Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Imidazole: Multi-targeted Therapeutic Leads for the Management of Alzheimer’s Disease

Author(s): Ashwani K. Dhingra*, Bhawna Chopra, Akash Jain and Jasmine Chaudhary

Volume 22, Issue 10, 2022

Published on: 26 January, 2022

Page: [1352 - 1373] Pages: 22

DOI: 10.2174/1389557522666220104152141

Price: $65

Abstract

Background: Alzheimer's disease (AD) is a multifactorial disorder coupled with an array of neuropathological mechanisms, including tau phosphorylation, Aβ aggregation, metal ion deregulation, and oxidative stress, along with neuro-inflammation. The clinically available drugs for the management of AD include four acetylcholinesterase inhibitors and one glutamatergic antagonist. These agents provide only temporary relief from the symptoms by altering the neurotransmitter level in the brain.

Objective: Keeping in view the focus on research, the numerous pharmacological activities associated with the aromatic diazole heterocyclic nucleus, imidazole, triggered the medicinal chemist to develop a large number of novel anti-AD compounds targeting multiple pathological mechanisms associated with AD. These prepared analogs represent a higher potential against neurological disorders, including AD. This review article aims an ornately pronounce the therapeutic voyage of imidazole and its analogs as anti-AD.

Methods: It emphasizes the synthesized imidazole derivatives as anti-AD with multiple targets reviewed from the data available on Pubmed.

Results: These compounds diminish the pathophysiological aspects of AD; still, further studies are required to prove the safety and efficacy of these compounds in humans.

Conclusion: The review aims to provide knowledge and highlight the status of this moiety in the design and development of novel drug candidates against Alzheimer’s disease conditions. Thus, it paves the way for further work.

Keywords: Alzheimer’s disease, imidazole, amyloid β, MAPK, AChE, RAGE.

Graphical Abstract

[1]
Dhingra, A.K.; Rathi, V.; Chopra, B. Resveratrol, Naturally Occurring Chemicals against Alzheimer’s Disease, 1st ed; Academic Press Inc., 2021, pp. 33-42.
[http://dx.doi.org/10.1016/B978-0-12-819212-2.00037-2]
[2]
Liang, L.; Wei, H. Dantrolene, a treatment for Alzheimer disease? Alzheimer Dis. Assoc. Disord., 2015, 29(1), 1-5.
[http://dx.doi.org/10.1097/WAD.0000000000000076] [PMID: 25551862]
[3]
Saini, D.; Dhingra, A.K.; Chopra, B.; Parle, M. Psychopharmacological Investigation of the Nootropic potential of Trigonella foenum Linn in mice. AJPCR, 2011, 4(4), 76-84.
[4]
Rathi, V.; Dhingra, A.K.; Chopra, B. Naturally occurring chemicals against alzheimer’s disease Withania somnifera, 1st ed; Academic Press Inc., 2021, pp. 401-404.
[5]
Zlomuzica, A.; Dere, D.; Binder, S.; De Souza Silva, M.A.; Huston, J.P.; Dere, E. Neuronal histamine and cognitive symptoms in Alzheimer’s disease. Neuropharmacology, 2016, 106, 135-145.
[http://dx.doi.org/10.1016/j.neuropharm.2015.05.007] [PMID: 26025658]
[6]
Kheiri, G.; Dolatshahi, M.; Rahmani, F.; Rezaei, N. Role of p38/MAPKs in Alzheimer’s disease: Implications for amyloid beta toxicity targeted therapy. Rev. Neurosci., 2018, 30(1), 9-30.
[http://dx.doi.org/10.1515/revneuro-2018-0008] [PMID: 29804103]
[7]
Li, M.; Zhang, W.; Wang, W.; He, Q.; Yin, M.; Qin, X.; Zhang, T.; Wu, T. Imidazole improves cognition and balances Alzheimer’s-like intracellular calcium homeostasis in transgenic Drosophila model. Neurourol. Urodyn., 2018, 37(4), 1250-1257.
[http://dx.doi.org/10.1002/nau.23448] [PMID: 29106759]
[8]
Saini, D.; Dhingra, A.K.; Chopra, B.; Parle, M. Evaluation of Nootropic activity of Trigonella foenum leaves in mice. IJPPS, 2012, 4(4), 136-143.
[9]
Liu, J.; Qiu, J.; Wang, M.; Wang, L.; Su, L.; Gao, J.; Gu, Q.; Xu, J.; Huang, S.L.; Gu, L.Q.; Huang, Z.S.; Li, D. Synthesis and characterization of 1H-phenanthro[9,10-d]imidazole derivatives as multifunctional agents for treatment of Alzheimer’s disease. Biochim. Biophys. Acta, 2014, 1840(9), 2886-2903.
[http://dx.doi.org/10.1016/j.bbagen.2014.05.005] [PMID: 24821011]
[10]
Li, M.; Dong, Y.; Yu, X.; Li, Y.; Zou, Y.; Zheng, Y.; He, Z.; Liu, Z.; Quan, J.; Bu, X.; Wu, H. Synthesis and evaluation of diphenyl conjugated imidazole derivatives as potential glutaminyl cyclase inhibitors for treatment of Alzheimer’s disease. J. Med. Chem., 2017, 60(15), 6664-6677.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00648] [PMID: 28700245]
[11]
Alí-Torres, J.; Rodríguez-Santiago, L.; Sodupe, M. Computational calculations of pKa values of imidazole in Cu(II) complexes of biological relevance. Phys. Chem. Chem. Phys., 2011, 13(17), 7852-7861.
[http://dx.doi.org/10.1039/c0cp02319a] [PMID: 21445432]
[12]
Kumar, A.; Singh, A. Ekavali, A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[13]
Masand, N.; Gupta, S.P.; Khosa, R.L.; Patil, V.M. Heterocyclic Secretase Inhibitors for the Treatment of Alzheimer’s Disease: An Overview. Cent. Nerv. Syst. Agents Med. Chem., 2015. Epub ahead of print
[PMID: 26511918]
[14]
Chopra, B.; Dhingra, A.K.; Prasad, D.N. Imidazole: An emerging scaffold showing its therapeutic voyage to develop valuable molecular entities. Curr. Drug Res. Rev., 2020, 12(2), 103-117.
[http://dx.doi.org/10.2174/2589977511666191129152038] [PMID: 31782364]
[15]
Dhingra, A.K.; Chopra, B.; Dua, J.S.; Prasad, D.N. therapeutic potential of n-heterocyclic analogs as anti-inflammatory agents. Antiinflamm. Antiallergy Agents Med. Chem., 2017, 16(3), 136-152.
[http://dx.doi.org/10.2174/1871523017666180126150901] [PMID: 29376495]
[16]
Kaur, G.; Kumar, S.; Dhingra, A.K.; Chopra, B. Synthesis, antimicrobial and anti-inflammatory activity of some novel benzimidazoles analogs. Pharm. Sin., 2015, 6(9), 1-7.
[17]
Dhingra, A.K.; Chopra, B.; Dass, R.; Mittal, S.K. Synthesis, antimicrobial and anti-inflammatory activities of some novel 5-substituted imidazolone analogs. Chin. Chem. Lett., 2016, 27, 707-710.
[http://dx.doi.org/10.1016/j.cclet.2016.01.049]
[18]
Dhingra, A.K.; Chopra, B.; Sidhu, A.; Guarve, K.; Gupta, A. An emerging five membered heterocyclic scaffold Imidazole showing its therapeutic voyage as anticancer, Key Heterocyclic Cores for Smart Anti-cancer Drug Design: Bentham, 2021. (Epub ahead of print).
[19]
Chopra, B.; Dhingra, A.K.; Kapoor, R.P.; Parsad, D.N. Microwave assisted synthesis of some 5-substituted imidazolone analogs as a new class of non purine xanthine oxidase inhibitors. Pharma Chem., 2015, 7(9), 145-152.
[20]
Shan, L.; Dauvilliers, Y.; Siegel, J.M. Interactions of the histamine and hypocretin systems in CNS disorders. Nat. Rev. Neurol., 2015, 11(7), 401-413.
[http://dx.doi.org/10.1038/nrneurol.2015.99] [PMID: 26100750]
[21]
Fernández-Novoa, L.; Cacabelos, R. Histamine function in brain disorders. Behav. Brain Res., 2001, 124(2), 213-233.
[http://dx.doi.org/10.1016/S0166-4328(01)00215-7] [PMID: 11640975]
[22]
Mishra, S.; Palanivelu, K. The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Ann. Indian Acad. Neurol., 2008, 11(1), 13-19.
[http://dx.doi.org/10.4103/0972-2327.40220] [PMID: 19966973]
[23]
Qin, J.; Cho, M.; Lee, Y. Ferrocene-Encapsulated Zn Zeolitic imidazole framework (ZIF-8) for optical and electrochemical sensing of amyloid-β oligomers and for the early diagnosis of Alzheimer’s disease. ACS Appl. Mater. Interfaces, 2019, 11(12), 11743-11748.
[http://dx.doi.org/10.1021/acsami.8b21425] [PMID: 30843389]
[24]
Maya, Y.; Okumura, Y.; Kobayashi, R.; Onishi, T.; Shoyama, Y.; Barret, O.; Alagille, D.; Jennings, D.; Marek, K.; Seibyl, J.; Tamagnan, G.; Tanaka, A.; Shirakami, Y. Preclinical properties and human in vivo assessment of 123I-ABC577 as a novel SPECT agent for imaging amyloid-β. Brain, 2016, 139(Pt 1), 193-203.
[http://dx.doi.org/10.1093/brain/awv305] [PMID: 26490333]
[25]
Chen, C.J.; Bando, K.; Ashino, H.; Taguchi, K.; Shiraishi, H.; Shima, K.; Fujimoto, O.; Kitamura, C.; Matsushima, S.; Uchida, K.; Nakahara, Y.; Kasahara, H.; Minamizawa, T.; Jiang, C.; Zhang, M.R.; Ono, M.; Tokunaga, M.; Suhara, T.; Higuchi, M.; Yamada, K.; Ji, B. In vivo SPECT imaging of amyloid-β deposition with radioiodinated imidazo[1,2-a]pyridine derivative DRM106 in a mouse model of Alzheimer’s disease. J. Nucl. Med., 2015, 56(1), 120-126.
[http://dx.doi.org/10.2967/jnumed.114.146944] [PMID: 25476539]
[26]
Freire, S.; Rodríguez-Prieto, F.; Ríos Rodríguez, M.C.; Penedo, J.C.; Al-Soufi, W.; Novo, M. Towards ratiometric sensing of amyloid fibrils in vitro. Chemistry, 2015, 21(8), 3425-3434.
[http://dx.doi.org/10.1002/chem.201406110] [PMID: 25572280]
[27]
Gao, M.; Wang, M.; Zheng, Q.H. Synthesis of carbon-11-labeled CK1 inhibitors as new potential PET radiotracers for imaging of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2018, 28(13), 2234-2238.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.053] [PMID: 29859907]
[28]
Chen, C.J.; Bando, K.; Ashino, H.; Taguchi, K.; Shiraishi, H.; Shima, K.; Fujimoto, O.; Kitamura, C.; Morimoto, Y.; Kasahara, H.; Minamizawa, T.; Jiang, C.; Zhang, M.R.; Suhara, T.; Higuchi, M.; Yamada, K.; Ji, B. Biological evaluation of the radioiodinated imidazo[1,2-a]pyridine derivative DRK092 for amyloid-β imaging in mouse model of Alzheimer’s disease. Neurosci. Lett., 2014, 581, 103-108.
[http://dx.doi.org/10.1016/j.neulet.2014.08.036] [PMID: 25172571]
[29]
Molavipordanjani, S.; Emami, S.; Mardanshahi, A.; Talebpour Amiri, F.; Noaparast, Z.; Hosseinimehr, S.J. Novel 99mTc-2-arylimidazo[2,1-b]benzothiazole derivatives as SPECT imaging agents for amyloid-β plaques. Eur. J. Med. Chem., 2019, 175, 149-161.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.069] [PMID: 31078865]
[30]
Chen, C.J.; Bando, K.; Ashino, H.; Taguchi, K.; Shiraishi, H.; Fujimoto, O.; Kitamura, C.; Matsushima, S.; Fujinaga, M.; Zhang, M.R.; Kasahara, H.; Minamizawa, T.; Jiang, C.; Ono, M.; Higuchi, M.; Suhara, T.; Yamada, K.; Ji, B. Synthesis and biological evaluation of novel radioiodinated imidazopyridine derivatives for amyloid-β imaging in Alzheimer’s disease. Bioorg. Med. Chem., 2014, 22(15), 4189-4197.
[http://dx.doi.org/10.1016/j.bmc.2014.05.043] [PMID: 24931274]
[31]
Alagille, D.; DaCosta, H.; Baldwin, R.M.; Tamagnan, G.D. 2-Arylimidazo[2,1-b]benzothiazoles: A new family of amyloid binding agents with potential for PET and SPECT imaging of Alzheimer’s brain. Bioorg. Med. Chem. Lett., 2011, 21(10), 2966-2968.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.052] [PMID: 21458990]
[32]
Cai, L.; Chin, F.T.; Pike, V.W.; Toyama, H.; Liow, J.S.; Zoghbi, S.S.; Modell, K.; Briard, E.; Shetty, H.U.; Sinclair, K.; Donohue, S.; Tipre, D.; Kung, M.P.; Dagostin, C.; Widdowson, D.A.; Green, M.; Gao, W.; Herman, M.M.; Ichise, M.; Innis, R.B. Synthesis and evaluation of two 18F-labeled 6-iodo-2-(4′-N,N-dimethylamino)phenylimidazo[1,2-a]pyridine derivatives as prospective radioligands for beta-amyloid in Alzheimer’s disease. J. Med. Chem., 2004, 47(9), 2208-2218.
[http://dx.doi.org/10.1021/jm030477w] [PMID: 15084119]
[33]
Cui, M.; Ono, M.; Kimura, H.; Kawashima, H.; Liu, B.L.; Saji, H. Radioiodinated benzimidazole derivatives as single photon emission computed tomography probes for imaging of β-amyloid plaques in Alzheimer’s disease. Nucl. Med. Biol., 2011, 38(3), 313-320.
[http://dx.doi.org/10.1016/j.nucmedbio.2010.09.012] [PMID: 21492779]
[34]
Yu, H.J.; Zhao, W.; Zhou, Y.; Cheng, G.J.; Sun, M.; Wang, L.; Yu, L.; Liang, S.H.; Ran, C. Salen-based bifunctional chemosensor for copper (II) ions: Inhibition of copper-induced amyloid-β aggregation. Anal. Chim. Acta, 2020, 1097, 144-152.
[http://dx.doi.org/10.1016/j.aca.2019.10.072] [PMID: 31910954]
[35]
Laquintana, V.; Denora, N.; Lopedota, A.; Suzuki, H.; Sawada, M.; Serra, M.; Biggio, G.; Latrofa, A.; Trapani, G.; Liso, G. N-benzyl-2-(6,8-dichloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridin-3-yl)-N-(6-(7-nitrobenzo[c][1,2,5]oxadiazol-4-ylamino)hexyl)acetamide as a new fluorescent probe for peripheral benzodiazepine receptor and microglial cell visualization. Bioconjug. Chem., 2007, 18(5), 1397-1407.
[http://dx.doi.org/10.1021/bc060393c] [PMID: 17722875]
[36]
Cai, L.; Liow, J.S.; Zoghbi, S.S.; Cuevas, J.; Baetas, C.; Hong, J.; Shetty, H.U.; Seneca, N.M.; Brown, A.K.; Gladding, R.; Temme, S.S.; Herman, M.M.; Innis, R.B.; Pike, V.W. Synthesis and evaluation of N-methyl and S-methyl 11C-labeled 6-methylthio-2-(4′-N,N-dimethylamino)phenylimidazo[1,2-a]pyridines as radioligands for imaging beta-amyloid plaques in Alzheimer’s disease. J. Med. Chem., 2008, 51(1), 148-158.
[http://dx.doi.org/10.1021/jm700970s] [PMID: 18078311]
[37]
Kawamura, K.; Naganawa, M.; Konno, F.; Yui, J.; Wakizaka, H.; Yamasaki, T.; Yanamoto, K.; Hatori, A.; Takei, M.; Yoshida, Y.; Sakaguchi, K.; Fukumura, T.; Kimura, Y.; Zhang, M.R. Imaging of I2-imidazoline receptors by small-animal PET using 2-(3-fluoro-[4-11C]tolyl)-4,5-dihydro-1H-imidazole ([11C]FTIMD). Nucl. Med. Biol., 2010, 37(5), 625-635.
[http://dx.doi.org/10.1016/j.nucmedbio.2010.02.013] [PMID: 20610167]
[38]
Matsumura, K.; Ono, M.; Kitada, A.; Watanabe, H.; Yoshimura, M.; Iikuni, S.; Kimura, H.; Okamoto, Y.; Ihara, M.; Saji, H. Structure-activity relationship study of heterocyclic phenylethenyl and pyridinylethenyl derivatives as tau-imaging agents that selectively detect neurofibrillary tangles in alzheimer’s disease brains. J. Med. Chem., 2015, 58(18), 7241-7257.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00440] [PMID: 26327138]
[39]
Cai, L.; Cuevas, J.; Temme, S.; Herman, M.M.; Dagostin, C.; Widdowson, D.A.; Innis, R.B.; Pike, V.W. Synthesis and structure-affinity relationships of new 4-(6-iodo-H-imidazo[1,2-a]pyridin-2-yl)-N-dimethylbenzeneamine derivatives as ligands for human beta-amyloid plaques. J. Med. Chem., 2007, 50(19), 4746-4758.
[http://dx.doi.org/10.1021/jm0702231] [PMID: 17722900]
[40]
Zhuang, Z.P.; Kung, M.P.; Wilson, A.; Lee, C.W.; Plössl, K.; Hou, C.; Holtzman, D.M.; Kung, H.F. Structure-activity relationship of imidazo[1,2-a]pyridines as ligands for detecting beta-amyloid plaques in the brain. J. Med. Chem., 2003, 46(2), 237-243.
[http://dx.doi.org/10.1021/jm020351j] [PMID: 12519062]
[41]
Liu, Z.; Zhang, A.; Sun, H.; Han, Y.; Konga, L.; Wanget, X. Two decades of new drug discovery and development for Alzheimer’s disease. RSC Advances, 2017, 7(10), 6046-6058.
[http://dx.doi.org/10.1039/C6RA26737H]
[42]
Wiesmann, M.; Roelofs, M.; van der Lugt, R.; Heerschap, A.; Kiliaan, A.J.; Claassen, J.A. Angiotensin II, hypertension and angiotensin II receptor antagonism: Roles in the behavioural and brain pathology of a mouse model of Alzheimer’s disease. J. Cereb. Blood Flow Metab., 2017, 37(7), 2396-2413.
[http://dx.doi.org/10.1177/0271678X16667364] [PMID: 27596834]
[43]
Hindo, S.S.; Mancino, A.M.; Braymer, J.J.; Liu, Y.; Vivekanandan, S.; Ramamoorthy, A.; Lim, M.H. Small molecule modulators of copper-induced Abeta aggregation. J. Am. Chem. Soc., 2009, 131(46), 16663-16665.
[http://dx.doi.org/10.1021/ja907045h] [PMID: 19877631]
[44]
Sekioka, R.; Honjo, E.; Honda, S.; Fuji, H.; Akashiba, H.; Mitani, Y.; Yamasaki, S. Discovery of novel scaffolds for γ-secretase modulators without an arylimidazole moiety. Bioorg. Med. Chem., 2018, 26(2), 435-442.
[http://dx.doi.org/10.1016/j.bmc.2017.11.049] [PMID: 29249626]
[45]
Heider, F.; Ansideri, F.; Tesch, R.; Pantsar, T.; Haun, U.; Döring, E.; Kudolo, M.; Poso, A.; Albrecht, W.; Laufer, S.A.; Koch, P. Pyridi-nylimidazoles as dual glycogen synthase kinase 3β/p38α mitogen-activated protein kinase inhibitors. Eur. J. Med. Chem., 2019, 175, 309-329.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.035] [PMID: 31096153]
[46]
Shetnev, A.; Osipyan, A.; Baykov, S.; Sapegin, A.; Chirkova, Z.; Korsakov, M.; Petzer, A.; Engelbrecht, I.; Petzer, J.P. Novel monoamine oxidase inhibitors based on the privileged 2-imidazoline molecular framework. Bioorg. Med. Chem. Lett., 2019, 29(1), 40-46.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.018] [PMID: 30455149]
[47]
Brodney, M.A.; Auperin, D.D.; Becker, S.L.; Bronk, B.S.; Brown, T.M.; Coffman, K.J.; Finley, J.E.; Hicks, C.D.; Karmilowicz, M.J.; Lanz, T.A.; Liston, D.; Liu, X.; Martin, B.A.; Nelson, R.B.; Nolan, C.E.; Oborski, C.E.; Parker, C.P.; Richter, K.E.; Pozdnyakov, N.; Sahagan, B.G.; Schachter, J.B.; Sokolowski, S.A.; Tate, B.; Van Deusen, J.W.; Wood, D.E.; Wood, K.M. Diamide amino-imidazoles: a novel series of γ-secretase inhibitors for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2011, 21(9), 2631-2636.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.117] [PMID: 21269825]
[48]
Takeo, K.; Tanimura, S.; Shinoda, T.; Osawa, S.; Zahariev, I.K.; Takegami, N.; Ishizuka-Katsura, Y.; Shinya, N.; Takagi-Niidome, S.; Tominaga, A.; Ohsawa, N.; Kimura-Someya, T.; Shirouzu, M.; Yokoshima, S.; Yokoyama, S.; Fukuyama, T.; Tomita, T.; Iwatsubo, T. Allosteric regulation of γ-secretase activity by a phenylimidazole-type γ-secretase modulator. Proc. Natl. Acad. Sci. USA, 2014, 111(29), 10544-10549.
[http://dx.doi.org/10.1073/pnas.1402171111] [PMID: 25009180]
[49]
Charton, J.; Gauriot, M.; Guo, Q.; Hennuyer, N.; Marechal, X.; Dumont, J.; Hamdane, M.; Pottiez, V.; Landry, V.; Sperandio, O.; Flipo, M.; Buee, L.; Staels, B.; Leroux, F.; Tang, W.J.; Deprez, B.; Deprez-Poulain, R. Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-β hydrolysis. Eur. J. Med. Chem., 2014, 79, 184-193.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.009] [PMID: 24735644]
[50]
Fujii, K.; Abe, K.; Kadooka, K.; Matsumoto, T.; Katakura, Y. Carnosine activates the CREB pathway in Caco-2 cells. Cytotechnology, 2017, 69(3), 523-527.
[http://dx.doi.org/10.1007/s10616-017-0089-0] [PMID: 28374107]
[51]
He, Q.; Han, C.; Li, G.; Guo, H.; Wang, Y.; Hu, Y.; Lin, Z.; Wang, Y. In silico design novel (5-imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine derivatives as inhibitors for glycogen synthase kinase 3 based on 3D-QSAR, molecular docking and molecular dynamics simulation. Comput. Biol. Chem., 2020, 88, 107328.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107328] [PMID: 32688011]
[52]
Heider, F.; Pantsar, T.; Kudolo, M.; Ansideri, F.; De Simone, A.; Pruccoli, L.; Schneider, T.; Goettert, M.I.; Tarozzi, A.; Andrisano, V.; Laufer, S.A.; Koch, P. Pyridinylimidazoles as GSK3β inhibitors: the impact of tautomerism on compound activity via water networks. ACS Med. Chem. Lett., 2019, 10(10), 1407-1414.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00177] [PMID: 31620226]
[53]
Das, S.; Smid, S.D. Identification of dibenzyl imidazolidine and triazole acetamide derivatives through virtual screening targeting amyloid beta aggregation and neurotoxicity in PC12 cells. Eur. J. Med. Chem., 2017, 130, 354-364.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.057] [PMID: 28273562]
[54]
Stamenić, T.T.; Poe, M.M.; Rehman, S.; Santrač, A.; Divović, B.; Scholze, P.; Ernst, M.; Cook, J.M.; Savić, M.M. Ester to amide substitution improves selectivity, efficacy and kinetic behavior of a benzodiazepine positive modulator of GABAA receptors containing the α5 subunit. Eur. J. Pharmacol., 2016, 791, 433-443.
[http://dx.doi.org/10.1016/j.ejphar.2016.09.016] [PMID: 27639297]
[55]
Chen, X.; Xu, W.; Wang, K.; Mo, M.; Zhang, W.; Du, L.; Yuan, X.; Xu, Y.; Wang, Y.; Shen, J. Discovery of a novel series of Imidazo[1,2-a]pyrimidine derivatives as potent and orally bioavailable lipoprotein-associated phospholipase A2 inhibitors. J. Med. Chem., 2015, 58(21), 8529-8541.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01024] [PMID: 26479945]
[56]
Yang, S.; Zhou, G.; Liu, H.; Zhang, B.; Li, J.; Cui, R.; Du, Y. Protective effects of p38 MAPK inhibitor SB202190 against hippocampal apoptosis and spatial learning and memory deficits in a rat model of vascular dementia. BioMed Res. Int., 2013, 2013, 215798.
[http://dx.doi.org/10.1155/2013/215798] [PMID: 24455679]
[57]
Halekotte, J.; Witt, L.; Ianes, C.; Krüger, M.; Bührmann, M.; Rauh, D.; Pichlo, C.; Brunstein, E.; Luxenburger, A.; Baumann, U.; Knippschild, U.; Bischof, J.; Peifer, C. Optimized 4,5-Diarylimidazoles as Potent/Selective inhibitors of protein kinase CK1δ and their structu-ral relation to p38α MAPK. Molecules, 2017, 22(4), 522.
[http://dx.doi.org/10.3390/molecules22040522] [PMID: 28338621]
[58]
Heider, F.; Haun, U.; Döring, E.; Kudolo, M.; Sessler, C.; Albrecht, W.; Laufer, S.; Koch, P. From 2-Alkylsulfanylimidazoles to 2-Alkylimidazoles: An approach towards metabolically more stable p38α MAP kinase inhibitors. Molecules, 2017, 22(10), 1729.
[http://dx.doi.org/10.3390/molecules22101729] [PMID: 29036906]
[59]
Sultzer, D.L.; Marder, S.R. Older brains are different: Brain-Behavior studies and their clinical utility. Am. J. Geriatr. Psychiat., 2017, 25(1), 11-12.
[http://dx.doi.org/10.1016/j.jagp.2016.10.002] [PMID: 28231870]
[60]
Tran, P.T.; Hoang, V.H.; Thorat, S.A.; Kim, S.E.; Ann, J.; Chang, Y.J.; Nam, D.W.; Song, H.; Mook-Jung, I.; Lee, J.; Lee, J. Structure-activity relationship of human glutaminyl cyclase inhibitors having an N-(5-methyl-1H-imidazol-1-yl)propyl thiourea template. Bioorg. Med. Chem., 2013, 21(13), 3821-3830.
[http://dx.doi.org/10.1016/j.bmc.2013.04.005] [PMID: 23643900]
[61]
Li, Q.; Yang, H.; Chen, Y.; Sun, H. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 132(26), 294-309.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.062] [PMID: 28371641]
[62]
Greig, N.H.; Utsuki, T.; Ingram, D.K.; Wang, Y.; Pepeu, G.; Scali, C.; Yu, Q.S.; Mamczarz, J.; Holloway, H.W.; Giordano, T.; Chen, D.; Furukawa, K.; Sambamurti, K.; Brossi, A.; Lahiri, D.K. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA, 2005, 102(47), 17213-17218.
[http://dx.doi.org/10.1073/pnas.0508575102] [PMID: 16275899]
[63]
Gurjar, A.S.; Darekar, M.N.; Yeong, K.Y.; Ooi, L. In silico studies, synthesis and pharmacological evaluation to explore multi-targeted approach for imidazole analogues as potential cholinesterase inhibitors with neuroprotective role for Alzheimer’s disease. Bioorg. Med. Chem., 2018, 26(8), 1511-1522.
[http://dx.doi.org/10.1016/j.bmc.2018.01.029] [PMID: 29429576]
[64]
Yabuki, Y.; Matsuo, K.; Izumi, H.; Haga, H.; Yoshida, T.; Wakamori, M.; Kakei, A.; Sakimura, K.; Fukuda, T.; Fukunaga, K. Pharmacological properties of SAK3, a novel T-type voltage-gated Ca2+ channel enhancer. Neuropharmacology, 2017, 117, 1-13.
[http://dx.doi.org/10.1016/j.neuropharm.2017.01.011] [PMID: 28093211]
[65]
Boulebd, H.; Ismaili, L.; Bartolini, M.; Bouraiou, A.; Andrisano, V.; Martin, H.; Bonet, A.; Moraleda, I.; Iriepa, I.; Chioua, M.; Belfaitah, A.; Marco-Contelles, J. Imidazopyranotacrines as Non-Hepatotoxic, Selective acetylcholinesterase inhibitors, and antioxidant agents for Alzheimer’s disease therapy. Molecules, 2016, 21(4), 400.
[http://dx.doi.org/10.3390/molecules21040400] [PMID: 27023499]
[66]
Pervaiz, S.; Mutahir, S.; Ullah, I.; Ashraf, M.; Liu, X.; Tariq, S.; Zhou, B.J.; Khan, M.A. Organocatalyzed solvent free and efficient synthesis of 2,4,5-Trisubstituted imidazoles as potential acetylcholinesterase inhibitors for Alzheimer’s disease. Chem. Biodivers., 2020, 17(3), e1900493.
[http://dx.doi.org/10.1002/cbdv.201900493] [PMID: 31968151]
[67]
Kuzu, B.; Tan, M.; Taslimi, P.; Gülçin, İ.; Taşpınar, M.; Menges, N. Mono- or di-substituted imidazole derivatives for inhibition of acetylcholine and butyrylcholine esterases. Bioorg. Chem., 2019, 86, 187-196.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.044] [PMID: 30711701]
[68]
Yoon, Y.K.; Ali, M.A.; Wei, A.C.; Choon, T.S.; Khaw, K.Y.; Murugaiyah, V.; Osman, H.; Masand, V.H. Synthesis, characterization, and molecular docking analysis of novel benzimidazole derivatives as cholinesterase inhibitors. Bioorg. Chem., 2013, 49, 33-39.
[http://dx.doi.org/10.1016/j.bioorg.2013.06.008] [PMID: 23886696]
[69]
Lu, X.; He, S.Y.; Li, Q.; Yang, H.; Jiang, X.; Lin, H.; Chen, Y.; Qu, W.; Feng, F.; Bian, Y.; Zhou, Y.; Sun, H. Investigation of multi-target-directed ligands (MTDLs) with butyrylcholinesterase (BuChE) and indoleamine 2,3-dioxygenase 1 (IDO1) inhibition: The design, synthesis of miconazole analogues targeting Alzheimer’s disease. Bioorg. Med. Chem., 2018, 26(8), 1665-1674.
[http://dx.doi.org/10.1016/j.bmc.2018.02.014] [PMID: 29475581]
[70]
Citron, M. Beta-secretase as a target for the treatment of Alzheimer’s disease. J. Neurosci. Res., 2002, 70(3), 373-379.
[http://dx.doi.org/10.1002/jnr.10393] [PMID: 12391600]
[71]
De Strooper, B.; Vassar, R.; Golde, T. The secretases: Enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol., 2010, 6(2), 99-107.
[http://dx.doi.org/10.1038/nrneurol.2009.218] [PMID: 20139999]
[72]
Vassar, R.; Bennett, B.D.; Babu-Khan, S.; Kahn, S.; Mendiaz, E.A.; Denis, P.; Teplow, D.B.; Ross, S.; Amarante, P.; Loeloff, R.; Luo, Y.; Fisher, S.; Fuller, J.; Edenson, S.; Lile, J.; Jarosinski, M.A.; Biere, A.L.; Curran, E.; Burgess, T.; Louis, J.C.; Collins, F.; Treanor, J.; Rogers, G.; Citron, M. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999, 286(5440), 735-741.
[http://dx.doi.org/10.1126/science.286.5440.735] [PMID: 10531052]
[73]
Ghosh, A.K.; Brindisi, M.; Tang, J. Developing β-secretase inhibitors for treatment of Alzheimer’s disease. J. Neurochem., 2012, 120(1)(Suppl. 1), 71-83.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07476.x] [PMID: 22122681]
[74]
Ghosh, A.K.; Osswald, H.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem. Soc. Rev., 2014, 43(19), 6765-6813.
[http://dx.doi.org/10.1039/C3CS60460H] [PMID: 24691405]
[75]
Menting, K.W. Claassen, J.A. β-secretase inhibitor; A promising novel therapeutic drug in Alzheimer’s disease. Front. Aging Neurosci., 2014, 6, 165.
[http://dx.doi.org/10.3389/fnagi.2014.00165] [PMID: 25100992]
[76]
Yan, R.; Vassar, R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol., 2014, 13(3), 319-329.
[http://dx.doi.org/10.1016/S1474-4422(13)70276-X] [PMID: 24556009]
[77]
Tarazi, H.; Odeh, R.A.; Al-Qawasmeh, R.; Yousef, I.A.; Voelter, W.; Al-Tel, T.H. Design, synthesis and SAR analysis of potent BACE1 inhibitors: Possible lead drug candidates for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 1213-1224.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.021] [PMID: 27871037]
[78]
Al-Tel, T.H.; Semreen, M.H.; Al-Qawasmeh, R.A.; Schmidt, M.F.; El-Awadi, R.; Ardah, M.; Zaarour, R.; Rao, S.N.; El-Agnaf, O. Design, synthesis, and qualitative structure-activity evaluations of novel β-secretase inhibitors as potential Alzheimer’s drug leads. J. Med. Chem., 2011, 54(24), 8373-8385.
[http://dx.doi.org/10.1021/jm201181f] [PMID: 22044119]
[79]
Swahn, B.M.; Holenz, J.; Kihlström, J.; Kolmodin, K.; Lindström, J.; Plobeck, N.; Rotticci, D.; Sehgelmeble, F.; Sundström, M.; Berg, Sv.; Fälting, J.; Georgievska, B.; Gustavsson, S.; Neelissen, J.; Ek, M.; Olsson, L.L.; Berg, S. Aminoimidazoles as BACE-1 inhibitors: the challenge to achieve in vivo brain efficacy. Bioorg. Med. Chem. Lett., 2012, 22(5), 1854-1859.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.079] [PMID: 22325942]
[80]
Chiriano, G.; De Simone, A.; Mancini, F.; Perez, D.I.; Cavalli, A.; Bolognesi, M.L.; Legname, G.; Martinez, A.; Andrisano, V.; Carloni, P.; Roberti, M. A small chemical library of 2-aminoimidazole derivatives as BACE-1 inhibitors: Structure-based design, synthesis, and biolo-gical evaluation. Eur. J. Med. Chem., 2012, 48, 206-213.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.016] [PMID: 22209418]
[81]
Burstein, A.H.; Sabbagh, M.; Andrews, R.; Valcarce, C.; Dunn, I.; Altstiel, L. Development of Azeliragon, an oral small molecule antagonist of the receptor for advanced glycation endproducts, for the potential slowing of loss of cognition in mild Alzheimer’s disease. J. Prev. Alzheimers Dis., 2018, 5(2), 149-154.
[PMID: 29616709]
[82]
Pontiki, E.; Peperidou, A.; Fotopoulos, I.; Hadjipavlou-Litina, D. Cinnamate hybrids: A unique family of compounds with multiple biological activities. Curr. Pharm. Biotechnol., 2018, 19(13), 1019-1048.
[http://dx.doi.org/10.2174/1389201019666181112102702] [PMID: 30417783]
[83]
Sathler, P.C.; Santana, M.; Lourenço, A.L.; Rodrigues, C.R.; Abreu, P.; Cabral, L.M.; Castro, H.C. Human thromboxane synthase: Comparative modeling and docking evaluation with the competitive inhibitors Dazoxiben and Ozagrel. J. Enzyme Inhib. Med. Chem., 2014, 29(4), 527-531.
[http://dx.doi.org/10.3109/14756366.2013.817403] [PMID: 23914925]
[84]
Cornec, A.S.; Monti, L.; Kovalevich, J.; Makani, V.; James, M.J.; Vijayendran, K.G.; Oukoloff, K.; Yao, Y.; Lee, V.M.; Trojanowski, J.Q.; Smith, A.B., III; Brunden, K.R.; Ballatore, C. Multitargeted imidazoles: Potential therapeutic leads for Alzheimer’s and other neurodegenerative diseases. J. Med. Chem., 2017, 60(12), 5120-5145.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00475] [PMID: 28530811]
[85]
Parekh, K.D.; Dash, R.P.; Pandya, A.N.; Vasu, K.K.; Nivsarkar, M. Implication of novel bis-imidazopyridines for management of Alzheimer’s disease and establishment of its role on protein phosphatase 2A activity in brain. J. Pharm. Pharmacol., 2013, 65(12), 1785-1795.
[http://dx.doi.org/10.1111/jphp.12149] [PMID: 24117507]
[86]
Wang, X.; Wang, L.; Yu, X.; Li, Y.; Liu, Z.; Zou, Y.; Zheng, Y.; He, Z.; Wu, H. Glutaminyl cyclase inhibitor exhibits antiinflammatory effects in both AD and LPS-induced inflammatory model mice. Int. Immunopharmacol., 2019, 75, 105770.
[http://dx.doi.org/10.1016/j.intimp.2019.105770] [PMID: 31377588]
[87]
Helal, C.J.; Kang, Z.; Lucas, J.C.; Gant, T.; Ahlijanian, M.K.; Schachter, J.B.; Richter, K.E.; Cook, J.M.; Menniti, F.S.; Kelly, K.; Mente, S.; Pandit, J.; Hosea, N. Potent and cellularly active 4-aminoimidazole inhibitors of cyclin-dependent kinase 5/p25 for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2009, 19(19), 5703-5707.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.019] [PMID: 19700321]
[88]
Dhingra, A.K.; Chopra, B. Inflammation as a Therapeutic target for various deadly disorders: A review. Curr. Drug Targets, 2020, 21(6), 582-588.
[http://dx.doi.org/10.2174/1389450120666191204154115] [PMID: 31801453]
[89]
MacManus, A.; Ramsden, M.; Murray, M.; Henderson, Z.; Pearson, H.A.; Campbell, V.A. Enhancement of (45)Ca(2+) influx and voltage-dependent Ca(2+) channel activity by beta-amyloid-(1-40) in rat cortical synaptosomes and cultured cortical neurons. Modulation by the proinflammatory cytokine interleukin-1beta. J. Biol. Chem., 2000, 275(7), 4713-4718.
[http://dx.doi.org/10.1074/jbc.275.7.4713] [PMID: 10671502]
[90]
Rovira, C.; Arbez, N.; Mariani, J. Abeta(25-35) and Abeta(1-40) act on different calcium channels in CA1 hippocampal neurons. Biochem. Biophys. Res. Commun., 2002, 296(5), 1317-1321.
[http://dx.doi.org/10.1016/S0006-291X(02)02072-7] [PMID: 12207918]
[91]
Hoffmann, T.; Meyer, A.; Heiser, U.; Kurat, S.; Böhme, L.; Kleinschmidt, M.; Bühring, K.U.; Hutter-Paier, B.; Farcher, M.; Demuth, H.U.; Lues, I.; Schilling, S. Glutaminyl Cyclase Inhibitor PQ912 improves cognition in mouse models of Alzheimer’s disease-studies on relation to effective target occupancy. J. Pharmacol. Exp. Ther., 2017, 362(1), 119-130.
[http://dx.doi.org/10.1124/jpet.117.240614] [PMID: 28446518]
[92]
Demuro, A.; Mina, E.; Kayed, R.; Milton, S.C.; Parker, I.; Glabe, C.G. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem., 2005, 280(17), 17294-17300.
[http://dx.doi.org/10.1074/jbc.M500997200] [PMID: 15722360]
[93]
Wu, Z.; Yang, B.; Liu, C.; Liang, G.; Eckenhoff, M.F.; Liu, W.; Pickup, S.; Meng, Q.; Tian, Y.; Li, S.; Wei, H. Long-term dantrolene treatment reduced intraneuronal amyloid in aged Alzheimer triple transgenic mice. Alzheimer Dis. Assoc. Disord., 2015, 29(3), 184-191.
[http://dx.doi.org/10.1097/WAD.0000000000000075] [PMID: 25650693]
[94]
Sawant-Basak, A.; Obach, R.S.; Doran, A.; Lockwood, P.; Schildknegt, K.; Gao, H.; Mancuso, J.; Tse, S.; Comery, T.A. Metabolism of a 5HT6 Antagonist, 2-Methyl-1-(Phenylsulfonyl)-4-(Piperazin-1-yl)-1H-Benzo[d]imidazole (SAM-760): Impact of sulfonamide metabolism on diminution of a ketoconazole-mediated clinical drug-drug interaction. Drug Metab. Dispos., 2018, 46(7), 934-942.
[http://dx.doi.org/10.1124/dmd.118.080457] [PMID: 29695615]
[95]
Buchholz, M.; Hamann, A.; Aust, S.; Brandt, W.; Böhme, L.; Hoffmann, T.; Schilling, S.; Demuth, H.U.; Heiser, U. Inhibitors for human glutaminyl cyclase by structure based design and bioisosteric replacement. J. Med. Chem., 2009, 52(22), 7069-7080.
[http://dx.doi.org/10.1021/jm900969p] [PMID: 19863057]
[96]
Fan, T.Y.; Wu, W.Y.; Yu, S.P.; Zhong, Y.; Zhao, C.; Chen, M.; Li, H.M.; Li, N.G.; Chen, Z.; Chen, S.; Sun, Z.H.; Duan, J.A.; Shi, Z.H. Design, synthesis and evaluation of 2-amino-imidazol-4-one derivatives as potent β-site amyloid precursor protein cleaving enzyme 1 (BACE-1) inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(24), 126772.
[http://dx.doi.org/10.1016/j.bmcl.2019.126772] [PMID: 31711785]
[97]
Hogendorf, A.S.; Hogendorf, A.; Kurczab, R.; Kalinowska-Tłuścik, J.; Popik, P.; Nikiforuk, A.; Krawczyk, M.; Satała, G.; Lenda, T.; Knutelska, J.; Bugno, R.; Staroń, J.; Pietruś, W.; Matłoka, M.; Dubiel, K.; Moszczyński-Pętkowski, R.; Pieczykolan, J.; Wieczorek, M.; Pilarski, B.; Zajdel, P.; Bojarski, A.J. 2-Aminoimidazole-based antagonists of the 5-HT6 receptor - A new concept in aminergic GPCR ligand design. Eur. J. Med. Chem., 2019, 179, 1-15.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.001] [PMID: 31229883]
[98]
Bolognino, I.; Giangregorio, N.; Pisani, L.; de Candia, M.; Purgatorio, R.; Tonazzi, A.; Altomare, C.D.; Cellamare, S.; Catto, M. A prospective repurposing of dantrolene as a multitarget agent for Alzheimer’s disease. Molecules, 2019, 24(23), 4298.
[http://dx.doi.org/10.3390/molecules24234298] [PMID: 31775359]
[99]
Royea, J.; Zhang, L.; Tong, X.K.; Hamel, E.; Angiotensin, I.V. Angiotensin IV receptors mediate the cognitive and cerebrovascular benefits of losartan in a mouse model of Alzheimer’s disease. J. Neurosci., 2017, 37(22), 5562-5573.
[http://dx.doi.org/10.1523/JNEUROSCI.0329-17.2017] [PMID: 28476949]
[100]
Jang, M.; Oh, Y.; Cho, H.; Yang, S.; Moon, H. Im, D.; Hah, J.M. Discovery of 1-Pyrimidinyl-2-Aryl-4,6-Dihydropyrrolo [3,4-d]Imidazole-5(1H)-Carboxamide as a novel JNK inhibitor. Int. J. Mol. Sci., 2020, 21(5), 1698.
[http://dx.doi.org/10.3390/ijms21051698]
[101]
Wang, Y.; Liang, G.; Liang, S.; Mund, R.; Shi, Y.; Wei, H. Dantrolene ameliorates impaired neurogenesis and synaptogenesis in induced pluripotent stem cell lines derived from patients with Alzheimer’s disease. Anesthesiology, 2020, 132(5), 1062-1079.
[http://dx.doi.org/10.1097/ALN.0000000000003224] [PMID: 32149777]
[102]
Xu, Y.X.; Wang, H.; Li, X.K.; Dong, S.N.; Liu, W.W.; Gong, Q.; Wang, T.D.; Tang, Y.; Zhu, J.; Li, J.; Zhang, H.Y.; Mao, F. Discovery of novel propargylamine-modified 4-aminoalkyl imidazole substituted pyrimidinylthiourea derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 143, 33-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.025] [PMID: 29172081]
[103]
Yan, G.; Hao, L.; Niu, Y.; Huang, W.; Wang, W.; Xu, F.; Liang, L.; Wang, C.; Jin, H.; Xu, P. 2-Substituted-thio-N-(4-substituted-thiazol/1H-imidazol-2-yl)acetamides as BACE1 inhibitors: Synthesis, biological evaluation and docking studies. Eur. J. Med. Chem., 2017, 137, 462-475.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.020] [PMID: 28624701]
[104]
Azimi, S.; Zonouzi, A.; Firuzi, O.; Iraji, A.; Saeedi, M.; Mahdavi, M.; Edraki, N. Discovery of imidazopyridines containing isoindoline-1,3-dione framework as a new class of BACE1 inhibitors: Design, synthesis and SAR analysis. Eur. J. Med. Chem., 2017, 138, 729-737.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.040] [PMID: 28728105]
[105]
Gravenfors, Y.; Viklund, J.; Blid, J.; Ginman, T.; Karlström, S.; Kihlström, J.; Kolmodin, K.; Lindström, J.; von Berg, S.; von Kieseritzky, F.; Bogar, K.; Slivo, C.; Swahn, B.M.; Olsson, L.L.; Johansson, P.; Eketjäll, S.; Fälting, J.; Jeppsson, F.; Strömberg, K.; Janson, J.; Rahm, F. New aminoimidazoles as β-secretase (BACE-1) inhibitors showing amyloid-β (Aβ) lowering in brain. J. Med. Chem., 2012, 55(21), 9297-9311.
[http://dx.doi.org/10.1021/jm300991n] [PMID: 23017051]
[106]
Loaëc, N.; Attanasio, E.; Villiers, B.; Durieu, E.; Tahtouh, T.; Cam, M.; Davis, R.A.; Alencar, A.; Roué, M.; Bourguet-Kondracki, M.L.; Proksch, P.; Limanton, E.; Guiheneuf, S.; Carreaux, F.; Bazureau, J.P.; Klautau, M.; Meijer, L. Marine-Derived 2-Aminoimidazolone Alka-loids. Leucettamine B-Related Polyandrocarpamines Inhibit Mammalian and Protozoan DYRK & CLK Kinases. Mar. Drugs, 2017, 15(10), 316.
[http://dx.doi.org/10.3390/md15100316] [PMID: 29039762]
[107]
Szcześniak, D.; Budzeń, S.; Kopeć, W.; Rymaszewska, J. Anserine and carnosine supplementation in the elderly: Effects on cognitive functioning and physical capacity. Arch. Gerontol. Geriatr., 2014, 59(2), 485-490.
[http://dx.doi.org/10.1016/j.archger.2014.04.008] [PMID: 24880197]
[108]
Katakura, Y.; Totsuka, M.; Imabayashi, E.; Matsuda, H.; Hisatsune, T. Anserine/Carnosine supplementation suppresses the expression of the inflammatory Chemokine CCL24 in peripheral blood mononuclear cells from elderly people. Nutrients, 2017, 9(11), 1199.
[http://dx.doi.org/10.3390/nu9111199] [PMID: 29088099]
[109]
Ding, Q.; Tanigawa, K.; Kaneko, J.; Totsuka, M.; Katakura, Y.; Imabayashi, E.; Matsuda, H.; Hisatsune, T. Anserine/carnosine supplementation preserves blood flow in the prefrontal brain of elderly people carrying APOE e4. Aging Dis., 2018, 9(3), 334-345.
[http://dx.doi.org/10.14336/AD.2017.0809] [PMID: 29896423]
[110]
Hisatsune, T.; Kaneko, J.; Kurashige, H.; Cao, Y.; Satsu, H.; Totsuka, M.; Katakura, Y.; Imabayashi, E.; Matsuda, H. Effect of Anserine/Carnosine supplementation on verbal episodic memory in elderly people. J. Alzheimers Dis., 2016, 50(1), 149-159.
[http://dx.doi.org/10.3233/JAD-150767] [PMID: 26682691]
[111]
Rokicki, J.; Li, L.; Imabayashi, E.; Kaneko, J.; Hisatsune, T.; Matsuda, H. Daily carnosine and anserine supplementation alters verbal episodic memory and resting state network connectivity in healthy elderly adults. Front. Aging Neurosci., 2015, 7, 219.
[http://dx.doi.org/10.3389/fnagi.2015.00219] [PMID: 26640437]
[112]
Masuoka, N.; Yoshimine, C.; Hori, M.; Tanaka, M.; Asada, T.; Abe, K.; Hisatsune, T. Effects of Anserine/Carnosine supplementation on mild cognitive impairment with APOE4. Nutrients, 2019, 11(7), 1626.
[http://dx.doi.org/10.3390/nu11071626] [PMID: 31319510]
[113]
Cornelli, U. Treatment of Alzheimer’s disease with a cholinesterase inhibitor combined with antioxidants. Neurodegener. Dis., 2010, 7(1-3), 193-202.
[http://dx.doi.org/10.1159/000295663] [PMID: 20224285]
[114]
Masuoka, N.; Lei, C.; Li, H.; Inamura, N.; Shiotani, S.; Yanai, N.; Sato, K.; Sakurai, K.; Hisatsune, T. Anserine, HClO-scavenger, protected against cognitive decline in individuals with mild cognitive impairment. Aging (Albany NY), 2021, 13(2), 1729-1741. Epub ahead of print
[http://dx.doi.org/10.18632/aging.202535] [PMID: 33472172]
[115]
Schering Corp. USA. US20070287692A1, 2007.
[116]
Noscira, S.A. Spain: The University of Queensland WO2013167635A1, 2013.
[117]
Ortho-McNeil-Janssen Pharmaceuticals Inc. Novel substituted benzoxazole, benzimidazole, oxazolopyridine and imidazopyridine derivatives as gamma secretase modulators. WO2010094647, 2010.
[118]
Haydar, S.N.; Andrae, P.M.; Yun, H.D. 2-methyl-1-(phenylsulfonyl)-4-(piperazin1-yl)-1H-benzimidazole as 5-hydroxytryptamine-6-ligand. , EP2285784.2012.
[119]
Haydar, S.N.; Andrae, P.M.; Yun, H.D.; Robichaud, A.J. 1-(arylsulfonyl)-4-(piperazin-1-yl)-1H-benzimidazoles as δ-hydroxytryptamine-6 ligands. WO2010056644, 2010.
[120]
Baraona, R.M.; Rojo, L.; Azocar, R.K. Benzimidazole-derived compounds use as markers in the case of neurodegenerative diseases. US20110300072, 2011.
[121]
Berthelot, D.J.C.; Bischoff, F.P.; Gijsen, H.J.M.; Macdonald, G.J.; Trabanco-Suarez, A.A.; Tresadern, G.J.; Van, B.S.F.A. Substituted bicyclic imidazole derivatives as gamma secretase modulators. CN102256974B, 2014.
[122]
Bar, G.; Birault, V.; Edwards, P; Huxley, P.; Macleod, A.; Schmidt, W.; Andrews, M.J.I.; Chambers, M.S.; Clase, J.A.; Harris, C.J.; Hirst, K.L. Imidazolopyrazine compounds useful for the treatment of degenerative and inflammatory diseases. US7893058B2, 2011.
[123]
Allart, B.; Andrews, M.J.I.; Bar, G.L.J.; Burritt, A.; Edwards, P.J.; Kroll, F.E.K.; Martina, S.L.X.; Tao, X. Imidazolopyridine compounds useful for the treatment of degenerative and inflammatory diseases. US7951818B2, 2011.
[124]
Berthelot, D.J.C.; Bischoff, F.P.; Gijsen, H.J.M.; Macdonald, G.J.; Trabanco-Suarez, A.A.; Tresadern, G.J.; Van, B.S.F.A. Substituted bicyclic imidazole derivatives as gamma secretase modulators. PA8854101A1, 2010.
[125]
Berthelot, D.J.C.; Bischoff, F.P.; De Cleyn, M.A.J.; Gijsen, H.J.M.; Macdonald, G.; Oehlrich, D.; Surkyn, M.; Van, B.S.F.A.; Zaja, M.; Zhuang, W. Novel substituted benzoxazole, benzimidazole, oxazolopyridine and imidazopyridine derivatives as gamma secretase modulators., TWI461425B, 2014.
[126]
Abdellaoui, H.E.; Andrews, R.C.; Gaddam, B.; Gohimukkula, D.R.; Hari, A.; Mjalli, A.M.M.; Polisetti, D.R.; Rao, M.; Ren, T.; Xie, R. Substituted imidazo [1,2-a] pyridine derivatives, pharmaceutical compositions, and methods of use as β-secretase inhibitors. BRPI1012697A2, 2016.
[127]
Berthelot, D.J.C.; De Cleyn, M.A.J.; Gijsen, H.J.M.; Minne, G.B.; Oehlrich, D.; Pieters, S.M.A.; Rombouts, F.J.R.; Surkyn, M.; Van, B.S.F.A.; Velter, A.I.; Wu, T.; Bischoff, F.P. Substituted triazole and imidazole derivatives as gamma secretase modulators. EP2454239B1, 2014.
[128]
Gijsen, H.; Oehlrich, D. 4-Amino-6-phenyl-5,6-dihydroimidazo [1,5-a] pyrazin-3 (2H) -one derivatives as beta-secretase inhibitors (BACE). ES2627633T3, 2017.
[129]
Janssen Pharmaceutical, N. Bae. 4-Amino-6-phenyl-5,6- dihydroimidazo [1,5-A] pyrazine derivatives as inhibitors of β- secretase (BACE). JP6325092B2, 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy