[3]
Nandy, A. A new graphical representation and analysis of DNA sequence structure: I. Methodology and application to globin genes. Curr. Sci., 1994, 66, 309-314.
[4]
Leong, P.M.; Morgenthaler, S. Random walk and gap plots of DNA sequences. Bioinformatics, 1995, 11, 503-507.
[5]
Randić, M.; Vračko, M.; Nandy, A.; Basak, S.C. On 3-D representation of DNA primary sequences. J. Chem. Inf. Comput. Sci., 2000, 40, 1235-1244.
[6]
Bielińska-Wąż, D.; Clark, T.; Wąż, P. Nowak, W.; Nandy, A. 2D-dynamic representation of DNA sequences. Chem. Phys. Lett., 2007, 442, 140-144.
[7]
Bielińska-Wąż, D. Four-component spectral representation of DNA sequences. J. Math. Chem., 2010, 47, 41-51.
[8]
Wąż, P.; Bielińska-Wąż, D. 3D-dynamic representation of DNA sequences. J. Mol. Model., 2014, 20, 2141.
[9]
Bielińska-Wąż, D.; Wąż, P. Spectral-dynamic representation of DNA sequences. J. Biomed. Inform., 2017, 72, 1-7.
[10]
Liao, B.; Wang, T. Analysis of similarity/dissimilarity of DNA sequences based on nonoverlapping triplets of nucleotide bases. J. Chem. Inf. Comput. Sci., 2004, 44, 1666-1670.
[12]
Agüero-Chapin, G.; González-Díaz, H.; Molina, R.; Varona-Santos, J.; Uriarte, E.; González-Díaz, Y. Novel 2D maps and coupling numbers for protein sequences. The first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from Psidium guajava L. FEBS Lett., 2006, 580, 723-730.
[13]
González-Díaz, H.; Agüero-Chapin, G.; Varona, J.; Molina, R.; Delogu, G.; Santana, L.; Uriarte, E.; Podda, G. 2D-RNA-Coupling Numbers: A new computational chemistry approach to link secondary structure topology with biological function. J. Comput. Chem., 2007, 28, 1049-1056.
[14]
Nandy, A.; Harle, M.; Basak, S.C. Mathematical descriptors of DNA sequences: development and applications. ARKIVOC, 2006, ix, 211-238.
[15]
Bielińska-Wąż, D. Graphical and numerical representations of DNA sequences: Statistical aspects of similarity. J. Math. Chem., 2011, 49, 2345-2407.
[16]
Randić, M.; Novič, M.; Plavšić, D. Milestones in graphical bioinformatics. Int. J. Quantum Chem., 2013, 113, 2413-2446.
[17]
Mizuta, S. Graphical Representation of Biological Sequences.Bioinformatics in the Era of Post Genomics and Big Data; Abdurakhmonov, I.Y., Ed.; IntechOpen, 2018.
[18]
Bielińska-Wąż, D.; Subramaniam, S. Classification studies based on a spectral representation of DNA. J. Theor. Biol., 2010, 266, 667-674.
[19]
Wąż, P.; Bielińska-Wąż, D. Non-standard similarity/dissimilarity analysis of DNA sequences. Genomics, 2014, 104, 464-471.
[20]
Wąż, P.; Bielińska-Wąż, D.; Nandy, A. Descriptors of 2D-dynamic graphs as a classification tool of DNA sequences. J. Math. Chem., 2014, 52, 132-140.
[21]
Nandy, A.; Dey, S.; Basak, S.C.; Bielińska-Wąż, D.; Wąż, P. Characterizing the Zika Virus Genome – A Bioinformatics Study. Curr. Comp.-. Aided Drug Des., 2016, 12, 87-97.
[22]
Panas, D.; Wąż, P.; Bielińska-Wąż, D.; Nandy, A.; Basak, S.C. 2D-Dynamic Representation of DNA/RNA Sequences as a Characterization Tool of the Zika Virus Genome. MATCH. Commun. Math. Comput. Chem, 2017, 77, 321-332.
[23]
Vračko, M.; Basak, S.C.; Sen, D.; Nandy, A. Clustering of Zika Viruses Originating from Different Geographical Regions using Computational
Sequence Descriptors. Curr. Comp.-Aided Drug Des, 2020, 16,
[PMID: 31878862]
[PMID: 31878862]
[24]
Ghosh, A.; Nandy, A.; Nandy, P. Computational analysis and determination of a highly conserved surface exposed segment in H5N1 avian flu and H1N1 swine flu neuraminidase. BMC Struct. Biol., 2010, 10.
[PMID: 20170556]
[PMID: 20170556]
[25]
Bielińska-Wąż, D.; Wąż, P. Non-standard bioinformatics characterization of SARS-CoV-2. Comput. Biol. Med., 2021, 131104247
[26]
Vračko, M.; Basak, S.C.; Dey, T.; Nandy, A. Cluster analysis of coronavirus sequences using computational sequence descriptors: With applications to SARS, MERS and SARS-CoV-2 (CoVID-19); Curr. Comp.-Aided Drug Des, 2021.
[http://dx.doi.org/10.2174/1573409917666210202092646]
[http://dx.doi.org/10.2174/1573409917666210202092646]
[27]
Nandy, A.; Basak, S.C. A Brief Review of Computer-Assisted Approaches to Rational Design of Peptide Vaccines. Int. J. Mol. Sci., 2016, 17, 666.