Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Short Communication

Asymmetric Synthesis of 2,3-Dihydrofurans via Squaramide Catalyzed Michael-Alkylation Reaction

Author(s): Zhi-Wei Ma*, Chuan-Chuan Wang, Xiao-Pei Chen, Bin Sun, Jing-Chao Tao and Quan-Jian Lv

Volume 19, Issue 10, 2022

Published on: 26 January, 2022

Page: [913 - 917] Pages: 5

DOI: 10.2174/1570178619666211231112237

Price: $65

Abstract

A highly stereoselective methodology was developed to construct dihydrofurans. In the presence of a bifunctional squaramide catalyst, the Michael addition/cyclization between cyclohexane- 1,3-dione and α-bromonitroalkenes occurred smoothly to provide the desired dihydrofurans with high to excellent yields (90-94%) and good to high enantioselectivities (80-94% ee). This catalytic protocol was compatible with a range of structurally distinct α-bromonitroalkenes.

Keywords: Asymmetric catalysis, dihydrofuran, michael-alkylation reaction, tertiary amine-squaramide, organocatalysis, α-bromonitroalkene.

« Previous
Graphical Abstract

[1]
Michael, J.P. Nat. Prod. Rep., 2000, 17(6), 603-620.
[http://dx.doi.org/10.1039/a904850b] [PMID: 11152423]
[2]
Ottinger, H.; Soldo, T.; Hofmann, T. J. Agric. Food Chem., 2001, 49(11), 5383-5390.
[http://dx.doi.org/10.1021/jf010857v] [PMID: 11714332]
[3]
Calter, M.A.; Zhu, C.; Lachicotte, R.J. Org. Lett., 2002, 4(2), 209-212.
[http://dx.doi.org/10.1021/ol0169980] [PMID: 11796052]
[4]
Shin, S.S.; Byun, Y.; Lim, K.M.; Choi, J.K.; Lee, K-W.; Moh, J.H.; Kim, J.K.; Jeong, Y.S.; Kim, J.Y.; Choi, Y.H.; Koh, H-J.; Park, Y-H.; Oh, Y.I.; Noh, M-S.; Chung, S. J. Med. Chem., 2004, 47(4), 792-804.
[http://dx.doi.org/10.1021/jm020545z] [PMID: 14761182]
[5]
Kilroy, T.G.; O’Sullivan, T.P.; Guiry, P.J. Eur. J. Org. Chem., 2005, 2005(23), 4929-4949.
[http://dx.doi.org/10.1002/ejoc.200500489]
[6]
Jacques, R.; Pal, R.; Parker, N.A.; Sear, C.E.; Smith, P.W.; Ribaucourt, A.; Hodgson, D.M. Org. Biomol. Chem., 2016, 14(25), 5875-5893.
[http://dx.doi.org/10.1039/C6OB00593D] [PMID: 27108941]
[7]
Bosshard, P.; Eugster, C.H. Adv. Heterocycl. Chem; Katritzky, A.R.; Boulton, A.J.; Ternai, B., Eds.; University of East Anglia, Norwich, England. Academic Press, 1967, Vol. 7, pp. 377-490.
[http://dx.doi.org/10.1016/S0065-2725(08)60594-2]
[8]
Dean, F.M. Adv. Heterocycl. Chem; Katritzky, A.R. Recent Advances in Furan Chemistry Part I. Ed.;Academic Press, 1982, Vol. 30, pp. 167-238.
[http://dx.doi.org/10.1016/S0065-2725(08)60400-6]
[9]
Ward, G.R. Hospital (Lond.), 1913, 55(1425), 75-96.
[PMID: 29840494]
[10]
Faul, M.M.; Huff, B.E. Chem. Rev., 2000, 100(6), 2407-2474.
[http://dx.doi.org/10.1021/cr940210s] [PMID: 11749289]
[11]
Zhao, Y.; Jiang, X.; Yeung, Y-Y. Angew. Chem. Int. Ed., 2013, 52(33), 8597-8601.
[http://dx.doi.org/10.1002/anie.201304107]
[12]
Zhang, Y-C.; Zhang, B-W.; Geng, R-L. Song. J. Org. Lett., 2018, 20(24), 7907-7911.
[http://dx.doi.org/10.1021/acs.orglett.8b03454] [PMID: 30540196]
[13]
Cheng, X.; Quintanilla, C.D.; Zhang, L. J. Org. Chem., 2019, 84(17), 11054-11060.
[http://dx.doi.org/10.1021/acs.joc.9b01613] [PMID: 31362500]
[14]
Zhang, P.; Guo, X.; Liu, C.; Li, W.; Li, P. Org. Lett., 2019, 21(1), 152-155.
[http://dx.doi.org/10.1021/acs.orglett.8b03612] [PMID: 30574783]
[15]
Shi, T.; Teng, S.; Wei, Y.; Guo, X.; Hu, W. Green Chem., 2019, 21(18), 4936-4940.
[http://dx.doi.org/10.1039/C9GC01751H]
[16]
Fan, L-P.; Li, P.; Li, X-S.; Xu, D-C.; Ge, M-M.; Zhu, W-D.; Xie, J-W. J. Org. Chem., 2010, 75(24), 8716-8719.
[http://dx.doi.org/10.1021/jo101935k] [PMID: 21090776]
[17]
Jarava-Barrera, C.; Esteban, F.; Navarro-Ranninger, C.; Parra, A. Alemán. J. Chem. Commun. (Camb.), 2013, 49(20), 2001-2003.
[http://dx.doi.org/10.1039/c2cc38534a] [PMID: 23318841]
[18]
Rueping, M.; Parra, A.; Uria, U.; Besselièvre, F.; Merino, E. Org. Lett., 2010, 12(24), 5680-5683.
[http://dx.doi.org/10.1021/ol102499r] [PMID: 21090798]
[19]
Feng, J.; Lin, L.; Yu, K.; Liu, X.; Feng, X. Adv. Synth. Catal., 2015, 357(6), 1305-1310.
[http://dx.doi.org/10.1002/adsc.201401198]
[20]
Zhang, X-L.; Feng, K-X.; Xia, A-B.; Zheng, Y-Y.; Li, C.; Du, X-H.; Xu, D-Q. Eur. J. Org. Chem., 2018, 2018(23), 2918-2925.
[http://dx.doi.org/10.1002/ejoc.201800575]
[21]
Mo, Y.; Liu, S.; Liu, Y.; Ye, L.; Shi, Z.; Zhao, Z.; Li, X. Chem. Commun. (Camb.), 2019, 55(44), 6285-6288.
[http://dx.doi.org/10.1039/C9CC01509D] [PMID: 31086904]
[22]
Bera, K.; Ayyagari, N.; Satam, N.; Namboothiri, I.N.N. Org. Biomol. Chem., 2019, 18(1), 140-153.
[http://dx.doi.org/10.1039/C9OB01974J] [PMID: 31803896]
[23]
Dong, X.; Tang, Z.; Ye, L.; Shi, Z.; Zhao, Z.; Li, X. J. Org. Chem., 2020, 85(18), 11607-11617.
[http://dx.doi.org/10.1021/acs.joc.0c00444] [PMID: 32830980]
[24]
Dong, X.; Wang, W.; Li, H.; Xu, Q.; Ye, L.; Li, X.; Zhao, Z.; Li, X. Org. Chem. Front., 2021, 8(13), 3260-3267.
[http://dx.doi.org/10.1039/D1QO00367D]
[25]
Ian Storer, R.; Aciro, C.; Jones, L.H. Chem. Soc. Rev., 2011, 40(5), 2330-2346.
[http://dx.doi.org/10.1039/c0cs00200c] [PMID: 21399835]
[26]
Malerich, J.P.; Hagihara, K.; Rawal, V.H. J. Am. Chem. Soc., 2008, 130(44), 14416-14417.
[http://dx.doi.org/10.1021/ja805693p] [PMID: 18847268]
[27]
Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Adv. Synth. Catal., 2015, 357(2-3), 253-281.
[http://dx.doi.org/10.1002/adsc.201401003]
[28]
Abdul, R.; Cihangir, T. Curr. Org. Chem., 2016, 20(28), 2996-3013.
[http://dx.doi.org/10.2174/1385272820666160805113749]
[29]
Phillips, A.M.F.; Prechtl, M.H.G.; Pombeiro, A.J.L. Catalysts, 2021, 11(5), 569.
[http://dx.doi.org/10.3390/catal11050569]
[30]
Ma, Z.W.; Liu, X.F.; Liu, J.T.; Tao, J.C. Youji Huaxue, 2018, 38(1), 183-189.
[http://dx.doi.org/10.6023/cjoc201706025]
[31]
Zhu, Y.; Malerich, J.P.; Rawal, V.H. Angew. Chem. Int. Ed., 2010, 49(1), 153-156.
[http://dx.doi.org/10.1002/anie.200904779]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy