancreatitis; StatPearls Publishing: Treasure Island, 2021.
[28]
Rossi, M.; Jahanzaib Anwar, M.; Usman, A.; Keshavarzian, A.; Bishehsari, F. Colorectal cancer and alcohol consumption-populations to molecules. Cancers (Basel), 2018, 10(2), E38.
[http://dx.doi.org/10.3390/cancers10020038] [PMID: 29385712]
[29]
Simet, S.M.; Sisson, J.H. Alcohol’s effects on lung health and immunity. Alcohol Res., 2015, 37(2), 199-208.
[PMID: 26695745]
[30]
Høyer, S.; Riis, A.H.; Toft, G.; Wise, L.A.; Hatch, E.E.; Wesselink, A.K.; Rothman, K.J.; Sørensen, H.T.; Mikkelsen, E.M. Male alcohol consumption and fecundability. Hum. Reprod., 2020, 35(4), 816-825.
[http://dx.doi.org/10.1093/humrep/dez294] [PMID: 32155263]
[31]
Van Heertum, K.; Rossi, B. Alcohol and fertility: How much is too much? Fertil. Res. Pract., 2017, 3(1), 10.
[http://dx.doi.org/10.1186/s40738-017-0037-x] [PMID: 28702207]
[32]
Dyer, M.L.; Board, A.G.; Hogarth, L.; Suddell, S.F.; Heron, J.E.; Hickman, M.; Munafò, M.R.; Attwood, A.S. State anxiety and alcohol choice: evidence from experimental and online observational studies. J. Psychopharmacol., 2020, 34(11), 1237-1249.
[http://dx.doi.org/10.1177/0269881120940913] [PMID: 32854598]
[33]
Shivani, R.; Goldsmith, R.J.; Anthenelli, R.M. Alcoholism and psychiatric disorders. Alcohol Res. Health, 2002, 26(2), 90-98.
[34]
Schuckit, M.A. Alcohol-related disorders. In: Kaplan and Sadock’s comprehensive textbook of psychiatry; Sadock, B.J.S., Ed.; Lippincott Williams & Wilkins: Philadephia, 2005.
[35]
Thakkar, M.M.; Sharma, R.; Sahota, P. Alcohol disrupts sleep homeostasis. Alcohol, 2015, 49(4), 299-310.
[http://dx.doi.org/10.1016/j.alcohol.2014.07.019] [PMID: 25499829]
[36]
Colrain, I.M.; Nicholas, C.L. Alcohol and the sleeping brain. Handb. Clin. Neurol., 2014, 125, 415-431.
[http://dx.doi.org/10.1016/B978-0-444-62619-6.00024-0]
[37]
Abrahao, K.P.; Pava, M.J.; Lovinger, D.M. Dose-dependent alcohol effects on electroencephalogram: sedation/anesthesia is qualitatively distinct from sleep. Neuropharmacology, 2020, 164, 107913.
[38]
Sharma, R.; Sahota, P.; Thakkar, M.M. Rats exposed to chronic alcohol display protracted insomnia and daytime sleepiness-like behavior during alcohol withdrawal. Physiol. Behav., 2021, 228(1), 113200.
[http://dx.doi.org/10.1016/j.physbeh.2020.113200] [PMID: 33038349]
[39]
Koob, G.F.; Colrain, I.M. Alcohol use disorder and sleep disturbances: a feed-forward allostatic framework. Neuropsychopharmacology, 2020, 45(1), 141-165.
[http://dx.doi.org/10.1038/s41386-019-0446-0] [PMID: 31234199]
[40]
He, S.; Hasler, B.P.; Chakravorty, S. Alcohol and sleep-related problems. Curr. Opin. Psychol., 2019, 30, 117-122.
[http://dx.doi.org/10.1016/j.copsyc.2019.03.007] [PMID: 31128400]
[41]
Garcia, A.N.; Salloum, I.M.; Salloum, I. Polysomnographic sleep disturbances in nicotine, caffeine, alcohol, cocaine, opioid, and cannabis use: a focused review. Am. J. Addict., 2015, 24(7), 590-598.
[http://dx.doi.org/10.1111/ajad.12291] [PMID: 26346395]
[42]
Iao, S.I.; Jansen, E.; Shedden, K.; O’Brien, L.M.; Chervin, R.D.; Knutson, K.L.; Dunietz, G.L. Associations between bedtime eating or drinking, sleep duration and wake after sleep onset: findings from the American time use survey. Br. J. Nutr., 2021, 1-10.
[http://dx.doi.org/10.1017/S0007114521003597] [PMID: 34511160]
[43]
Colrain, I.M.; Turlington, S.; Baker, F.C. Impact of alcoholism on sleep architecture and EEG power spectra in men and women. Sleep, 2009, 32(10), 1341-1352.
[http://dx.doi.org/10.1093/sleep/32.10.1341] [PMID: 19848363]
[44]
Miyata, S.; Noda, A.; Ito, N.; Atarashi, M.; Yasuma, F.; Morita, S.; Koike, Y. REM sleep is impaired by a small amount of alcohol in young women sensitive to alcohol. Intern. Med., 2004, 43(8), 679-684.
[http://dx.doi.org/10.2169/internalmedicine.43.679] [PMID: 15468965]
[45]
Obara, Y.; Tsutsui, R.; Ishida, T.; Kamei, C. Effect of ethanol on sleep-awake state in sleep-disturbed rats. Biol. Pharm. Bull., 2010, 33(5), 849-853.
[http://dx.doi.org/10.1248/bpb.33.849] [PMID: 20460765]
[46]
Chan, J.K.M.; Trinder, J.; Andrewes, H.E.; Colrain, I.M.; Nicholas, C.L. The acute effects of alcohol on sleep architecture in late adolescence. Alcohol. Clin. Exp. Res., 2013, 37(10), 1720-1728.
[http://dx.doi.org/10.1111/acer.12141] [PMID: 23800287]
[47]
Hasler, B.P.; Pedersen, S.L. Sleep and circadian risk factors for alcohol problems: a brief overview and proposed mechanisms. Curr. Opin. Psychol., 2020, 34, 57-62.
[http://dx.doi.org/10.1016/j.copsyc.2019.09.005] [PMID: 31629218]
[48]
Aldrich, M. Effects of alcohol on sleep. Eds.; Oxford University press: New York, 1998; pp. 281-300.
[49]
Chan, J.K.M.; Trinder, J.; Colrain, I.M.; Nicholas, C.L. The acute effects of alcohol on sleep electroencephalogram power spectra in late adolescence. Alcohol. Clin. Exp. Res., 2015, 39(2), 291-9.
[http://dx.doi.org/10.1111/acer.12621]
[50]
Chakravorty, S.; Chaudhary, N.S.; Brower, K.J. Alcohol dependence and its relationship With insomnia and other sleep disorders. Alcohol. Clin. Exp. Res., 2016, 40(11), 2271-2282.
[http://dx.doi.org/10.1111/acer.13217] [PMID: 27706838]
[51]
Van Reen, E.; Jenni, O.G.; Carskadon, M.A. Effects of alcohol on sleep and the sleep electroencephalogram in healthy young women. Alcohol. Clin. Exp. Res., 2006, 30(6), 974-981.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00111.x] [PMID: 16737455]
[52]
Fucito, L.M.; Bold, K.W.; Van Reen, E.; Redeker, N.S.; O’Malley, S.S.; Hanrahan, T.H.; DeMartini, K.S. Reciprocal variations in sleep and drinking over time among heavy-drinking young adults. J. Abnorm. Psychol., 2018, 127(1), 92-103.
[http://dx.doi.org/10.1037/abn0000312] [PMID: 29172601]
[53]
Ticho, S.R.; Stojanovic, M.; Lekovic, G.; Radulovacki, M. Effects of ethanol injection to the preoptic area on sleep and temperature in rats. Alcohol, 1992, 9(3), 275-278.
[http://dx.doi.org/10.1016/0741-8329(92)90065-I] [PMID: 1605895]
[54]
Ma, Z.; Wang, W.; Wang, T.; Xu, W.; Qu, W.; Huang, Z.; Hong, Z. Ethanol induces sedation and hypnosis via inhibiting histamine release in mice. Neurochem. Res., 2019, 44(7), 1764-1772.
[http://dx.doi.org/10.1007/s11064-019-02813-5] [PMID: 31093904]
[55]
Prospero-García, O.; Criado, J.R.; Henriksen, S.J. Pharmacology of ethanol and glutamate antagonists on rodent sleep: a comparative study. Pharmacol. Biochem. Behav., 1994, 49(2), 413-416.
[http://dx.doi.org/10.1016/0091-3057(94)90442-1] [PMID: 7824558]
[56]
Yin, D.; Dong, H.; Wang, T.X.; Hu, Z.Z.; Cheng, N.N.; Qu, W.M.; Huang, Z.L. Glutamate activates the histaminergic tuberomammillary nucleus and increases wakefulness in rats. Neuroscience, 2019, 413(10), 86-98.
[http://dx.doi.org/10.1016/j.neuroscience.2019.05.032] [PMID: 31202706]
[57]
Kolla, B.P.; Foroughi, M.; Saeidifard, F.; Chakravorty, S.; Wang, Z.; Mansukhani, M.P. The impact of alcohol on breathing parameters during sleep: a systematic review and meta-analysis. Sleep Med. Rev., 2018, 42(December), 59-67.
[http://dx.doi.org/10.1016/j.smrv.2018.05.007] [PMID: 30017492]
[58]
Huitron-Resendiz, S.; Nadav, T.; Krause, S.; Cates-Gatto, C.; Polis, I.; Roberts, A.J. Effects of withdrawal from chronic intermittent ethanol exposure on sleep characteristics of female and male mice. Alcohol. Clin. Exp. Res., 2018, 42(3), 540-550.
[http://dx.doi.org/10.1111/acer.13584] [PMID: 29265376]
[59]
Butler, T.R.; Prendergast, M.A. Neuroadaptations in adenosine receptor signaling following long-term ethanol exposure and withdrawal. Alcohol. Clin. Exp. Res., 2012, 36(1), 4-13.
[http://dx.doi.org/10.1111/j.1530-0277.2011.01586.x] [PMID: 21762181]
[60]
Ruby, C.L.; Adams, C.A.; Knight, E.J.; Nam, H.W.; Choi, D-S. An essential role for adenosine signaling in alcohol abuse. Curr. Drug Abuse Rev., 2010, 3(3), 163-174.
[http://dx.doi.org/10.2174/1874473711003030163] [PMID: 21054262]
[61]
Nam, H.W.; McIver, S.R.; Hinton, D.J.; Thakkar, M.M.; Sari, Y.; Parkinson, F.E.; Haydon, P.G.; Choi, D.S. Adenosine and glutamate signaling in neuron-glial interactions: implications in alcoholism and sleep disorders. Alcohol. Clin. Exp. Res., 2012, 36(7), 1117-1125.
[http://dx.doi.org/10.1111/j.1530-0277.2011.01722.x] [PMID: 22309182]
[62]
Kaplan, G.B.; Bharmal, N.H.; Leite-Morris, K.A.; Adams, W.R. Role of adenosine A1 and A2A receptors in the alcohol withdrawal syndrome. Alcohol, 1999, 19(2), 157-162.
[http://dx.doi.org/10.1016/S0741-8329(99)00033-6] [PMID: 10548160]
[63]
Bolewska, P.; Martin, B.I.; Orlando, K.A.; Rhoads, D.E. Sequential changes in brain glutamate and adenosine A1 receptors may explain severity of adolescent alcohol withdrawal after consumption of high levels of alcohol. Neurosci J, 2019, 2019, Article ID 5950818.
[http://dx.doi.org/10.1155/2019/5950818]
[64]
Prediger, R.D.; da Silva, G.E.; Batista, L.C.; Bittencourt, A.L.; Takahashi, R.N. Activation of adenosine A1 receptors reduces anxiety-like behavior during acute ethanol withdrawal (hangover) in mice. Neuropsychopharmacology, 2006, 31(10), 2210-2220.
[http://dx.doi.org/10.1038/sj.npp.1301001] [PMID: 16407902]
[65]
Fang, T.; Dong, H.; Xu, X.H.; Yuan, X.S.; Chen, Z.K.; Chen, J.F.; Qu, W.M.; Huang, Z.L. Adenosine A2A receptor mediates hypnotic effects of ethanol in mice. Sci. Rep., 2017, 7(1), 12678.
[http://dx.doi.org/10.1038/s41598-017-12689-6] [PMID: 28978989]
[66]
Zhang, B.J.; Huang, Z.L.; Chen, J.F.; Urade, Y.; Qu, W.M. Adenosine A2A receptor deficiency attenuates the somnogenic effect of prostaglandin D2 in mice. Acta Pharmacol. Sin., 2017, 38(4), 469-476.
[http://dx.doi.org/10.1038/aps.2016.140] [PMID: 28112177]
[67]
El Yacoubi, M.; Ledent, C.; Parmentier, M.; Costentin, J.; Vaugeois, J.M. Caffeine reduces hypnotic effects of alcohol through adenosine A2A receptor blockade. Neuropharmacology, 2003, 45(7), 977-985.
[http://dx.doi.org/10.1016/S0028-3908(03)00254-5] [PMID: 14573390]
[68]
Adams, C.L.; Cowen, M.S.; Short, J.L.; Lawrence, A.J. Combined antagonism of glutamate mGlu5 and adenosine A2A receptors interact to regulate alcohol-seeking in rats. Int. J. Neuropsychopharmacol., 2008, 11(2), 229-241.
[http://dx.doi.org/10.1017/S1461145707007845] [PMID: 17517168]
[69]
Arolfo, M.P.; Yao, L.; Gordon, A.S.; Diamond, I.; Janak, P.H. Ethanol operant self-administration in rats is regulated by adenosine A2 receptors. Alcohol. Clin. Exp. Res., 2004, 28(9), 1308-1316.
[http://dx.doi.org/10.1097/01.ALC.0000139821.38167.20] [PMID: 15365300]
[70]
Koulentaki, M.; Kouroumalis, E. GABA A receptor polymorphisms in alcohol use disorder in the GWAS era. Psychopharmacology, 2018, 1845-1865.
[http://dx.doi.org/10.1007/s00213-018-4918-4]
[71]
Whittemore, E.R.; Yang, W.; Drewe, J.A.; Woodward, R.M. Pharmacology of the human gamma-aminobutyric acidA receptor alpha 4 subunit expressed in Xenopus laevis oocytes. Mol. Pharmacol., 1996, 50(5), 1364-1375.
[PMID: 8913369]
[72]
Cherubini, E.; Conti, F. Generating diversity at GABAergic synapses. Trends Neurosci., 2001, 24(3), 155-162.
[http://dx.doi.org/10.1016/S0166-2236(00)01724-0] [PMID: 11182455]
[73]
Kralic, J.E.; Korpi, E.R.; O’Buckley, T.K.; Homanics, G.E.; Morrow, A.L. Molecular and pharmacological characterization of GABA(A) receptor alpha1 subunit knockout mice. J. Pharmacol. Exp. Ther., 2002, 302(3), 1037-1045.
[http://dx.doi.org/10.1124/jpet.102.036665] [PMID: 12183661]
[74]
Boissard, R.; Gervasoni, D.; Schmidt, M.H.; Barbagli, B.; Fort, P.; Luppi, P.H. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur. J. Neurosci., 2002, 16(10), 1959-1973.
[http://dx.doi.org/10.1046/j.1460-9568.2002.02257.x] [PMID: 12453060]
[75]
Xi, M.C.; Morales, F.R.; Chase, M.H. Induction of wakefulness and inhibition of active (REM) sleep by GABAergic processes in the nucleus pontis oralis. Arch. Ital. Biol., 2001, 139(1-2), 125-145.
[http://dx.doi.org/10.4449/aib.v139i1.209] [PMID: 11256181]
[76]
Pollock, M.S.; Mistlberger, R.E. Rapid eye movement sleep induction by microinjection of the GABA-A antagonist bicuculline into the dorsal subcoeruleus area of the rat. Brain Res., 2003, 962(1-2), 68-77.
[http://dx.doi.org/10.1016/S0006-8993(02)03956-2] [PMID: 12543457]
[77]
Jones, B.E. Arousal and sleep circuits. Neuropsychopharmaco- logy, 2020, 6-20.
[http://dx.doi.org/10.1038/s41386-019-0444-2]
[78]
Russo, E.B.; Marcu, J. Cannabis pharmacology: the usual suspects and a few promising leads. Adv. Pharmacol., 2017, 80, 67-134.
[http://dx.doi.org/10.1016/bs.apha.2017.03.004] [PMID: 28826544]
[79]
Freeman, A.M.; Petrilli, K.; Lees, R.; Hindocha, C.; Mokrysz, C.; Curran, H.V.; Saunders, R.; Freeman, T.P. How does cannabidiol (CBD) influence the acute effects of delta-9-tetrahydrocannabinol (THC) in humans? A systematic review. Neurosci. Biobehav. Rev., 2019, 107, 696-712.
[http://dx.doi.org/10.1016/j.neubiorev.2019.09.036] [PMID: 31580839]
[80]
Di Marzo, V.; Piscitelli, F. The endocannabinoid system and its modulation by phytocannabinoids. Neurotherapeutics, 2015, 12(4), 692-698.
[http://dx.doi.org/10.1007/s13311-015-0374-6] [PMID: 26271952]
[81]
Murillo-Rodríguez, E.; Budde, H.; Veras, A.B.; Rocha, N.B.; Telles-Correia, D.; Monteiro, D.; Cid, L.; Yamamoto, T.; Machado, S.; Torterolo, P. The endocannabinoid system may modulate sleep disorders in aging. Curr. Neuropharmacol., 2020, 18(2), 97-108.
[http://dx.doi.org/10.2174/1570159X17666190801155922] [PMID: 31368874]
[82]
Petrunich-Rutherford, M.L.; Calik, M.W. Effects of cannabinoid agonists and antagonists on sleep in laboratory animals. Adv. Exp. Med. Biol., 2021, 1297, 97-109.
[http://dx.doi.org/10.1007/978-3-030-61663-2_7] [PMID: 33537939]
[83]
Kesner, A.J.; Lovinger, D.M. Cannabinoids, endocannabinoids and sleep. Front. Mol. Neurosci., 2020, 13, 125.
[http://dx.doi.org/10.3389/fnmol.2020.00125] [PMID: 32774241]
[84]
Dos Santos, R.G.; Hallak, J.E.C.; Crippa, J.A.S. Neuropharmacological effects of the main phytocannabinoids: a narrative review. Adv. Exp. Med. Biol., 2021, 1264, 29-45.
[http://dx.doi.org/10.1007/978-3-030-57369-0_3] [PMID: 33332002]
[85]
Rock, E.M.; Parker, L.A. Constituents of Cannabis Sativa. Adv. Exp. Med. Biol., 2021, 1264, 1-13.
[http://dx.doi.org/10.1007/978-3-030-57369-0_1] [PMID: 33332000]
[86]
O’Sullivan, S.E. An update on PPAR activation by cannabinoids. Br. J. Pharmacol., 2016, 173(12), 1899-1910.
[http://dx.doi.org/10.1111/bph.13497] [PMID: 27077495]
[87]
Laun, A.S.; Song, Z.H. GPR3 and GPR6, novel molecular targets for cannabidiol. Biochem. Biophys. Res. Commun., 2017, 490(1), 17-21.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.165] [PMID: 28571738]
[88]
Patricio, F.; Morales-Andrade, A.A.; Patricio-Martínez, A.; Limón, I.D. Cannabidiol as a therapeutic target: Evidence of its neuroprotective and neuromodulatory function in Parkinson’s disease. Front. Pharmacol., 2020, 11, 595635.
[http://dx.doi.org/10.3389/fphar.2020.595635] [PMID: 33384602]
[89]
Silvestro, S.; Schepici, G.; Bramanti, P.; Mazzon, E. Molecular targets of cannabidiol in experimental models of neurological disease. Molecules, 2020, 25(21), 5186.
[http://dx.doi.org/10.3390/molecules25215186] [PMID: 33171772]
[90]
Pivik, R.T.; Zarcone, V.; Dement, W.C.; Hollister, L.E. Delta-9-tetrahydrocannabinol and synhexl: effects on human sleep patterns. Clin. Pharmacol. Ther., 1972, 13(3), 426-435.
[http://dx.doi.org/10.1002/cpt1972133426] [PMID: 4337346]
[91]
Feinberg, I.; Jones, R.; Walker, J.M.; Cavness, C.; March, J. Effects of high dosage delta-9-tetrahydrocannabinol on sleep patterns in man. Clin. Pharmacol. Ther., 1975, 17(4), 458-466.
[http://dx.doi.org/10.1002/cpt1975174458] [PMID: 164314]
[92]
Buonamici, M.; Young, G.A.; Khazan, N. Effects of acute delta 9-THC administration on EEG and EEG power spectra in the rat. Neuropharmacology, 1982, 21(8), 825-829.
[http://dx.doi.org/10.1016/0028-3908(82)90071-5] [PMID: 6289162]
[93]
Freemon, F.R. The effect of chronically administered delta-9-tetrahydrocannabinol upon the polygraphically monitored sleep of normal volunteers. Drug Alcohol Depend., 1982, 10(4), 345-353.
[http://dx.doi.org/10.1016/0376-8716(82)90036-9] [PMID: 6299682]
[94]
Duffy, A.; Milin, R. Case study: Withdrawal syndrome in adolescent chronic cannabis users. J. Am. Acad. Child Adolesc. Psychiatry, 1996, 35(12), 1618-1621.
[http://dx.doi.org/10.1097/00004583-199612000-00013] [PMID: 8973068]
[95]
Bolla, K.I.; Lesage, S.R.; Gamaldo, C.E.; Neubauer, D.N.; Funderburk, F.R.; Cadet, J.L.; David, P.M.; Verdejo-Garcia, A.; Benbrook, A.R. Sleep disturbance in heavy marijuana users. Sleep, 2008, 31(6), 901-908.
[http://dx.doi.org/10.1093/sleep/31.6.901] [PMID: 18548836]
[96]
Pacek, L.R.; Herrmann, E.S.; Smith, M.T.; Vandrey, R. Sleep continuity, architecture and quality among treatment-seeking cannabis users: an in-home, unattended polysomnographic study. Exp. Clin. Psychopharmacol., 2017, 25(4), 295-302.
[http://dx.doi.org/10.1037/pha0000126] [PMID: 28782982]
[97]
Silva, N.R.; Gomes, F.V.; Fonseca, M.D. Antinociceptive effects of HUF-101, a fluorinated cannabidiol derivative. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 79(Pt B), 369-377.
[98]
Gáll, Z.; Farkas, S.; Albert, Á.; Ferencz, E.; Vancea, S.; Urkon, M.; Kolcsár, M. Effects of chronic cannabidiol treatment in the rat chronic unpredictable mild stress model of depression. Biomolecules, 2020, 10(5), 801.
[http://dx.doi.org/10.3390/biom10050801] [PMID: 32455953]
[99]
Pinto, J.V.; Saraf, G.; Frysch, C.; Vigo, D.; Keramatian, K.; Chakrabarty, T.; Lam, R.W.; Kauer-Sant’Anna, M.; Yatham, L.N. Cannabidiol as a treatment for mood disorders: a systematic review. Can. J. Psychiatry, 2020, 65(4), 213-227.
[http://dx.doi.org/10.1177/0706743719895195] [PMID: 31830820]
[100]
Gray, R.A.; Whalley, B.J. The proposed mechanisms of action of CBD in epilepsy. Epileptic Disord., 2020, 22(S1), 10-15.
[PMID: 32053110]
[101]
von Wrede, R.; Helmstaedter, C.; Surges, R. Cannabidiol in the treatment of epilepsy. Clin. Drug Investig., 2021, 41(3), 211-220.
[http://dx.doi.org/10.1007/s40261-021-01003-y] [PMID: 33559102]
[102]
Monti, J.M. Hypnoticlike effects of cannabidiol in the rat. Psychopharmacology (Berl.), 1977, 55(3), 263-265.
[http://dx.doi.org/10.1007/BF00497858] [PMID: 414288]
[103]
Borys, H. Development of tolerance to the prolongation of hexobarbitone sleeping time caused by cannabidiol. Br. J. Pharmacol., 1979, 67.1, 93.
[104]
Nicholson, A.N.; Turner, C.; Stone, B.M.; Robson, P.J. Effect of Delta-9-tetrahydrocannabinol and cannabidiol on nocturnal sleep and early-morning behavior in young adults. J. Clin. Psychopharmacol., 2004, 24(3), 305-313.
[http://dx.doi.org/10.1097/01.jcp.0000125688.05091.8f] [PMID: 15118485]
[105]
Shannon, S.; Opila-Lehman, J. Effectiveness of cannabidiol oil for pediatric anxiety and insomnia as part of posttraumatic stress disorder: a case report. Perm. J., 2016, 20(4), 16-005.
[http://dx.doi.org/10.7812/TPP/16-005] [PMID: 27768570]
[106]
Chagas, M.H.; Crippa, J.A.; Zuardi, A.W.; Hallak, J.E.; Machado-de-Sousa, J.P.; Hirotsu, C.; Maia, L.; Tufik, S.; Andersen, M.L. Effects of acute systemic administration of cannabidiol on sleep-wake cycle in rats. J. Psychopharmacol., 2013, 27(3), 312-316.
[http://dx.doi.org/10.1177/0269881112474524] [PMID: 23343597]
[107]
Chagas, M.H.; Eckeli, A.L.; Zuardi, A.W.; Pena-Pereira, M.A.; Sobreira-Neto, M.A.; Sobreira, E.T.; Camilo, M.R.; Bergamaschi, M.M.; Schenck, C.H.; Hallak, J.E.; Tumas, V.; Crippa, J.A. Cannabidiol can improve complex sleep-related behaviours associated with rapid eye movement sleep behaviour disorder in Parkinson’s disease patients: a case series. J. Clin. Pharm. Ther., 2014, 39(5), 564-566.
[http://dx.doi.org/10.1111/jcpt.12179] [PMID: 24845114]
[108]
Linares, I.M.P.; Guimaraes, F.S.; Eckeli, A.; Crippa, A.C.S.; Zuardi, A.W.; Souza, J.D.S.; Hallak, J.E.; Crippa, J.A.S. No acute effects of cannabidiol on the sleep-wake cycle of healthy subjects: a randomized, double-blind, placebo-controlled, crossover study. Front. Pharmacol., 2018, 9, 315.
[http://dx.doi.org/10.3389/fphar.2018.00315] [PMID: 29674967]
[109]
Murillo-Rodríguez, E.; Millán-Aldaco, D.; Palomero-Rivero, M.; Mechoulam, R.; Drucker-Colín, R. Cannabidiol, a constituent of Cannabis sativa, modulates sleep in rats. FEBS Lett., 2006, 580(18), 4337-4345.
[http://dx.doi.org/10.1016/j.febslet.2006.04.102] [PMID: 16844117]
[110]
Murillo-Rodríguez, E.; Millán-Aldaco, D.; Palomero-Rivero, M.; Mechoulam, R.; Drucker-Colín, R. The nonpsychoactive Cannabis constituent cannabidiol is a wake-inducing agent. Behav. Neurosci., 2008, 122(6), 1378-1382.
[http://dx.doi.org/10.1037/a0013278] [PMID: 19045957]
[111]
Murillo-Rodríguez, E.; Palomero-Rivero, M.; Millán-Aldaco, D.; Mechoulam, R.; Drucker-Colín, R. Effects on sleep and dopamine levels of microdialysis perfusion of cannabidiol into the lateral hypothalamus of rats. Life Sci., 2011, 88(11-12), 504-511.
[http://dx.doi.org/10.1016/j.lfs.2011.01.013] [PMID: 21262236]
[112]
Murillo-Rodríguez, E.; Sarro-Ramírez, A.; Sánchez, D.; Mijangos-Moreno, S.; Tejeda-Padrón, A.; Poot-Aké, A.; Guzmán, K.; Pacheco-Pantoja, E.; Arias-Carrión, O. Potential effects of cannabidiol as a wake-promoting agent. Curr. Neuropharmacol., 2014, 12(3), 269-272.
[http://dx.doi.org/10.2174/1570159X11666131204235805] [PMID: 24851090]
[113]
Murillo-Rodríguez, E.; Millán-Aldaco, D.; Palomero-Rivero, M.; Morales-Lara, D.; Mechoulam, R.; Drucker-Colín, R. Cannabidiol partially blocks the excessive sleepiness in hypocretindeficient rats: Preliminary data. CNS Neurol. Disord. Drug Targets, 2019, 18(9), 705-712.
[114]
Shannon, S.; Lewis, N.; Lee, H.; Hughes, S. Cannabidiol in anxiety and sleep: a large case series. Perm. J., 2019, 23, 18-041.
[http://dx.doi.org/10.7812/TPP/18-041] [PMID: 30624194]
[115]
Suraev, A.S.; Marshall, N.S.; Vandrey, R.; McCartney, D.; Benson, M.J.; McGregor, I.S.; Grunstein, R.R.; Hoyos, C.M. Cannabinoid therapies in the management of sleep disorders: A systematic review of preclinical and clinical studies. Sleep Med. Rev., 2020, 53, 101339.
[http://dx.doi.org/10.1016/j.smrv.2020.101339] [PMID: 32603954]
[116]
Millar, S.A.; Maguire, R.F.; Yates, A.S.; O’Sullivan, S.E. Towards better delivery of cannabidiol (CBD). Pharmaceuticals (Basel), 2020, 13(9), 219.
[http://dx.doi.org/10.3390/ph13090219] [PMID: 32872355]
[117]
Kosović, E.; Sýkora, D.; Kuchař, M. Stability study of cannabidiol in the form of solid powder and sunflower oil solution. Pharmaceutics, 2021, 13(3), 412.
[http://dx.doi.org/10.3390/pharmaceutics13030412] [PMID: 33808893]
[118]
Kuhathasan, N.; Dufort, A.; MacKillop, J.; Gottschalk, R.; Minuzzi, L.; Frey, B.N. The use of cannabinoids for sleep: a critical review on clinical trials. Exp. Clin. Psychopharmacol., 2019, 27(4), 383-401.
[http://dx.doi.org/10.1037/pha0000285] [PMID: 31120284]
[119]
Murillo-Rodríguez, E.; Millán-Aldaco, D.; Cicconcelli, D.; Giorgetti, V.; Arankowsky-Sandoval, G.; Alcaraz-Silva, J.; Imperatori, C.; Machado, S.; Budde, H.; Torterolo, P. Sleep-wake cycle disturbances and NeuN-altered expression in adult rats after cannabidiol treatments during adolescence. Psychopharmacology (Berl.), 2021, 238(6), 1437-1447.
[http://dx.doi.org/10.1007/s00213-021-05769-z] [PMID: 33635384]
[120]
Citti, C.; Pacchetti, B.; Vandelli, M.A.; Forni, F.; Cannazza, G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA). J. Pharm. Biomed. Anal., 2018, 149, 532-540.
[http://dx.doi.org/10.1016/j.jpba.2017.11.044] [PMID: 29182999]
[121]
Pertwee, R.G.; Rock, E.M.; Guenther, K.; Limebeer, C.L.; Stevenson, L.A.; Haj, C.; Smoum, R.; Parker, L.A.; Mechoulam, R. Cannabidiolic acid methyl ester, a stable synthetic analogue of cannabidiolic acid, can produce 5-HT1A receptor-mediated suppression of nausea and anxiety in rats. Br. J. Pharmacol., 2018, 175(1), 100-112.
[http://dx.doi.org/10.1111/bph.14073] [PMID: 29057454]
[122]
Hen-Shoval, D.; Amar, S.; Shbiro, L.; Smoum, R.; Haj, C.G.; Mechoulam, R.; Zalsman, G.; Weller, A.; Shoval, G. Acute oral cannabidiolic acid methyl ester reduces depression-like behavior in two genetic animal models of depression. Behav. Brain Res., 2018, 351, 1-3.
[http://dx.doi.org/10.1016/j.bbr.2018.05.027] [PMID: 29860002]
[123]
Rock, E.M.; Sullivan, M.T.; Collins, S.A.; Goodman, H.; Limebeer, C.L.; Mechoulam, R.; Parker, L.A. Evaluation of repeated or acute treatment with cannabidiol (CBD), cannabidiolic acid (CBDA) or CBDA methyl ester (HU-580) on nausea and/or vomiting in rats and shrews. Psychopharmacology (Berl.), 2020, 237(9), 2621-2631.
[http://dx.doi.org/10.1007/s00213-020-05559-z] [PMID: 32488349]
[124]
Rock, E.M.; Limebeer, C.L.; Pertwee, R.G.; Mechoulam, R.; Parker, L.A. Therapeutic potential of cannabidiol, cannabidiolic acid, and cannabidiolic acid methyl ester as treatments for nausea and vomiting. Cannabis Cannabinoid Res., 2021, 6(4), 266-274.
[http://dx.doi.org/10.1089/can.2021.0041] [PMID: 34115951]
[125]
Murillo-Rodríguez, E.; Arankowsky-Sandoval, G.; Pertwee, R.G.; Parker, L.; Mechoulam, R. Sleep and neurochemical modulation by cannabidiolic acid methyl ester in rats. Brain Res. Bull., 2020, 155, 166-173.
[http://dx.doi.org/10.1016/j.brainresbull.2019.12.006] [PMID: 31838151]
[126]
Goerl, B.; Watkins, S.; Metcalf, C.; Smith, M.; Beenhakker, M. Cannabidiolic acid exhibits entourage-like improvements of anticonvulsant activity in an acute rat model of seizures. Epilepsy Res., 2021, 169, 106525.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106525] [PMID: 33310415]
[127]
Vigli, D.; Cosentino, L.; Pellas, M.; De Filippis, B. Chronic treatment with cannabidiolic acid (CBDA) reduces thermal pain sensitivity in male mice and rescues the hyperalgesia in a mouse model of rett syndrome. Neuroscience, 2021, 453, 113-123.
[http://dx.doi.org/10.1016/j.neuroscience.2020.09.041] [PMID: 33010341]
[128]
Brower, K.J. Alcohol’s effects on sleep in alcoholics. Alcohol Res. Health, 2001, 25(2), 110-125.
[PMID: 11584550]
[129]
Gillin, J.C.; Smith, T.L.; Irwin, M.; Butters, N.; Demodena, A.; Schuckit, M. Increased pressure for rapid eye movement sleep at time of hospital admission predicts relapse in nondepressed patients with primary alcoholism at 3-month follow-up. Arch. Gen. Psychiatry, 1994, 51(3), 189-197.
[http://dx.doi.org/10.1001/archpsyc.1994.03950030025003] [PMID: 8122956]
[130]
Foster, J.H.; Peters, T.J. Impaired sleep in alcohol misusers and dependent alcoholics and the impact upon outcome. Alcohol. Clin. Exp. Res., 1999, 23(6), 1044-1051.
[http://dx.doi.org/10.1111/j.1530-0277.1999.tb04223.x] [PMID: 10397289]
[131]
He, S.; Brooks, A.T.; Kampman, K.M.; Chakravorty, S. The relationship between alcohol craving and insomnia symptoms in alcohol-dependent individuals. Alcohol Alcohol., 2019, 54(3), 287-294.
[http://dx.doi.org/10.1093/alcalc/agz029] [PMID: 31087085]
[132]
Roehrs, T.; Papineau, K.; Rosenthal, L.; Roth, T. Ethanol as a hypnotic in insomniacs: Self administration and effects on sleep and mood. Neuropsychopharmacology, 1999, 20(3), 279-286.
[http://dx.doi.org/10.1016/S0893-133X(98)00068-2] [PMID: 10063488]
[133]
Roehrs, T.; Papineau, K.; Rosenthal, L.; Roth, T. Sleepiness and the reinforcing and subjective effects of methylphenidate. Exp. Clin. Psychopharmacol., 1999, 7(2), 145-150.
[http://dx.doi.org/10.1037/1064-1297.7.2.145] [PMID: 10340154]
[134]
Roehrs, T.; Johanson, C.E.; Meixner, R.; Turner, L.; Roth, T. Reinforcing and subjective effects of methylphenidate: Dose and time in bed. Exp. Clin. Psychopharmacol., 2004, 12(3), 180-189.
[http://dx.doi.org/10.1037/1064-1297.12.3.180] [PMID: 15301635]
[135]
Puhl, M.D.; Boisvert, M.; Guan, Z.; Fang, J.; Grigson, P.S.; Biochem, P.; Author, B. A novel model of chronic sleep restriction reveals an increase in the perceived incentive reward value of cocaine in high drug-taking rats. Pharmacol. Biochem. Behav., 2013, 109, 8-15.
[http://dx.doi.org/10.1016/j.pbb.2013.04.010] [PMID: 23603033]
[136]
García-García, F.; Priego-Fernández, S.; López-Muciño, L.A.; Acosta-Hernández, M.E.; Peña-Escudero, C. Increased alcohol consumption in sleep-restricted rats is mediated by delta FosB induction. Alcohol, 2021, 93, 63-70.
[http://dx.doi.org/10.1016/j.alcohol.2021.02.004] [PMID: 33662520]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy