Abstract
Aims: This article is intended to investigate and determine the combined impact of Slip and Hall current on Peristaltic transmission of Magneto-hydrodynamic (MHD) Eyring- Powell fluid.
Background: The hall term arises, taking strong force-field under consideration. Velocity, thermal, and concentration slip conditions are applied. The energy equation is modeled by considering the Joule-thermal effect. To observe the non-Newtonian behavior of the fluid, the constitutive equations of Eyring-Powell fluid are encountered.
Objective: Flow is studied in a wave frame of reference traveling with the wave's velocity. The mathematical modeling is done by utilizing adequate assumptions of long wavelength and low Reynolds number.
Methods: The closed-form solution for momentum, temperature, and concentration distribution is computed analytically using the regular perturbation technique for the small fluid ter(A).
Results: Graphical results are presented and discussed in detail to analyze the behavior of sundry parameters on flow quantities (i.e., velocity, temperature, and concentration profile). It is noticed that Powell-Eyring fluid parameters (A,B) have a significant role in the outcomes.
Conclusion: The fluid parameter A magnifies the velocity profile, whereas the other fluid parameter B shows the opposite behavior.
Keywords: Peristalsis, Eyring-Powell, Slip effect, Convective boundary conditions, Hall current, Joule effect.
Graphical Abstract
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.04.037]
[http://dx.doi.org/10.1016/j.amc.2009.02.054]
[http://dx.doi.org/10.1016/j.cnsns.2010.08.004]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.09.044]
[http://dx.doi.org/10.1016/j.molliq.2013.12.036]
[http://dx.doi.org/10.1016/j.amc.2015.04.068]
[http://dx.doi.org/10.1016/j.jmmm.2016.03.001]
[http://dx.doi.org/10.1016/j.jnnms.2016.02.005]
[http://dx.doi.org/10.1016/j.net.2017.07.013]
[http://dx.doi.org/10.1016/j.molliq.2017.04.041]
[http://dx.doi.org/10.1016/j.jmrt.2020.03.087]
[http://dx.doi.org/10.1016/S1672-6529(16)60389-X]
[http://dx.doi.org/10.1016/j.jpcs.2018.06.016]
[http://dx.doi.org/10.1007/s00542-018-4017-9]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.09.029]
[http://dx.doi.org/10.1155/2014/867328]
[http://dx.doi.org/10.1155/2014/385821]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.05.034]
[http://dx.doi.org/10.1016/j.cmpb.2016.07.019] [PMID: 27586482]
[http://dx.doi.org/10.1016/j.compbiomed.2017.01.015] [PMID: 28161594]
[http://dx.doi.org/10.1016/j.molliq.2018.01.064]
[http://dx.doi.org/10.1016/j.rinp.2017.12.034]
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104655]
[http://dx.doi.org/10.1016/j.cjph.2020.02.002]
[http://dx.doi.org/10.1016/j.jmmm.2015.11.059]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.05.105]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.12.029]
[http://dx.doi.org/10.1016/j.cmpb.2016.07.001] [PMID: 27586475]
[http://dx.doi.org/10.1016/j.aej.2016.04.041]
[http://dx.doi.org/10.1016/j.jestch.2016.05.004]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.03.116]
[http://dx.doi.org/10.1115/1.4039544]
[http://dx.doi.org/10.1007/s13369-020-04722-0]
[http://dx.doi.org/10.1016/j.asej.2020.04.008]
[http://dx.doi.org/10.1016/j.apm.2015.04.043]
[http://dx.doi.org/10.1016/j.ijthermalsci.2016.10.004]
[http://dx.doi.org/10.1016/j.cjph.2019.04.016]
[http://dx.doi.org/10.1016/j.aej.2020.06.006]
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104927]
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104494]
[http://dx.doi.org/10.1108/MMMS-11-2019-0200]
[http://dx.doi.org/10.3233/JAE-201626]
[http://dx.doi.org/10.1016/j.proeng.2015.11.449]
[http://dx.doi.org/10.1016/j.rinp.2016.11.044]
[http://dx.doi.org/10.1016/j.jmmm.2016.01.037]
[http://dx.doi.org/10.1016/j.jppr.2017.07.006]
[http://dx.doi.org/10.1016/j.rinp.2017.01.008]
[http://dx.doi.org/10.1016/j.ijmecsci.2017.06.043]
[http://dx.doi.org/10.1016/j.jppr.2019.02.002]
[http://dx.doi.org/10.1007/s10973-020-09997-x]
[http://dx.doi.org/10.1016/j.jppr.2021.05.002]