Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in the Application of Barbituric Acid Derivatives in Multicomponent Reactions

Author(s): Ghodsi Mohammadi Ziarani*, Mahdieh Khademi, Fatemeh Mohajer, Sangeeta Yadav and Ravi Tomar*

Volume 26, Issue 2, 2022

Published on: 31 January, 2022

Page: [162 - 188] Pages: 27

DOI: 10.2174/1385272826666211229150318

Price: $65

Abstract

Barbituric acid is a pyrimidine heterocyclic organic compound, which is pharmacologically active. It is important to build structures containing various medicinal activities. This compound attracts the scientific research community in organic synthesis. It can be used in the synthesis of polyheterocyclic, natural, medicinal compounds, and organic sensors. Herein, the utilization of barbituric or thiobarbituric acid in multicomponent reactions is reported from 2016-2021 in this manuscript.

Keywords: Barbituric acid, thiobarbituric acid, multicomponent reactions, nanocatalyst, spiro-pyran derivatives pyrimidine derivatives, organic sensors.

Graphical Abstract

[1]
Li, J.T.; Dai, H.G.; Liu, D.; Li, T.S. Efficient method for synthesis of the derivatives of 5‐arylidene barbituric acid catalyzed by aminosulfonic acid with grinding. Synth. Commun., 2006, 36(6), 789-794.
[http://dx.doi.org/10.1080/00397910500451324]
[2]
Penthala, N.R.; Ketkar, A.; Sekhar, K.R.; Freeman, M.L.; Eoff, R.L.; Balusu, R.; Crooks, P.A. 1-Benzyl-2-methyl-3-indolylmethylene barbituric acid derivatives: Anti-cancer agents that target nucleophosmin 1 (NPM1). Bioorg. Med. Chem., 2015, 23(22), 7226-7233.
[http://dx.doi.org/10.1016/j.bmc.2015.10.019] [PMID: 26602084]
[3]
Refat, H.M.; Fadda, A.; Kamal, S. Synthesis and antitumor evaluation of some new biscarboxamidocoumarin and chromene derivatives. J. Iran. Chem. Soc., 2015, 12(5), 845-854.
[http://dx.doi.org/10.1007/s13738-014-0547-y]
[4]
Prisyazhnyuk, P.; Palii, G.; Volyanskii, Y.L.; Lopushanskii, A.; Opanasenko, E. Synthesis and antimicrobial activity of derivatives of quinoline and barbituric acid. Pharm. Chem. J., 1976, 10(5), 599-602.
[http://dx.doi.org/10.1007/BF00757684]
[5]
Jeong, Y-C.; Moloney, M.G. Antibacterial barbituric acid analogues inspired from natural 3-acyltetramic acids; synthesis, tautomerism and structure and physicochemical property-antibacterial activity relationships. Molecules, 2015, 20(3), 3582-3627.
[http://dx.doi.org/10.3390/molecules20033582] [PMID: 25710842]
[6]
Xu, C.; Wyman, A.R.; Alaamery, M.A.; Argueta, S.A.; Ivey, F.D.; Meyers, J.A.; Lerner, A.; Burdo, T.H.; Connolly, T.; Hoffman, C.S.; Chiles, T.C. Anti-inflammatory effects of novel barbituric acid derivatives in T lymphocytes. Int. Immunol., 2016, 38, 223-232.
[http://dx.doi.org/10.1016/j.intimp.2016.06.004] [PMID: 27302770]
[7]
Li, M-M.; Duan, C-S.; Yu, Y-Q.; Xu, D-Z. A general and efficient one-pot synthesis of spiro [2-amino-4H-pyrans] via tandem multi-component reactions catalyzed by Dabco-based ionic liquids. Dyes Pigments, 2018, 150, 202-206.
[http://dx.doi.org/10.1016/j.dyepig.2017.12.007]
[8]
Vachan, B.; Karuppasamy, M.; Vinoth, P.; Vivek Kumar, S.; Perumal, S.; Sridharan, V.; Menéndez, J.C. Proline and its derivatives as organocatalysts for multi‐component reactions in aqueous media: synergic pathways to the green synthesis of heterocycles. Adv. Synth. Catal., 2020, 362(1), 87-110.
[http://dx.doi.org/10.1002/adsc.201900558]
[9]
Ai, Y.; Kozytska, M.V.; Zou, Y.; Khartulyari, A.S.; Maio, W.A.; Smith, A.B., III Total synthesis of the marine phosphomacrolide,(−)-Enigmazole A, exploiting multicomponent Type I Anion Relay Chemistry (ARC) in conjunction with a late-stage Petasis-Ferrier union/rearrangement. J. Org. Chem., 2018, 83(11), 6110-6126.
[http://dx.doi.org/10.1021/acs.joc.8b00899] [PMID: 29786446]
[10]
Li, G.; Lou, H.X. Strategies to diversify natural products for drug discovery. Med. Res. Rev., 2018, 38(4), 1255-1294.
[http://dx.doi.org/10.1002/med.21474] [PMID: 29064108]
[11]
Chen, M-N.; Mo, L-P.; Cui, Z-S.; Zhang, Z-H. Magnetic nanocatalysts: Synthesis and application in multicomponent reactions. Curr. Opin. Green Sustain. Chem., 2019, 15, 27-37.
[http://dx.doi.org/10.1016/j.cogsc.2018.08.009]
[12]
Sharma, M.G.; Vala, R.M.; Patel, D.M.; Lagunes, I.; Fernandes, M.X.; Padrón, J.M.; Ramkumar, V.; Gardas, R.L.; Patel, H.M. Anti‐proliferative 1, 4‐dihydropyridine and pyridine derivatives synthesized through a catalyst‐free, one‐pot multi‐component reaction. ChemistrySelect, 2018, 3(43), 12163-12168.
[http://dx.doi.org/10.1002/201802537]
[13]
Penteado, F.; Monti, B.; Sancineto, L.; Perin, G.; Jacob, R.G.; Santi, C.; Lenardão, E.J. Ultrasound‐assisted multicomponent reactions, organometallic and organochalcogen chemistry. Asian J. Org. Chem., 2018, 7(12), 2368-2385.
[http://dx.doi.org/10.1002/ajoc.201800477]
[14]
Kumari, M.; Jain, Y.; Yadav, P.; Laddha, H.; Gupta, R. Synthesis of Fe3O4-DOPA-Cu magnetically separable nanocatalyst: A versatile and robust catalyst for an array of sustainable multicomponent reactions under microwave irradiation. Catal. Lett., 2019, 149(8), 2180-2194.
[http://dx.doi.org/10.1007/s10562-019-02794-8]
[15]
Mirabootalebi, S.O.; Akbari Fakhrabadi, G.H.; Mirahmadi Babaheydari, R. High-yield production of amorphous carbon via ball milling of graphite and prediction of its crystallite size through ANN. J. Appl. Organometal. Chem, 2021, 1, 76-85.
[http://dx.doi.org/10.22034/JAOC.2021.288020.1021]
[16]
Leonardi, M.; Villacampa, M.; Menéndez, J.C. Multicomponent mechanochemical synthesis. Chem. Sci. (Camb.), 2018, 9(8), 2042-2064.
[http://dx.doi.org/10.1039/C7SC05370C] [PMID: 29732114]
[17]
Wang, X.; Wang, J.; Sun, X.; Wei, S.; Cui, L.; Yang, W.; Liu, J. Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. Nano Res., 2018, 11(2), 988-996.
[http://dx.doi.org/10.1007/s12274-017-1711-3]
[18]
Mohammadi Ziarani, G.; Mohajer, F.; Moradi, R. Green Reactions Under Solvent-Free Conditions; Green. Org. Reaction, 2021, pp. 63-83.
[19]
Mohammadi Ziarani, G.; Rad, M.; Mohajer, F. Synthesis of Heterocylic compounds through multi-component reactions using 6-aminouracil as a starting reagent. Curr. Org. Chem., 2021, 25, 1070-1095.
[http://dx.doi.org/10.2174/1385272825666210303112858]
[20]
Mohajer, F.; Mohammadi Ziarani, G. An overview of quantitative and qualitative approches on the synthesis of heterocylic kojic acid scaffolds through the multi-component reactions. Heterocycles, 2021, 102(2), 211-229.
[21]
Mohammadi Ziarani, G.; Jamasbi, N.; Mohajer, F. Recent achievments in the synthesis of heterocylic compounds by phetalhydrazide-based multi-component reactions. Heterocycles, 2021, 102(10), 1861-1893.
[http://dx.doi.org/10.3987/REV-20-953]
[22]
Mohammadi Ziarani, G.; Javadi, F.; Mohajer, F. The molecular diversity scope of oxindole derivatives in organic synthesis. Curr. Org. Chem., 2021, 25, 718-779.
[http://dx.doi.org/10.2174/1385272825666210111112814]
[23]
Mohammadi Ziarani, G.; Kheilkordi, Z.; Mohajer, F. Recent advances in the application of acetophenone in heterocyclic compounds synthesis. J. Iran. Chem. Soc., 2020, 17(2), 247-282.
[http://dx.doi.org/10.1007/s13738-019-01774-4]
[24]
Mohammadi Ziarani, G.; Mofatehnia, P.; Mohajer, F.; Moradi, R. The synthesis of heterocyclic compounds based on 3-formylchromone via organic reactions. Heterocycles, 2020, 100(7), 993-1008.
[http://dx.doi.org/10.3987/REV-20-926]
[25]
Ziarani, G.M.; Mohajer, F.; Moradi, R.; Mofatehnia, P. The molecular diversity scope of urazole in the synthesis of organic compounds. Curr. Org. Synth., 2019, 16(7), 953-967.
[http://dx.doi.org/10.2174/1570179416666190925162215] [PMID: 31984879]
[26]
Moosavi-Zare, A.R.; Zolfigol, M.A.; Noroozizadeh, E.; Salehi-Moratab, R.; Zarei, M. Silica-bonded 1, 4-diaza-bicyclo [2.2. 2] octane-sulfonic acid chloride catalyzed synthesis of spiropyran derivatives. J. Mol. Catal. Chem., 2016, 420, 246-253.
[http://dx.doi.org/10.1016/j.molcata.2016.04.021]
[27]
Gill, C.H.; Chate, A.V.; Shinde, G.Y.; Sarkate, A.P.; Tiwari, S.V. One-pot, four-component synthesis and SAR STUDIES of spiro [pyrimido [5, 4-b] quinoline-10, 5′-pyrrolo [2, 3-d] pyrimidine] derivatives catalyzed by β-cyclodextrin in water as potential anticancer agents. Res. Chem. Intermed., 2018, 44(7), 4029-4043.
[http://dx.doi.org/10.1007/s11164-018-3353-9]
[28]
Zhang, W-H.; Chen, M-N.; Hao, Y.; Jiang, X.; Zhou, X-L.; Zhang, Z-H. Choline chloride and lactic acid: A natural deep eutectic solvent for one-pot rapid construction of spiro [indoline-3, 4′-pyrazolo [3, 4-b] pyridines J. Mol. Liq., 2019, 278, 124-129.
[http://dx.doi.org/10.1016/j.molliq.2019.01.065]
[29]
Mirhosseini‐Eshkevari, B.; Ghasemzadeh, M.A.; Esnaashari, M. Highly efficient and green approach for the synthesis of spirooxindole derivatives in the presence of novel Brønsted acidic ionic liquids incorporated in UiO‐66 nanocages. Appl. Organomet. Chem., 2019, 33(8), e5027.
[http://dx.doi.org/10.1002/aoc.5027]
[30]
Morozova, A.D.; Muravyova, E.A.; Shishkina, S.V.; Vashchenko, E.V.; Sen’ko, Y.V.; Chebanov, V.A. Diversity‐oriented multicomponent heterocyclizations involving derivatives of 3 (5)‐aminoisoxazole, aldehydes and meldrum’s or N, N′‐dimethylbarbituric acid. J. Het. Chem., 2017, 54(2), 932-943.
[http://dx.doi.org/10.1002/jhet.2656]
[31]
Barakat, A.; Al-Qahtani, B.M.; Al-Majid, A.M.; Shaik, M.A.M.R.; Al-Agamy, M.H.; Wadood, A. Synthesis, characterization, antimicrobial activity and molecular docking studies of combined pyrazol-barbituric acid pharmacophores. Trop. J. Pharm. Res., 2016, 15(10), 2197-2207.
[http://dx.doi.org/10.4314/tjpr.v15i10.19]
[32]
Amer, A.A.; Moustafa, A.H. Synthesis of 3-pyrazolyl-1, 2, 4-triazoles via one-pot multicomponent reaction in phosphoric acid. Synlett, 2016, 27(11), 1703-1706.
[http://dx.doi.org/10.1055/s-0035-1561945]
[33]
Abdollahi-Basir, M.H.; Shirini, F.; Tajik, H.; Ghasemzadeh, M.A. A facile and regioselective synthesis of some new pyrimido [4, 5-d][1, 2, 4] triazolo [1, 5-a] pyrimidinediones catalyzed by Zn(BDC)-MOF under ultrasound irradiation. J. Mol. Struct., 2019, 1195, 302-308.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.132]
[34]
Demina, M.; Medvedeva, A.; Nguyen, T.; Vu, T.; Larina, L. One-pot three-component green synthesis of [1 H-(1, 2, 3-triazol-5-yl) methylidene] heterocycles based on element-substituted propynals. Russ. Chem. Bull., 2017, 66(12), 2253-2257.
[http://dx.doi.org/10.1007/s11172-017-2010-6]
[35]
Demina, M.M.; Medvedeva, A.S.; Vu, T.D.; Larina, L.I.; Mitroshina, I.V.; Shemyakina, O.A. Catalyst-free three-component synthesis of hydroxyalkyltriazolylmethylidene barbiturates. Mendeleev Commun., 2019, 29(6), 655-657.
[http://dx.doi.org/10.1016/j.mencom.2019.11.017]
[36]
Chaudhary, A.; Khurana, J.M.; Khanna, G.; Saroha, M. A catalyst‐free domino protocol for the chemoselective synthesis of multifunctionalised pyrroles in aqueous media via nitroketene‐N, S‐acetal chemistry. ChemistrySelect, 2018, 3(23), 6334-6337.
[http://dx.doi.org/10.1002/slct.201800831]]
[37]
Javahershenas, R.; Khalafy, J. One-pot, three-component Synthesis of pyrrolo [2, 3-d] pyrimidine derivatives. J. Mex. Chem. Soc., 2018, 62(1), 1-12.
[http://dx.doi.org/10.29356/jmcs.v62i1.340]
[38]
Ahmadi Sabegh, M.; Khalafy, J.; Etivand, N. One‐pot, three‐component synthesis of a series of new bis‐pyrrolo [2, 3‐d] pyrimidines in the presence of TPAB under reflux conditions. J. Het. Chem., 2018, 55(11), 2610-2618.
[http://dx.doi.org/10.1002/jhet.3320]
[39]
Jana, A.; Bhaumick, P.; Panday, A.K.; Mishra, R.; Choudhury, L.H. I2/DMSO mediated multicomponent reaction for the synthesis of 2-arylbenzo[d]imidazo[2,1-b] thiazole derivatives. Org. Biomol. Chem., 2019, 17(21), 5316-5330.
[http://dx.doi.org/10.1039/C9OB00515C] [PMID: 31095156]
[40]
Alizadeh-Bami, F.; Mehrabi, H.; Ranjbar-Karimi, R. One-pot three-component reaction of arylglyoxals with acetylthiourea and Meldrum’s acid or barbituric acid for synthesis of new 2-acetamido-4-arylthiazol-5-yl derivatives. J. Sulfur Chem., 2019, 40(5), 469-478.
[http://dx.doi.org/10.1080/17415993.2019.1602127]
[41]
Mahata, A.; Bhaumick, P.; Panday, A.K.; Yadav, R.; Parvin, T.; Choudhury, L.H. Multicomponent synthesis of diphenyl-1, 3-thiazole-barbituric acid hybrids and their fluorescence property studies. New J. Chem., 2020, 44(12), 4798-4811.
[http://dx.doi.org/10.1039/D0NJ00406E]
[42]
Dutta, L.; Bhuyan, P.J. One-pot three-component reaction of barbituric acids, aldehydes and 4‐hydroxycoumarins: synthesis of some novel functionalized Furo [2, 3‐d] pyrimidines. ChemistrySelect, 2016, 1(18), 5944-5947.
[http://dx.doi.org/10.1002/slct.201601320]
[43]
Khoeiniha, R.; Olyaei, A.; Saraei, M. Catalyst-free synthesis of novel 4 H-indeno [1, 2-b] furan-4-ones and furo [2, 3-d] pyrimidines in water. Synth. Commun., 2018, 48(2), 155-160.
[http://dx.doi.org/10.1080/00397911.2017.1388409]
[44]
Dehghanzadeh, F.; Shahrokhabadi, F.; Anary-Abbasinejad, M. A simple route for synthesis of 5-(furan-3-yl) barbiturate/thiobarbiturate derivatives via a multi-component reaction between arylglyoxals, acetylacetone and barbituric/thiobarbituric acid. ARKIVOC, 2019, (part v), 133-141.
[http://dx.doi.org/10.24820/ark.5550190.p010.837]
[45]
Panday, A.K.; Ali, D.; Choudhury, L.H. One-pot synthesis of pyrimidine linked naphthoquinone-fused pyrroles by iodine-mediated multicomponent reactions. Org. Biomol. Chem., 2020, 18(26), 4997-5007.
[http://dx.doi.org/10.1039/D0OB00591F] [PMID: 32572404]
[46]
Masoumi, M.; Bayat, M.; Hosseini, F.S. One-pot multi-component synthesis of new bis-pyridopyrimidine and bis-pyrimidoquinolone derivatives. Heliyon, 2020, 6(9), e05047.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05047] [PMID: 33033771]
[47]
Peiman, S.; Baharfar, R.; Maleki, B. Immobilization of trypsin onto polyamidoamine dendrimer functionalized iron oxide nanoparticles and its catalytic behavior towards spirooxindole-pyran derivatives in aqueous media. Mater. Today Commun., 2021, 26, 101759.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101759]
[48]
El-Naggar, A.M.; Ramadan, S.K. Efficient synthesis of some pyrimidine and thiazolidine derivatives bearing quinoline scaffold under microwave irradiation. Synth. Commun., 2020, 50(14), 2188-2198.
[http://dx.doi.org/10.1080/00397911.2020.1769673]
[49]
Mousazadeh Moghaddampour, I.; Shirini, F.; Safarpoor Nikoo Langarudi, M. Introduction of agar-entrapping as a novel strategy to improve the catalytic activity of moisture-absorbing acidic ionic liquids: A case study in the synthesis of 5-arylidene barbituric acids and pyrano [2, 3-d] pyrimidinones. Polycycl. Aromat. Compd., 2020, 1-12.
[http://dx.doi.org/10.1080/10406638.2020.1836003]
[50]
Mohamadpour, F. Synthesis of pyran-annulated heterocyclic systems catalyzed by theophylline as a green and bio-based catalyst. Polycycl. Aromat. Compd., 2021, 41(1), 160-172.
[http://dx.doi.org/10.1080/10406638.2019.1575246]
[51]
Farahmand, T.; Hashemian, S.; Sheibani, A. Efficient one-pot synthesis of pyrano [2, 3-d] pyrimidinone and pyrido [2, 3-d] pyrimidine derivatives by using of Mn-ZIF-8@ ZnTiO3 nanocatalyst. J. Mol. Struct., 2020, 1206, 127667.
[http://dx.doi.org/10.1016/j.molstruc.2019.127667]
[52]
Mohamadpour, F. Supramolecular β-cyclodextrin as a biodegradable and reusable catalyst promoted environmentally friendly synthesis of pyrano [2, 3-d] pyrimidine scaffolds via tandem knoevenagel-michael-cyclocondensation reaction in aqueous media. Polycycl. Aromat. Compd., 2020, 2020, 1-10.
[http://dx.doi.org/10.1080/10406638.2020.1852274]
[53]
Khalili, E.; Ahadi, N.; Bodaghifard, M.A. MNPs-TBAN as a novel basic nanostructure and efficient promoter for the synthesis of pyranopyrimidinones. Org. Chem. Res., 2020, 6(2), 272-285.
[http://dx.doi.org/10.22036/org.chem.2020.243568.1252]
[54]
Ahmadi, M.; Moradi, L.; Sadeghzadeh, M. Green synthesis of benzochromenopyrimidines in the presence of MWCNTs@ SiO2/MSA as a new and effective solid acid catalyst under microwave irradiation. J. Mol. Struct., 2021, 1235, 130183.
[http://dx.doi.org/10.1016/j.molstruc.2021.130183]
[55]
Rahmatinejad, S.; Naeimi, H. Crumpled perovskite-type LaMoxFe1-xO3 nanosheets: A reusable catalyst for rapid and green synthesis of naphthopyranopyrimidine derivatives. Polyhedron, 2020, 177, 114318.
[http://dx.doi.org/10.1016/j.poly.2019.114318]
[56]
Moghaddam-Manesh, M.; Ghazanfari, D.; Sheikhhosseini, E.; Akhgar, M. Synthesis, characterization and antimicrobial evaluation of novel 6′- amino-spiro[indeno[1,2-b]quinoxaline[1,3]dithiine]-5′-carbonitrile derivatives. Acta Chim. Slov., 2020, 67(1), 276-282.
[http://dx.doi.org/10.17344/acsi.2019.5437] [PMID: 33558928]
[57]
Bhosle, M.R.; Kharote, S.A.; Bondle, G.M.; Sangshetti, J.N.; Ansari, S.A.; Alkahtani, H.M. Organocatalyzed domino synthesis of new thiazole-based decahydroacridine-1,8-diones and dihydropyrido[2,3-d : 6,5-d’]- dipyrimidines in water as antimicrobial agents. Chem. Biodivers., 2020, 17(2), e1900577.
[http://dx.doi.org/10.1002/cbdv.201900577] [PMID: 31823465]
[58]
Safaei-Ghomi, J.; Lashkari, M.R.; Shahbazi-Alavi, H. Synthesis of bis-spiropiperidines using nano-CuFe2O4@chitosan as a robust and retrievable heterogeneous catalyst. J. Chem. Res., 2017, 41(7), 416-419.
[http://dx.doi.org/10.3184/174751917X14967701767067]
[59]
Kalita, S.J.; Das, B.; Deka, D.C. l-Proline-catalysed one-pot regio-and diastereoselective synthesis of spiro [pyrido [2, 3-d] pyrimidin-2-amine-6, 5′- pyrimidines] in water. SynOpen, 2017, 1(01), 0045-0049.
[http://dx.doi.org/10.1055/s-0036-1588456]
[60]
Patil, A.; Shinde, S.; Rashinkar, G.; Salunkhe, R. Synthesis of spiro-fused heterocycles under aerobic conditions by using polymer gel-entrapped catalyst. Res. Chem. Intermed., 2020, 46(1), 63-73.
[http://dx.doi.org/10.1007/s11164-019-03935-9]
[61]
Bhosle, M.R.; Andil, P.; Wahul, D.; Bondle, G.M.; Sarkate, A.; Tiwari, S.V. Straightforward multicomponent synthesis of pyrano[2,3-d]pyrimidine-2,4,7-triones in β-cyclodextrin cavity and evaluation of their anticancer activity. J. Iran. Chem. Soc, 2019, 16(7), 1553-1561.
[http://dx.doi.org/10.1007/s13738-019-01633-2]
[62]
Mohammadi Ziarani, G.; Saidian, F.; Gholamzadeh, P.; Badiei, A.; Abolhasani Soorki, A. Green synthesis of pyrazol-chromeno [2, 3-d] pyrimidinones using sba-pr-so3h as an efficient nanocatalyst. Iran. J. Chem. Chem. Eng., 2017, 36(6), 39-48.
[http://dx.doi.org/10.30492/ijcce.2017.26017]
[63]
Mohammadi Ziarani, G.; Aleali, F.; Lashgari, N.; Badiei, A.; Abolhasani Soorki, A. Efficient synthesis and antimicrobial evaluation of pyrazolopy ranopyrimidines in the presence of SBA-Pr-SO3H as a nanoporous acid catalyst. Iran. J. Pharm. Res., 2018, 17(2), 525-534.
[PMID: 29881410]
[64]
Brahmachari, G.; Nayek, N. Catalyst-free one-pot three-component synthesis of diversely substituted 5-aryl-2-oxo-/thioxo-2,3-dihydro-1h-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11(5h)-triones under ambient conditions. ACS Omega, 2017, 2(8), 5025-5035.
[http://dx.doi.org/10.1021/acsomega.7b00791] [PMID: 31457779]
[65]
Dige, N.C.; Mahajan, P.G.; Pore, D.M. Serendipitous formation of novel class of dichromeno pyrano pyrimidinone derivatives possessing anti-tubercular activity against M. tuberculosis H37Rv. Med. Chem. Res., 2018, 27(1), 224-233.
[http://dx.doi.org/10.1007/s00044-017-2062-z]
[66]
(a) Brahmachari, G.; Nurjamal, K. Ultrasound-assisted and trisodium citrate dihydrate-catalyzed green protocol for efficient and one-pot synthesis of substituted chromeno[3′,4′:5,6]pyrano[2,3-d]pyrimidines at ambient conditions. Tetrahedron Lett., 2019, 60(29), 1904-1908.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.028]
[67]
Brahmachari, G.; Nurjamal, K.; Karmakar, I.; Begam, S.; Nayek, N.; Mandal, B. Development of a water-mediated and catalyst-free green protocol for easy access to a huge array of diverse and densely functionalized pyrido[2,3-d:6,5-d′]dipyrimidines via one-pot multicomponent reaction under ambient conditions. ACS Sustain. Chem.& Eng., 2017, 5(10), 9494-9505.
[http://dx.doi.org/10.1021/acssuschemeng.7b02696]
[68]
Bhattacharjee, D.; Sutradhar, D.; Chandra, A.K.; Myrboh, B. L-proline as an efficient asymmetric induction catalyst in the synthesis of chromeno[2,3-d]pyrimidine-triones, xanthenes in water. Tetrahedron, 2017, 73(25), 3497-3504.
[http://dx.doi.org/10.1016/j.tet.2017.05.025]]
[69]
(a) Kumari, S.; Kumar, D.; Gajaganti, S.; Srivastava, V.; Singh, S. Sc(OTf)3 catalysed multicomponent synthesis of chromeno[2,3-d]pyrimidinetriones under solvent-free condition. Synth. Commun., 2019, 49(3), 431-443.
(b) Kumari, S.; Singh, S.; Srivastava, V. Lemon juice catalyzed C-C bond formation via C-H activation of methylarene: A sustainable synthesis of chromenopyrimidines. Mol. Divers., 2020, 24(3), 717-725.
[http://dx.doi.org/10.1007/s11030-019-09980-1] [PMID: 31376065]
[70]
Nourisefat, M.; Panahi, F.; Khalafi-Nezhad, A. Amino acids and peptides as reactants in multicomponent reactions: Modification of peptides with heterocycle backbones through combinatorial chemistry. Mol. Divers., 2019, 23(2), 317-331.
[http://dx.doi.org/10.1007/s11030-018-9861-0] [PMID: 30187297]
[71]
Keykha, G.; Hosseini-Tabatabaei, M.R.; Hassanabadi, A. Synthesis of 1H-chromeno [2, 3-d] pyrimidine-5-carboxamides under solvent-free conditions at ambient temperature. J. Chem. Res., 2017, 41(2), 85-87.
[http://dx.doi.org/10.3184/174751917X14849228329079]
[72]
Kong, D.; Wang, Q.; Zhu, Z.; Wang, X.; Shi, Z.; Lin, Q.; Wu, M. Convenient one-pot synthesis of thiobarbituro-quinoline derivatives via catalyst-free multicomponent reactions in water. Tetrahedron Lett., 2017, 58(27), 2644-2647.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.047]
[73]
Anary-Abbasinejad, M.; Nejad-Shahrokhabadi, F. Formation of zwitterionic salts via three-component reactions of barbituric/thiobarbituric acid, N-heterocyclic compounds and dialkyl acetylenedicarboxylates. ARKIVOC, 2019, (part vi), 149-157.
[http://dx.doi.org/10.24820/ark.5550190.p011.018]
[74]
Goli-Jolodar, O.; Shirini, F. Facile and simple synthesis of pyrimido[4,5-d]pyrimidinones and pyrano[2,3-d]pyrimidinones catalyzed by nano-sized NS-C4(DABCO-SO3H)2•4Cl. J. Iran. Chem. Soc, 2017, 14(6), 1235-1241.
[http://dx.doi.org/10.1007/s13738-017-1074-4]
[75]
Shirini, F.; Langarudi, M.S.N.; Daneshvar, N.; Jamasbi, N.; Irankhah-Khanghah, M. Preparation and characterization of [H2-DABCO][ClO4]2 as a new member of DABCO-based ionic liquids for the synthesis of pyrimido[4,5-b]-quinoline and pyrimido[4,5-d]pyrimidine derivatives. J. Mol. Struct., 2018, 1161, 366-382.
[http://dx.doi.org/10.1016/j.molstruc.2018.02.069]
[76]
Safari, N.; Shirini, F.; Tajik, H. Verjuice as a green and bio-degradable solvent/catalyst for facile and eco-friendly synthesis of 5-arylmethylenepyrimidine-2,4,6-trione, pyrano[2,3-d]pyrimidinone and pyrimido[4,5-d]pyrimidinone derivatives. J. Iran. Chem. Soc., 2019, 16(4), 887-897.
[http://dx.doi.org/10.1007/s13738-018-1565-y]
[77]
Patil, P.T.; Warekar, P.P.; Patil, K.T.; Jamale, D.K.; Kolekar, G.B.; Anbhule, P.V. Uncatalyzed synthesis of new substituted dihydro-2H-dipyrimido[1,2-a,4,5-d]pyrimidine-2,4(3H)-dione. Res. Chem. Intermed., 2017, 43(7), 4103-4114.
[http://dx.doi.org/10.1007/s11164-017-2868-9]
[78]
Mohire, P.P.; Patil, R.B.; Chandam, D.R.; Jadhav, S.J.; Patravale, A.A.; Kumbhar, D.R.; Ghosh, J.S.; Deshmukh, M.B. Low transition temperature mixtures prompted one-pot synthesis of 5, 10 dihydropyrimido[4,5-b]187uinolone-2,4(1H,3H)-dione derivatives. Res. Chem. Intermed., 2017, 43(12), 7013-7028.
[http://dx.doi.org/10.1007/s11164-017-3033-1]
[79]
Reddy, S.S.; Reddy, M.V.K.; Peddiahgari Vasu Govardhana, R. β-cyclodextrin in water: as an efficient green protocol for the synthesis of pyrimido[4, 5-b]quinoline-diones. Chem. Select, 2018, 3(16), 4283-4288.
[http://dx.doi.org/10.1002/slct.201800208]
[80]
Brahmachari, G.; Nurjamal, K.; Karmakar, I.; Begam, S.; Nayek, N.; Mandal, B. Development of a Water-Mediated and Catalyst-Free Green Protocol for Easy Access to a Huge Array of Diverse and Densely Functionalized Pyrido[2,3-d:6,5-d′]dipyrimidines via One-Pot Multicomponent Reaction under Ambient Conditions. ACS. Sustain. Chem. Engin., 2017, 5(10), 9494-9505.
[http://dx.doi.org/10.1021/acssuschemeng.7b02696]
[81]
Gholami Dehbalaei, M.; Foroughifar, N.; Khajeh-Amiri, A.; Pasdar, H. N-propylbenzoguanamine sulfonic acid-functionalized magnetic nanoparticles: A novel and magnetically retrievable catalyst for the synthesis of 1,4-dihydropyridine derivatives. J. Chin. Chem. Soc. (Taipei), 2018, 65(11), 1356-1369.
[http://dx.doi.org/10.1002/jccs.201800120]
[82]
Kardooni, R.; Kiasat, A.R. Polyethylene glycol (PEG-400): a green reaction medium for one-pot, three component synthesis of 3-substituted indoles under catalyst free conditions. Polycycl. Aromat. Compd., 2019, 41, 1-9.
[http://dx.doi.org/10.1080/10406638.2019.1703764]
[83]
Khajeh Dangolani, S.; Panahi, F.; Tavaf, Z.; Nourisefat, M.; Yousefi, R.; Khalafi-Nezhad, A. Synthesis and antioxidant activity evaluation of some novel aminocarbonitrile derivatives incorporating carbohydrate moieties. ACS Omega, 2018, 3(8), 10341-10350.
[http://dx.doi.org/10.1021/acsomega.8b01124] [PMID: 31459162]
[84]
Mityanov, V.S.; Kutasevich, A.V.; Krayushkin, M.M.; Lichitsky, B.V.; Dudinov, A.A.; Komogortsev, A.N.; Koldaeva, T.Y.; Perevalov, V.P. Multicomponent assembling of imidazole N-oxides, aldehydes and CH-acids: A simple and efficient approach to newly functionalized imidazole derivatives. Tetrahedron, 2017, 73(47), 6669-6675.
[http://dx.doi.org/10.1016/j.tet.2017.10.026]
[85]
Bhattacharjee, D.; Sheet, S.K.; Khatua, S.; Biswas, K.; Joshi, S.; Myrboh, B. A reusable magnetic nickel nanoparticle based catalyst for the aqueous synthesis of diverse heterocycles and their evaluation as potential anti-bacterial agent. Bioorg. Med. Chem., 2018, 26(18), 5018-5028.
[http://dx.doi.org/10.1016/j.bmc.2018.08.033] [PMID: 30177493]
[86]
Barakat, A.; Ghabbour, H.A.; Atef, S.; Al-Majid, A.M.; Shahidul Islam, M.; Ali, M. 5-[(3-Fluorophenyl)(2-hydroxy-6-oxocyclohex-1-en-1-yl) methyl]-6-hydroxy-1, 3-dimethylpyrimidine-2, 4 (1H, 3H)-dione. Molbank, 2016, 2016(4), M910.
[http://dx.doi.org/10.3390/M910]
[87]
Anary-Abbasinejad, M.; Nejad-Shahrokhabadi, F. Reaction of barbituric/thiobarbituric acid with phosphines or phosphites and dialkyl acetylenedicarboxylates for synthesis of phosphorus zwitterions or phosphonate derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2020, 195(8), 660-665.
[http://dx.doi.org/10.1080/10426507.2019.1709460]
[88]
Ghadiri, S.; Bayat, M.; Hosseini, F.S. A simple and environmentally benign synthesis of novel spiro [indoline-3, 5′-pyrano [2, 3-d] pyrimidine] derivatives in water. Monatsh. Chem., 2019, 150(6), 1079-1084.
[http://dx.doi.org/10.1007/s00706-019-2356-6]
[89]
Gopal Hegde, S.; Koodlur, L.; Narayanarao, M. Regioselective synthesis and biological evaluation of novel dispiropyrrolidine derivatives via one-pot four-component reaction. Synth. Commun., 2019, 49(24), 3453-3464.
[http://dx.doi.org/10.1080/00397911.2019.1672746]
[90]
Dommaraju, Y.; Borthakur, S.; Prajapati, D. L-proline-catalysed one-pot aza-diels–alder reaction in water: regioselective synthesis of spiro (isoxazolo [5, 4-b] pyridine-5, 5′-pyrimidine) derivatives. Synlett, 2018, 29(09), 1195-1198.
[http://dx.doi.org/10.1055/s-0036-1591949]
[91]
Javahershenas, R.; Khalafy, J. One-pot, four component synthesis of pyrazolo [4′, 3′: 5, 6] pyrido [2, 3-d] pyrimidines derivatives. Asian. J. Green. Chem., 2018, 2(4), 318-329.
[http://dx.doi.org/10.22034/AJGC.2018.62714]
[92]
Ghandi, M.; Jourablou, A.; Abbasi, A. Synthesis of highly substituted pyrrole and dihydro‐1h‐pyrrole containing barbituric acids via catalyst‐free one‐pot four‐component reactions. J. Het. Chem., 2017, 54(6), 3108-3119.
[http://dx.doi.org/10.1002/jhet.2924]
[93]
Bayat, M.; Amiri, Z. Chemoselective synthesis of novel spiropyrano acenaphthylene derivatives via one-pot four-component reaction. Tetrahedron Lett., 2017, 58(45), 4260-4263.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.077]
[94]
Wei, J.; Gui, W.; Cui, Y.; Zhang, Z.; Yousif, Q.A. SCMNPs@ Uridine/Zn: An efficient and reusable heterogeneous nanocatalyst for the rapid one-pot synthesis of tricyclic fused pyrazolopyranopyrimidine and 3-methyl carboxylate substituted pyrano [2, 3-c] pyrazole derivatives under solvent-free conditions. Pol. J. Chem. Technol., 2020, 22, 20-33.
[http://dx.doi.org/10.2478/pjct-2020-0013]
[95]
Nasri, S.; Bayat, M.; Farahani, H.V.; Karami, S. Synthesis of new functionalized thiazolo pyridine-fused and thiazolo pyridopyrimidine-fused spirooxindoles via one-pot reactions. Heliyon, 2020, 6(3), e03687.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03687] [PMID: 32258502]
[96]
Rezaei, M.; Bayat, M.; Notash, B. Synthesis of fused hydroxy dihydropyrroles and unexpected dihydropyrazine and dihydroquinoxaline derivatives based on heterocyclic ketene aminals. J. Het. Chem., 2020, 57(2), 880-891.
[http://dx.doi.org/10.1002/jhet.3834]
[97]
Jassem, A.M.; Almashal, F.A.K.; Mohammed, M.Q.; Jabir, H.A.S. A catalytic and green method for one-pot synthesis of new Hantzsch 1, 4-dihydropyridines. SN Appl. Sci., 2020, 2(3), 1-9.
[http://dx.doi.org/10.1007/s42452-020-2165-x]
[98]
Heravi, M.M.; Daraie, M. A novel and efficient five-component synthesis of pyrazole based pyrido [2, 3-d] pyrimidine-diones in water: A triply green synthesis. Molecules, 2016, 21(4), 441.
[http://dx.doi.org/10.3390/molecules21040441] [PMID: 27043522]
[99]
Mohammadrezaei, M.; Mohebat, R.; Tabatabaee, M. H3PW12O40@nano-ZnO: An efficient, recyclable, and eco-friendly catalyst for the green synthesis of novel benzo[a]pyrimido[5′,4′:5,6]pyrano[2,3-c]phenazines via sequential multicomponent reactions under microwave irradiation. J. Chin. Chem. Soc. (Taipei), 2018, 65(8), 1007-1013.
[http://dx.doi.org/10.1002/jccs.201700359]
[100]
Irani, S.; Maghsoodlou, M.T.; Hazeri, N. Efficient synthesis of new pyrano[ 2,3-d]pyrimidine-2,4-dione derivatives via a one-pot four-component reaction. J. Iranian. Chem. Soc., 2017, 14(6), 1189-1193.
[http://dx.doi.org/10.1007/s13738-017-1069-1]
[101]
Lavanya, M.; Asharani, I.V.; Thirumalai, D. One pot multi-component synthesis of functionalized spiropyridine and pyrido[2,3-d]pyrimidine scaffolds and their potent in-vitro anti-inflammatory and anti-oxidant investigations. Chem. Biol. Drug Des., 2019, 93(4), 464-472.
[http://dx.doi.org/10.1111/cbdd.13434] [PMID: 30393996]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy