Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Therapeutic Potential of Ferulic Acid in Alzheimer's Disease

Author(s): Hasan Turkez*, Mehmet Enes Arslan, Joice Nascimento Barboza, Cigdem Yuce Kahraman, Damiao Pergentino de Sousa and Adil Mardinoğlu

Volume 19, Issue 8, 2022

Published on: 10 February, 2022

Page: [860 - 873] Pages: 14

DOI: 10.2174/1567201819666211228153801

Price: $65

Abstract

Alzheimer's Disease (AD) is one of the most important neurodegenerative diseases, accounting for 60% of all dementia cases. AD is a progressive neurodegenerative disease that occurs due to the production of β-amyloid (Aβ) protein and accumulation of hyper-phosphorylated tau protein; it causes breakage in the synaptic bonds and neuronal deaths to a large extent. Millions of people worldwide suffer from AD because there is no definitive drug for disease prevention, treatment, or slowing down its progression. Over the last decade, multiple target applications have been developed for AD treatments. These targets include Aβ accumulations, hyper-phosphorylated tau proteins, mitochondrial dysfunction, and oxidative stress, resulting in toxicity. Various natural or semisynthetic antioxidant formulations have been shown to protect brain cells from Aβ-induced toxicity and provide promising potentials for AD treatment. Ferulic acid (FA), a high-capacity antioxidant molecule, is naturally synthesized from certain plants. FA has been shown to have different substantial biological properties, such as anticancer, antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and cardioprotective actions, etc. Furthermore, FA exerts neuroprotection via preventing Aβ-fibril formation, acting as an anti-inflammatory agent, and inhibiting free radical generation and acetylcholinesterase (AChE) enzyme activity. In this review, we present key biological roles of FA and several FA derivatives in preventing Aβ-induced neurotoxicity, protecting against free radical attacks, and exhibiting enzyme inhibitions and evaluate them as possible therapeutic agents for the treatment of AD.

Keywords: Ferulic acid, anti-Alzheimer, Alzheimer’s disease, experimental Alzheimer’s model, amyloid-beta, drug candidate, neurotoxicity, neuroprotection.

Graphical Abstract

[1]
Salthouse, T.A. What and when of cognitive aging. Curr. Dir. Psychol. Sci., 2004, 13(4), 140-144.
[http://dx.doi.org/10.1111/j.0963-7214.2004.00293.x]
[2]
Yokoyama, J.S.; Wang, Y.; Schork, A.J.; Thompson, W.K.; Karch, C.M.; Cruchaga, C.; McEvoy, L.K.; Witoelar, A.; Chen, C-H.; Holland, D.; Brewer, J.B.; Franke, A.; Dillon, W.P.; Wilson, D.M.; Mukherjee, P.; Hess, C.P.; Miller, Z.; Bonham, L.W.; Shen, J.; Rabinovici, G.D.; Rosen, H.J.; Miller, B.L.; Hyman, B.T.; Schellenberg, G.D.; Karlsen, T.H.; Andreassen, O.A.; Dale, A.M.; Desikan, R.S. Alzheimer’s disease neuroimaging initiative. Association between genetic traits for immune-mediated diseases and Alzheimer disease. JAMA Neurol., 2016, 73(6), 691-697.
[http://dx.doi.org/10.1001/jamaneurol.2016.0150] [PMID: 27088644]
[3]
Scheltens, P.; Blennow, K.; Breteler, M.M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s disease. Lancet, 2016, 388(10043), 505-517.
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[4]
Lam, S.; Bayraktar, A.; Zhang, C.; Turkez, H.; Nielsen, J.; Boren, J.; Shoaie, S.; Uhlen, M.; Mardinoglu, A. A systems biology approach for studying neurodegenerative diseases. Drug Discov. Today, 2020, 25(7), 1146-1159.
[http://dx.doi.org/10.1016/j.drudis.2020.05.010] [PMID: 32442631]
[5]
Turkez, H.; Cacciatore, I.; Marinelli, L.; Fornasari, E.; Aslan, M.E.; Cadirci, K.; Kahraman, C.Y.; Caglar, O.; Tatar, A.; Di Biase, G.; Hacimuftuoglu, A.; Di Stefano, A.; Mardinoglu, A. Glycyl-L-Prolyl-L-glutamate pseudotripeptides for treatment of Alzheimer’s disease. Biomolecules, 2021, 11(1), 126.
[http://dx.doi.org/10.3390/biom11010126] [PMID: 33478054]
[6]
Türkez, H.; Arslan, M.E.; Stefano, A.Di; Cacciatore, I.; Mardi̇noğlu, A. Nonpharmacological treatment options for Alzheimer’s disease: From animal testing to clinical studies. Turkish J. Zool., 2020, 44(2), 81-89.
[http://dx.doi.org/10.3906/zoo-1911-32]
[7]
Iqbal, K.; Grundke-Iqbal, I. Opportunities and challenges in developing Alzheimer disease therapeutics. Acta Neuropathol., 2011, 122(5), 543-549.
[http://dx.doi.org/10.1007/s00401-011-0878-z] [PMID: 21959585]
[8]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[9]
Glabe, C.G. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol. Aging, 2006, 27(4), 570-575.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.04.017] [PMID: 16481071]
[10]
Turkez, H.; Cacciatore, I.; Arslan, M.E.; Fornasari, E.; Marinelli, L.; Di Stefano, A.; Mardinoglu, A. Histidyl-proline diketopiperazine isomers as multipotent anti-Alzheimer drug candidates. Biomolecules, 2020, 10(5), 737.
[http://dx.doi.org/10.3390/biom10050737] [PMID: 32397415]
[11]
Lashuel, H.A.; Lansbury, P.T., Jr Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q. Rev. Biophys., 2006, 39(2), 167-201.
[http://dx.doi.org/10.1017/S0033583506004422] [PMID: 16978447]
[12]
Buxbaum, J.N.; Linke, R.P. A molecular history of the amyloidoses. J. Mol. Biol., 2012, 421(2-3), 142-159.
[http://dx.doi.org/10.1016/j.jmb.2012.01.024] [PMID: 22321796]
[13]
Bucciantini, M.; Giannoni, E.; Chiti, F.; Baroni, F.; Formigli, L.; Zurdo, J.; Taddei, N.; Ramponi, G.; Dobson, C.M.; Stefani, M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature, 2002, 416(6880), 507-511.
[http://dx.doi.org/10.1038/416507a] [PMID: 11932737]
[14]
Jahn, T.R.; Radford, S.E. Folding versus aggregation: Polypeptide conformations on competing pathways. Arch. Biochem. Biophys., 2008, 469(1), 100-117.
[http://dx.doi.org/10.1016/j.abb.2007.05.015] [PMID: 17588526]
[15]
Bellesia, G.; Shea, J-E. Diversity of kinetic pathways in amyloid fibril formation. J. Chem. Phys., 2009, 131(11), 111102.
[http://dx.doi.org/10.1063/1.3216103] [PMID: 19778093]
[16]
Bezerra da Silva, C.; Pott, A.; Elifio-Esposito, S.; Dalarmi, L.; Fialho do Nascimento, K.; Moura Burci, L.; de Oliveira, M.; de Fátima Gaspari Dias, J.; Warumby Zanin, S.M.; Gomes Miguel, O.; Dallarmi Miguel, M. Effect of donepezil, tacrine, galantamine and rivastigmine on acetylcholinesterase inhibition in Dugesia tigrina. Molecules, 2016, 21(1), 53.
[http://dx.doi.org/10.3390/molecules21010053] [PMID: 26760993]
[17]
Zhao, Q.; Tang, X.C. Effects of huperzine A on acetylcholinesterase isoforms in vitro: comparison with tacrine, donepezil, rivastigmine and physostigmine. Eur. J. Pharmacol., 2002, 455(2-3), 101-107.
[http://dx.doi.org/10.1016/S0014-2999(02)02589-X] [PMID: 12445575]
[18]
Setya, S.; Madaan, T.; Razdan, B.K.; Farswan, M.; Talegaonkar, S. Design and development of novel transdermal nanoemulgel for Alzheimer’s Disease: Pharmacokinetic, pharmacodynamic and biochemical investigations. Curr. Drug Deliv., 2019, 16(10), 902-912.
[http://dx.doi.org/10.2174/1567201816666191022105036] [PMID: 31642410]
[19]
Pagoni, A.; Marinelli, L.; Di Stefano, A.; Ciulla, M.; Turkez, H.; Mardinoglu, A.; Vassiliou, S.; Cacciatore, I. Novel anti-Alzheimer phenol-lipoyl hybrids: Synthesis, physico-chemical characterization, and biological evaluation. Eur. J. Med. Chem., 2020, 186, 111880.
[http://dx.doi.org/10.1016/j.ejmech.2019.111880] [PMID: 31753513]
[20]
Arora, T.; Caviedes, P.; Sharma, S.K. Effects of a tripeptide on mitogen-activated protein kinase and glycogen synthase kinase activation in a cell line derived from the foetal hippocampus of a trisomy 16 mouse: An animal model of down syndrome. Neurotox. Res., 2020, 37(3), 714-723.
[http://dx.doi.org/10.1007/s12640-019-00130-x] [PMID: 31802378]
[21]
Marinelli, L.; Fornasari, E.; Di Stefano, A.; Turkez, H.; Genovese, S.; Epifano, F.; Di Biase, G.; Costantini, E.; D’Angelo, C.; Reale, M.; Cacciatore, I. Synthesis and biological evaluation of novel analogues of Gly-l-Pro-l-Glu (GPE) as neuroprotective agents. Bioorg. Med. Chem. Lett., 2019, 29(2), 194-198.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.057] [PMID: 30522955]
[22]
Marinelli, L.; Fornasari, E.; Di Stefano, A.; Turkez, H.; Arslan, M.E.; Eusepi, P.; Ciulla, M.; Cacciatore, I. (R)-α-Lipoyl-Gly-l-Pro-l-Glu dimethyl ester as dual acting agent for the treatment of Alzheimer’s disease. Neuropeptides, 2017, 66, 52-58.
[http://dx.doi.org/10.1016/j.npep.2017.09.001] [PMID: 28993014]
[23]
Turkez, H. The role of ascorbic acid on titanium dioxide-induced genetic damage assessed by the comet assay and cytogenetic tests. Exp. Toxicol. Pathol., 2011, 63(5), 453-457.
[http://dx.doi.org/10.1016/j.etp.2010.03.004] [PMID: 20346638]
[24]
Arslan, M.E.; Türkez, H.; Mardinoğlu, A. In vitro neuroprotective effects of farnesene sesquiterpene on Alzheimer’s disease model of differentiated neuroblastoma cell line. Int. J. Neurosci., 2020, 131(8), 745-754.
[http://dx.doi.org/10.1080/00207454.2020.1754211] [PMID: 32308094]
[25]
Lingineni, K.; Belekar, V.; Tangadpalliwar, S.R.; Garg, P. The role of multidrug resistance protein (MRP-1) as an active efflux transporter on blood-brain barrier (BBB) permeability. Mol. Divers., 2017, 21(2), 355-365.
[http://dx.doi.org/10.1007/s11030-016-9715-6] [PMID: 28050687]
[26]
Patel, A.A.; Patel, R.J.; Patel, S.R. Nanomedicine for intranasal delivery to improve brain uptake. Curr. Drug Deliv., 2018, 15(4), 461-469.
[http://dx.doi.org/10.2174/1567201814666171013150534] [PMID: 29034836]
[27]
Goyal, D.; Shuaib, S.; Mann, S.; Goyal, B. Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (Aβ) aggregation: Potential therapeutics of alzheimer’s disease. ACS Comb. Sci., 2017, 19(2), 55-80.
[http://dx.doi.org/10.1021/acscombsci.6b00116] [PMID: 28045249]
[28]
Banks, W.A. From blood-brain barrier to blood-brain interface: New opportunities for CNS drug delivery. Nat. Rev. Drug Discov., 2016, 15(4), 275-292.
[http://dx.doi.org/10.1038/nrd.2015.21] [PMID: 26794270]
[29]
Cacciatore, I.; Marinelli, L.; Fornasari, E.; Cerasa, L.S.; Eusepi, P.; Türkez, H.; Pomilio, C.; Reale, M.; D’Angelo, C.; Costantini, E.; Di Stefano, A. Novel NSAID-derived drugs for the potential treatment of Alzheimer’s Disease. Int. J. Mol. Sci., 2016, 17(7), 1035.
[http://dx.doi.org/10.3390/ijms17071035] [PMID: 27376271]
[30]
Sozio, P.; Fiorito, J.; Di Giacomo, V.; Di Stefano, A.; Marinelli, L.; Cacciatore, I.; Cataldi, A.; Pacella, S.; Turkez, H.; Parenti, C.; Rescifina, A.; Marrazzo, A. Haloperidol metabolite II prodrug: Asymmetric synthesis and biological evaluation on rat C6 glioma cells. Eur. J. Med. Chem., 2015, 90, 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.012] [PMID: 25461306]
[31]
Huang, Z.; Huang, X.; Liu, H.; Wang, L.; Fan, Y.; Liu, C.; Ren, Y. Rapid determination of ferulic acid in three kinds of Chinese herbs by direct analysis in real-time mass spectrometry. Sep. Sci. PLUS, 2019, 2(10), 384-391.
[http://dx.doi.org/10.1002/sscp.201900038]
[32]
Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol., 2018, 31(6), 332-336.
[http://dx.doi.org/10.1159/000491755] [PMID: 30235459]
[33]
Perez-Ternero, C.; Werner, C.M.; Nickel, A.G.; Herrera, M.D.; Motilva, M-J.; Böhm, M.; Alvarez de Sotomayor, M.; Laufs, U. Ferulic acid, a bioactive component of rice bran, improves oxidative stress and mitochondrial biogenesis and dynamics in mice and in human mononuclear cells. J. Nutr. Biochem., 2017, 48, 51-61.
[http://dx.doi.org/10.1016/j.jnutbio.2017.06.011] [PMID: 28759787]
[34]
Yuan, J.; Ge, K.; Mu, J.; Rong, J.; Zhang, L.; Wang, B.; Wan, J.; Xia, G. Ferulic acid attenuated acetaminophen-induced hepatotoxicity though down-regulating the cytochrome P 2E1 and inhibiting toll-like receptor 4 signaling-mediated inflammation in mice. Am. J. Transl. Res., 2016, 8(10), 4205-4214.
[PMID: 27830004]
[35]
Narasimhan, A.; Chinnaiyan, M.; Karundevi, B. Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Appl. Physiol. Nutr. Metab., 2015, 40(8), 769-781.
[http://dx.doi.org/10.1139/apnm-2015-0002] [PMID: 26201855]
[36]
Kassab, R.B.; Lokman, M.S.; Daabo, H.M.A.; Gaber, D.A.; Habotta, O.A.; Hafez, M.M.; Zhery, A.S.; Moneim, A.E.A.; Fouda, M.S. Ferulic acid influences Nrf2 activation to restore testicular tissue from cadmium-induced oxidative challenge, inflammation, and apoptosis in rats. J. Food Biochem., 2020, 44(12), e13505.
[http://dx.doi.org/10.1111/jfbc.13505] [PMID: 33047361]
[37]
Meng, G.; Meng, X.; Ma, X.; Zhang, G.; Hu, X.; Jin, A.; Zhao, Y.; Liu, X. Application of ferulic acid for Alzheimer’s disease: Combination of text mining and experimental validation. Front. Neuroinform., 2018, 12, 31.
[http://dx.doi.org/10.3389/fninf.2018.00031] [PMID: 29896095]
[38]
Zafeer, M.F.; Firdaus, F.; Anis, E.; Mobarak Hossain, M. Prolong treatment with trans-ferulic acid mitigates bioenergetics loss and restores mitochondrial dynamics in streptozotocin-induced sporadic dementia of Alzheimer’s type. Neurotoxicology, 2019, 73, 246-257.
[http://dx.doi.org/10.1016/j.neuro.2019.04.006] [PMID: 31029786]
[39]
Jung, E.S.; An, K.; Hong, H.S.; Kim, J-H.; Mook-Jung, I. Astrocyte-originated ATP protects Aβ(1-42)-induced impairment of synaptic plasticity. J. Neurosci., 2012, 32(9), 3081-3087.
[http://dx.doi.org/10.1523/JNEUROSCI.6357-11.2012] [PMID: 22378880]
[40]
Cheng, C-Y.; Su, S-Y.; Tang, N-Y.; Ho, T-Y.; Chiang, S-Y.; Hsieh, C-L. Ferulic acid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting ICAM-1 mRNA expression in rats. Brain Res., 2008, 1209, 136-150.
[http://dx.doi.org/10.1016/j.brainres.2008.02.090] [PMID: 18400211]
[41]
Yan, J-J.; Cho, J-Y.; Kim, H-S.; Kim, K-L.; Jung, J-S.; Huh, S-O.; Suh, H-W.; Kim, Y-H.; Song, D-K. Protection against β-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br. J. Pharmacol., 2001, 133(1), 89-96.
[http://dx.doi.org/10.1038/sj.bjp.0704047] [PMID: 11325798]
[42]
Wang, N.; Zhou, Y.; Zhao, L.; Wang, C.; Ma, W.; Ge, G.; Wang, Y.; Ullah, I.; Muhammad, F.; Alwayli, D.; Zhi, D.; Li, H. Ferulic acid delayed amyloid β-induced pathological symptoms by autophagy pathway via a fasting-like effect in Caenorhabditis elegans. Food Chem. Toxicol., 2020, 146, 111808.
[http://dx.doi.org/10.1016/j.fct.2020.111808] [PMID: 33045309]
[43]
Wu, W.; Lee, S-Y.; Wu, X.; Tyler, J.Y.; Wang, H.; Ouyang, Z.; Park, K.; Xu, X-M.; Cheng, J-X. Neuroprotective ferulic acid (FA)-glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord. Biomaterials, 2014, 35(7), 2355-2364.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.074] [PMID: 24332460]
[44]
Trombino, S.; Cassano, R.; Ferrarelli, T.; Barone, E.; Picci, N.; Mancuso, C. Trans-ferulic acid-based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids Surf. B Biointerfaces, 2013, 109, 273-279.
[http://dx.doi.org/10.1016/j.colsurfb.2013.04.005] [PMID: 23668982]
[45]
Picone, P.; Bondi, M.L.; Montana, G.; Bruno, A.; Pitarresi, G.; Giammona, G.; Di Carlo, M.; Giammona, G.; Di Carlo, M. Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: improved delivery by solid lipid nanoparticles. Free Radic. Res., 2009, 43(11), 1133-1145.
[http://dx.doi.org/10.1080/10715760903214454] [PMID: 19863373]
[46]
Bondi, M.; Montana, G.; Craparo, E.; Picone, P.; Capuano, G.; Carlo, M.; Giammona, G. Ferulic acid-loaded lipid nanostructures as drug delivery systems for alzheimers disease: Preparation, characterization and cytotoxicity studies. Curr. Nanosci., 2009, 5(1), 26-32.
[http://dx.doi.org/10.2174/157341309787314656]
[47]
Mancuso, C.; Santangelo, R. Ferulic acid: pharmacological and toxicological aspects. Food Chem. Toxicol., 2014, 65, 185-195.
[http://dx.doi.org/10.1016/j.fct.2013.12.024] [PMID: 24373826]
[48]
Sgarbossa, A.; Giacomazza, D.; di Carlo, M. Ferulic acid: A hope for Alzheimer’s disease therapy from plants. Nutrients, 2015, 7(7), 5764-5782.
[http://dx.doi.org/10.3390/nu7075246] [PMID: 26184304]
[49]
Barone, E.; Calabrese, V.; Mancuso, C. Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology, 2009, 10(2), 97-108.
[http://dx.doi.org/10.1007/s10522-008-9160-8] [PMID: 18651237]
[50]
Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – a review. J. Funct. Foods, 2015, 18(Part B), 820-897.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[51]
Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem., 2006, 99(1), 191-203.
[http://dx.doi.org/10.1016/j.foodchem.2005.07.042]
[52]
Masella, R.; Varì, R.; D’Archivio, M.; Di Benedetto, R.; Matarrese, P.; Malorni, W.; Scazzocchio, B.; Giovannini, C. Extra virgin olive oil biophenols inhibit cell-mediated oxidation of LDL by increasing the mRNA transcription of glutathione-related enzymes. J. Nutr., 2004, 134(4), 785-791.
[http://dx.doi.org/10.1093/jn/134.4.785] [PMID: 15051826]
[53]
Wu, Y.; Shi, Y.G.; Zheng, X.L.; Dang, Y.L.; Zhu, C.M.; Zhang, R.R.; Fu, Y.Y.; Zhou, T.Y.; Li, J.H. Lipophilic ferulic acid derivatives protect PC12 cells against oxidative damage via modulating β-amyloid aggregation and activating Nrf2 enzymes. Food Funct., 2020, 11(5), 4707-4718.
[http://dx.doi.org/10.1039/D0FO00800A] [PMID: 32409814]
[54]
Nile, S.H.; Ko, E.Y.; Kim, D.H.; Keum, Y-S. Screening of ferulic acid related compounds as inhibitors of xanthine oxidase and cyclooxygenase-2 with anti-inflammatory activity. Rev. Bras. Farmacogn., 2016, 26(1), 50-55.
[http://dx.doi.org/10.1016/j.bjp.2015.08.013]
[55]
Nagarajan, R.; Ambothi, K. Ferulic acid prevents ultraviolet-b radiation induced oxidative DNA damage in human dermal fibroblasts. Int. J. Nutr. Pharmacol. Neurol. Dis., 2014, 4(4), 203-213.
[http://dx.doi.org/10.4103/2231-0738.139400]
[56]
Lin, C-M.; Chiu, J-H.; Wu, I-H.; Wang, B-W.; Pan, C-M.; Chen, Y-H. Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1 α. J. Nutr. Biochem., 2010, 21(7), 627-633.
[http://dx.doi.org/10.1016/j.jnutbio.2009.04.001] [PMID: 19443196]
[57]
Ghaisas, M.M.; Kshirsagar, S.B.; Sahane, R.S. Evaluation of wound healing activity of ferulic acid in diabetic rats. Int. Wound J., 2014, 11(5), 523-532.
[http://dx.doi.org/10.1111/j.1742-481X.2012.01119.x] [PMID: 23236955]
[58]
Roy, S.; Metya, S.K.; Sannigrahi, S.; Rahaman, N.; Ahmed, F. Treatment with ferulic acid to rats with streptozotocin-induced diabetes: Effects on oxidative stress, pro-inflammatory cytokines, and apoptosis in the pancreatic β cell. Endocrine, 2013, 44(2), 369-379.
[http://dx.doi.org/10.1007/s12020-012-9868-8] [PMID: 23299178]
[59]
Risom, L.; Møller, P.; Loft, S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat. Res., 2005, 592(1-2), 119-137.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.06.012] [PMID: 16085126]
[60]
Sultana, R.; Ravagna, A.; Mohmmad-Abdul, H.; Calabrese, V.; Butterfield, D.A. Ferulic acid ethyl ester protects neurons against amyloid beta- peptide(1-42)-induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. J. Neurochem., 2005, 92(4), 749-758.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02899.x] [PMID: 15686476]
[61]
Joshi, G.; Perluigi, M.; Sultana, R.; Agrippino, R.; Calabrese, V.; Butterfield, D.A. In vivo protection of synaptosomes by ferulic acid ethyl ester (FAEE) from oxidative stress mediated by 2,2-azobis(2-amidino-propane)dihydrochloride (AAPH) or Fe(2+)/H(2) O(2): Insight into mechanisms of neuroprotection and relevance to oxidative stress-related neurodegenerative disorders. Neurochem. Int., 2006, 48(4), 318-327.
[http://dx.doi.org/10.1016/j.neuint.2005.11.006] [PMID: 16386335]
[62]
Kanski, J.; Aksenova, M.; Stoyanova, A.; Butterfield, D.A. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: Structure-activity studies. J. Nutr. Biochem., 2002, 13(5), 273-281.
[http://dx.doi.org/10.1016/S0955-2863(01)00215-7] [PMID: 12015157]
[63]
Srinivasan, M.; Rukkumani, R.; Ram Sudheer, A.; Menon, V.P. Ferulic acid, a natural protector against carbon tetrachloride-induced toxicity. Fundam. Clin. Pharmacol., 2005, 19(4), 491-496.
[http://dx.doi.org/10.1111/j.1472-8206.2005.00332.x] [PMID: 16011737]
[64]
Cho, J-Y.; Kim, H-S.; Kim, D-H.; Yan, J-J.; Suh, H-W.; Song, D-K. Inhibitory effects of long-term administration of ferulic acid on astrocyte activation induced by intracerebroventricular injection of β-amyloid peptide (1-42) in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, 29(6), 901-907.
[http://dx.doi.org/10.1016/j.pnpbp.2005.04.022] [PMID: 15970368]
[65]
Bao, Y.; Chen, Q.; Xie, Y.; Tao, Z.; Jin, K.; Chen, S.; Bai, Y.; Yang, J.; Shan, S. Ferulic acid attenuates oxidative DNA damage and inflammatory responses in microglia induced by benzo(a)pyrene. Int. Immunopharmacol., 2019, 77, 105980.
[http://dx.doi.org/10.1016/j.intimp.2019.105980] [PMID: 31699670]
[66]
Kwon, E.Y.; Do, G.M.; Cho, Y.Y.; Park, Y.B.; Jeon, S.M.; Choi, M.S. Anti-atherogenic property of ferulic acid in apolipoprotein E-deficient mice fed Western diet: Comparison with clofibrate. Food Chem. Toxicol., 2010, 48(8-9), 2298-2303.
[http://dx.doi.org/10.1016/j.fct.2010.05.063] [PMID: 20573577]
[67]
Janicke, B.; Hegardt, C.; Krogh, M.; Önning, G.; Åkesson, B.; Cirenajwis, H.M.; Oredsson, S.M. The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells. Nutr. Cancer, 2011, 63(4), 611-622.
[http://dx.doi.org/10.1080/01635581.2011.538486] [PMID: 21500097]
[68]
Jayaprakasam, B.; Vanisree, M.; Zhang, Y.; Dewitt, D.L.; Nair, M.G. Impact of alkyl esters of caffeic and ferulic acids on tumor cell proliferation, cyclooxygenase enzyme, and lipid peroxidation. J. Agric. Food Chem., 2006, 54(15), 5375-5381.
[http://dx.doi.org/10.1021/jf060899p] [PMID: 16848520]
[69]
Alam, M.A.; Sernia, C.; Brown, L. Ferulic acid improves cardiovascular and kidney structure and function in hypertensive rats. J. Cardiovasc. Pharmacol., 2013, 61(3), 240-249.
[http://dx.doi.org/10.1097/FJC.0b013e31827cb600] [PMID: 23188120]
[70]
Ramar, M.; Manikandan, B.; Raman, T.; Priyadarsini, A.; Palanisamy, S.; Velayudam, M.; Munusamy, A.; Marimuthu Prabhu, N.; Vaseeharan, B. Protective effect of ferulic acid and resveratrol against alloxan-induced diabetes in mice. Eur. J. Pharmacol., 2012, 690(1-3), 226-235.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.019] [PMID: 22659112]
[71]
Ayna, A.; Özbolat, S.N.; Darendelioglu, E. Quercetin, chrysin, caffeic acid and ferulic acid ameliorate cyclophosphamide-induced toxicities in SH-SY5Y cells. Mol. Biol. Rep., 2020, 47(11), 8535-8543.
[http://dx.doi.org/10.1007/s11033-020-05896-4] [PMID: 33040267]
[72]
Toda, S. Inhibitory effects of phenylpropanoid metabolites on copper-induced protein oxidative modification of mice brain homogenate, in vitro. Biol. Trace Elem. Res., 2002, 85(2), 183-188.
[http://dx.doi.org/10.1385/BTER:85:2:183] [PMID: 11899025]
[73]
Dwivedi, S.; Singh, D.; Deshmukh, P.T.; Soni, R.; Trivedi, R. Healing potential of ferulic acid on dermal wound in diabetic animals. Asian J. Mol. Model., 2015, 1, 1.
[74]
Mi, Y.; Wang, M.; Liu, M.; Cheng, H.; Li, S. Pharmacokinetic comparative study of GAS with different concentration of tetramethylpyrazine and ferulic acid on liver-yang hyperactivity migraine model by blood-brain microdialysis method. J. Pharm. Biomed. Anal., 2020, 191, 113643.
[http://dx.doi.org/10.1016/j.jpba.2020.113643] [PMID: 33002782]
[75]
Doytchinova, I.; Atanasova, M.; Salamanova, E.; Ivanov, S.; Dimitrov, I. Curcumin inhibits the primary nucleation of amyloid-beta peptide: A molecular dynamics study. Biomolecules, 2020, 10(9), 1323.
[http://dx.doi.org/10.3390/biom10091323] [PMID: 32942739]
[76]
Ono, K.; Hirohata, M.; Yamada, M. Ferulic acid destabilizes preformed β-amyloid fibrils in vitro. Biochem. Biophys. Res. Commun., 2005, 336(2), 444-449.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.148] [PMID: 16153607]
[77]
Kim, H-S.; Cho, J.Y.; Kim, D-H.; Yan, J-J.; Lee, H-K.; Suh, H-W.; Song, D-K. Inhibitory effects of long-term administration of ferulic acid on microglial activation induced by intracerebroventricular injection of β-amyloid peptide (1-42) in mice. Biol. Pharm. Bull., 2004, 27(1), 120-121.
[http://dx.doi.org/10.1248/bpb.27.120] [PMID: 14709913]
[78]
Jagota, S.; Rajadas, J. Effect of phenolic compounds against Aβ aggregation and Aβ-induced toxicity in transgenic C. elegans. Neurochem. Res., 2012, 37(1), 40-48.
[http://dx.doi.org/10.1007/s11064-011-0580-5] [PMID: 21858698]
[79]
Goldsbury, C.; Whiteman, I.T.; Jeong, E.V.; Lim, Y-A. Oxidative stress increases levels of endogenous amyloid-β peptides secreted from primary chick brain neurons. Aging Cell, 2008, 7(5), 771-775.
[http://dx.doi.org/10.1111/j.1474-9726.2008.00423.x] [PMID: 18691184]
[80]
Mancuso, C.; Scapagini, G.; Currò, D.; Giuffrida, S.A.M.; De Marco, C.; Butterfield, D.A.; Calabrese, V. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front. Biosci., 2007, 12(1), 1107-1123.
[http://dx.doi.org/10.2741/2130] [PMID: 17127365]
[81]
Tsai, F-S.; Wu, L-Y.; Yang, S-E.; Cheng, H-Y.; Tsai, C-C.; Wu, C-R.; Lin, L-W. Ferulic acid reverses the cognitive dysfunction caused by amyloid β peptide 1-40 through anti-oxidant activity and cholinergic activation in rats. Am. J. Chin. Med., 2015, 43(2), 319-335.
[http://dx.doi.org/10.1142/S0192415X15500214] [PMID: 25807957]
[82]
Samra, G.K.; Dang, K.; Ho, H.; Baranwal, A.; Mukherjee, J. Dual targeting agents for Aβ plaque/P-glycoprotein and Aβ plaque/nicotinic acetylcholine α4β2* receptors-potential approaches to facilitate Aβ plaque removal in Alzheimer’s disease brain. Med. Chem. Res., 2018, 27(6), 1634-1646.
[http://dx.doi.org/10.1007/s00044-018-2178-9] [PMID: 29937677]
[83]
Rosini, M.; Simoni, E.; Caporaso, R.; Basagni, F.; Catanzaro, M.; Abu, I.F.; Fagiani, F.; Fusco, F.; Masuzzo, S.; Albani, D.; Lanni, C.; Mellor, I.R.; Minarini, A. Merging memantine and ferulic acid to probe connections between NMDA receptors, oxidative stress and amyloid-β peptide in Alzheimer’s disease. Eur. J. Med. Chem., 2019, 180, 111-120.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.011] [PMID: 31301562]
[84]
Yan, J.J.; Jung, J.S.; Kim, T.K.; Hasan, A.; Hong, C.W.; Nam, J.S.; Song, D.K. Protective effects of ferulic acid in amyloid precursor protein plus presenilin-1 transgenic mouse model of Alzheimer disease. Biol. Pharm. Bull., 2013, 36(1), 140-143.
[http://dx.doi.org/10.1248/bpb.b12-00798] [PMID: 23075678]
[85]
Okuda, M.; Fujita, Y.; Sugimoto, H. The additive effects of low dose intake of ferulic acid, phosphatidylserine and curcumin, not alone, improve cognitive function in APPswe/PS1dE9 transgenic mice. Biol. Pharm. Bull., 2019, 42(10), 1694-1706.
[http://dx.doi.org/10.1248/bpb.b19-00332] [PMID: 31582657]
[86]
Koh, P-O. Ferulic acid prevents the cerebral ischemic injury-induced decrease of Akt and Bad phosphorylation. Neurosci. Lett., 2012, 507(2), 156-160.
[http://dx.doi.org/10.1016/j.neulet.2011.12.012] [PMID: 22200499]
[87]
Yabe, T.; Hirahara, H.; Harada, N.; Ito, N.; Nagai, T.; Sanagi, T.; Yamada, H. Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo. Neuroscience, 2010, 165(2), 515-524.
[http://dx.doi.org/10.1016/j.neuroscience.2009.10.023] [PMID: 19837139]
[88]
Mori, T.; Koyama, N.; Guillot-Sestier, M-V.; Tan, J.; Town, T. Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and Alzheimer-like pathology in transgenic mice. PLoS One, 2013, 8(2), e55774.
[http://dx.doi.org/10.1371/journal.pone.0055774] [PMID: 23409038]
[89]
Pan, W.; Hu, K.; Bai, P.; Yu, L.; Ma, Q.; Li, T.; Zhang, X.; Chen, C.; Peng, K.; Liu, W.; Sang, Z. Design, synthesis and evaluation of novel ferulic acid-memoquin hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2016, 26(10), 2539-2543.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.086] [PMID: 27072909]
[90]
Sang, Z.; Pan, W.; Wang, K.; Ma, Q.; Yu, L.; Yang, Y.; Bai, P.; Leng, C.; Xu, Q.; Li, X.; Tan, Z.; Liu, W. Design, synthesis and evaluation of novel ferulic acid-O-alkylamine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 130, 379-392.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.039] [PMID: 28279845]
[91]
Benchekroun, M.; Ismaili, L.; Pudlo, M.; Luzet, V.; Gharbi, T.; Refouvelet, B.; Marco-Contelles, J. Donepezil-ferulic acid hybrids as anti-Alzheimer drugs. Future Med. Chem., 2015, 7(1), 15-21.
[http://dx.doi.org/10.4155/fmc.14.148] [PMID: 25582330]
[92]
Benchekroun, M.; Bartolini, M.; Egea, J.; Romero, A.; Soriano, E.; Pudlo, M.; Luzet, V.; Andrisano, V.; Jimeno, M.L.; López, M.G.; Wehle, S.; Gharbi, T.; Refouvelet, B.; de Andrés, L.; Herrera-Arozamena, C.; Monti, B.; Bolognesi, M.L.; Rodríguez-Franco, M.I.; Decker, M.; Marco-Contelles, J.; Ismaili, L. Novel tacrine- grafted Ugi adducts as multipotent anti-Alzheimer drugs: A synthetic renewal in tacrine-ferulic acid hybrids. ChemMedChem, 2015, 10(3), 523-539.
[http://dx.doi.org/10.1002/cmdc.201402409] [PMID: 25537267]
[93]
Tripathi, A.; Choubey, P.K.; Sharma, P.; Seth, A.; Saraf, P.; Shrivastava, S.K. Design, synthesis, and biological evaluation of ferulic acid based 1,3,4-oxadiazole hybrids as multifunctional therapeutics for the treatment of Alzheimer’s disease. Bioorg. Chem., 2020, 95, 103506.
[http://dx.doi.org/10.1016/j.bioorg.2019.103506] [PMID: 31887472]
[94]
Pachón-Angona, I.; Martin, H.; Chhor, S.; Oset-Gasque, M-J.; Refouvelet, B.; Marco-Contelles, J.; Ismaili, L. Synthesis of new ferulic/lipoic/comenic acid-melatonin hybrids as antioxidants and Nrf2 activators via Ugi reaction. Future Med. Chem., 2019, 11(24), 3097-3108.
[http://dx.doi.org/10.4155/fmc-2019-0191] [PMID: 31838896]
[95]
Mori, T.; Koyama, N.; Tan, J.; Segawa, T.; Maeda, M.; Town, T. Combined treatment with the phenolics (-)-epigallocatechin-3-gallate and ferulic acid improves cognition and reduces Alzheimer- like pathology in mice. J. Biol. Chem., 2019, 294(8), 2714-2731.
[http://dx.doi.org/10.1074/jbc.RA118.004280] [PMID: 30563837]
[96]
Jung, J.S.; Yan, J.J.; Li, H.M.; Sultan, M.T.; Yu, J.; Lee, H.S.; Shin, K.J.; Song, D.K. Protective effects of a dimeric derivative of ferulic acid in animal models of Alzheimer’s disease. Eur. J. Pharmacol., 2016, 782, 30-34.
[http://dx.doi.org/10.1016/j.ejphar.2016.04.047] [PMID: 27118174]
[97]
Lan, J-S.; Zeng, R-F.; Jiang, X-Y.; Hou, J.W.; Liu, Y.; Hu, Z-H.; Li, H-X.; Li, Y.; Xie, S-S.; Ding, Y.; Zhang, T. Design, synthesis and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Bioorg. Chem., 2020, 94, 103413.
[http://dx.doi.org/10.1016/j.bioorg.2019.103413] [PMID: 31791679]
[98]
Sang, Z.; Wang, K.; Han, X.; Cao, M.; Tan, Z.; Liu, W. Design, synthesis, and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(2), 1008-1024.
[http://dx.doi.org/10.1021/acschemneuro.8b00530] [PMID: 30537804]
[99]
Xu, W.; Wang, X.B.; Wang, Z.M.; Wu, J.J.; Li, F.; Wang, J.; Kong, L.Y. Synthesis and evaluation of donepezil-ferulic acid hybrids as multi-target-directed ligands against Alzheimer’s disease. MedChemComm, 2016, 7(5), 990-998.
[http://dx.doi.org/10.1039/C6MD00053C]
[100]
He, X.X.; Yang, X.H.; Ou, R.Y.; Ouyang, Y.; Wang, S.N.; Chen, Z.W.; Wen, S.J.; Pi, R.B. Synthesis and evaluation of multifunctional ferulic and caffeic acid dimers for Alzheimer’s disease. Nat. Prod. Res., 2017, 31(6), 734-737.
[http://dx.doi.org/10.1080/14786419.2016.1219862] [PMID: 27531418]
[101]
Mo, J.; Yang, H.; Chen, T.; Li, Q.; Lin, H.; Feng, F.; Liu, W.; Qu, W.; Guo, Q.; Chi, H.; Chen, Y.; Sun, H. Design, synthesis, biological evaluation, and molecular modeling studies of quinoline-ferulic acid hybrids as cholinesterase inhibitors. Bioorg. Chem., 2019, 93, 103310.
[http://dx.doi.org/10.1016/j.bioorg.2019.103310] [PMID: 31586704]
[102]
Zhu, J.; Yang, H.; Chen, Y.; Lin, H.; Li, Q.; Mo, J.; Bian, Y.; Pei, Y.; Sun, H. Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 496-506.
[http://dx.doi.org/10.1080/14756366.2018.1430691] [PMID: 29405075]
[103]
Huang, W-Y.; Chao, X-J.; Ouyang, Y.; Liu, A-M.; He, X-X.; Chen, M-H.; Wang, L-H.; Liu, J.; Yu, S-W.; Rapposelli, S.; Pi, R.B. Tacrine-6-ferulic acid, a novel multifunctional dimer against Alzheimer’s disease, prevents oxidative stress-induced neuronal death through activating Nrf2/ARE/HO-1 pathway in HT22 cells. CNS Neurosci. Ther., 2012, 18(11), 950-951.
[http://dx.doi.org/10.1111/cns.12010] [PMID: 23106978]
[104]
Fonseca-Santos, B.; Gremião, M.P.; Chorilli, M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2015, 10, 4981-5003.
[http://dx.doi.org/10.2147/IJN.S87148] [PMID: 26345528]
[105]
Sozio, P.; Marinelli, L.; Cacciatore, I.; Fontana, A.; Türkez, H.; Giorgioni, G.; Ambrosini, D.; Barbato, F.; Grumetto, L.; Pacella, S.; Cataldi, A.; Di Stefano, A. New flurbiprofen derivatives: synthesis, membrane affinity and evaluation of in vitro effect on β-amyloid levels. Molecules, 2013, 18(9), 10747-10767.
[http://dx.doi.org/10.3390/molecules180910747] [PMID: 24005968]
[106]
Re, F.; Gregori, M.; Masserini, M. Nanotechnology for neurodegenerative disorders. Nanomedicine, 2012, 8(Suppl. 1), S51-S58.
[http://dx.doi.org/10.1016/j.nano.2012.05.007] [PMID: 22640910]
[107]
Siddiqi, K.S.; Husen, A.; Sohrab, S.S.; Yassin, M.O. Recent status of nanomaterial fabrication and their potential applications in neurological disease management. Nanoscale Res. Lett., 2018, 13(1), 231.
[http://dx.doi.org/10.1186/s11671-018-2638-7] [PMID: 30097809]
[108]
Laserra, S.; Basit, A.; Sozio, P.; Marinelli, L.; Fornasari, E.; Cacciatore, I.; Ciulla, M.; Türkez, H.; Geyikoglu, F.; Di Stefano, A. Solid lipid nanoparticles loaded with lipoyl-memantine codrug: Preparation and characterization. Int. J. Pharm., 2015, 485(1-2), 183-191.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.001] [PMID: 25747452]
[109]
Crescenzo, A.D.; Cacciatore, I.; Petrini, M.; D’Alessandro, M.; Petragnani, N.; Boccio, P.D.; Profio, P.D.; Boncompagni, S.; Spoto, G.; Turkez, H.; Ballerini, P.; Stefano, A.D.; Fontana, A. Gold nanoparticles as scaffolds for poor water soluble and difficult to vehiculate antiparkinson codrugs. Nanotechnology, 2017, 28(2), 025102.
[http://dx.doi.org/10.1088/1361-6528/28/2/025102] [PMID: 27922827]
[110]
Huang, W.J.; Zhang, X.; Chen, W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep., 2016, 4(5), 519-522.
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[111]
Hassanzadeh, P.; Arbabi, E.; Atyabi, F.; Dinarvand, R. Ferulic acid-loaded nanostructured lipid carriers: A promising nanoformulation against the ischemic neural injuries. Life Sci., 2018, 193, 64-76.
[http://dx.doi.org/10.1016/j.lfs.2017.11.046] [PMID: 29196052]
[112]
Sivaraj, R.; Rahman, P.K.S.M.; Rajiv, P.; Narendhran, S.; Venckatesh, R. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 129, 255-258.
[http://dx.doi.org/10.1016/j.saa.2014.03.027] [PMID: 24747845]
[113]
Almuhayawi, M.S.; Ramadan, W.S.; Harakeh, S.; Al Jaouni, S.K.; Bharali, D.J.; Mousa, S.A.; Almuhayawi, S.M. The potential role of pomegranate and its nano-formulations on cerebral neurons in aluminum chloride induced Alzheimer rat model. Saudi J. Biol. Sci., 2020, 27(7), 1710-1716.
[http://dx.doi.org/10.1016/j.sjbs.2020.04.045] [PMID: 32565686]
[114]
Kheradmand, E.; Hajizadeh Moghaddam, A.; Zare, M. Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer’s disease. Biomed. Pharmacother., 2018, 97, 1096-1101.
[http://dx.doi.org/10.1016/j.biopha.2017.11.047] [PMID: 29136946]
[115]
Zaki, S.M.; Algaleel, W.A.A.; Imam, R.A.; Soliman, G.F.; Ghoneim, F.M. Nano-curcumin versus curcumin in amelioration of deltamethrin-induced hippocampal damage. Histochem. Cell Biol., 2020, 154(2), 157-175.
[http://dx.doi.org/10.1007/s00418-020-01871-z] [PMID: 32227291]
[116]
Harwansh, R.K.; Mukherjee, P.K.; Bahadur, S.; Biswas, R. Enhanced permeability of ferulic acid loaded nanoemulsion based gel through skin against UVA mediated oxidative stress. Life Sci., 2015, 141, 202-211.
[http://dx.doi.org/10.1016/j.lfs.2015.10.001] [PMID: 26437269]
[117]
Gupta, K.M.; Das, S.; Chow, P.S.; Macbeath, C. Encapsulation of ferulic acid in lipid nanoparticles as antioxidant for skin: Mechanistic understanding through experiment and molecular simulation. ACS Appl. Nano Mater., 2020, 3(6), 5351-5361.
[http://dx.doi.org/10.1021/acsanm.0c00717]
[118]
Bairagi, U.; Mittal, P.; Singh, J.; Mishra, B. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing. Drug Dev. Ind. Pharm., 2018, 44(11), 1783-1796.
[http://dx.doi.org/10.1080/03639045.2018.1496448] [PMID: 29973105]
[119]
Zheng, Y.; You, X.; Chen, L.; Huang, J.; Wang, L.; Wu, J.; Guan, S. Biotherapeutic nanoparticles of poly(ferulic Acid) delivering doxorubicin for cancer therapy. J. Biomed. Nanotechnol., 2019, 15(8), 1734-1743.
[http://dx.doi.org/10.1166/jbn.2019.2798] [PMID: 31219014]
[120]
Rezaeiroshan, A.; Saeedi, M.; Morteza-Semnani, K.; Akbari, J.; Gahsemi, M.; Nokhodchi, A. Development of trans-ferulic acid niosome: An optimization and an in-vivo Study. J. Drug Deliv. Sci. Technol., 2020, 59, 101854.
[http://dx.doi.org/10.1016/j.jddst.2020.101854]
[121]
Thakkar, A.; Chenreddy, S.; Wang, J.; Prabhu, S. Ferulic acid combined with aspirin demonstrates chemopreventive potential towards pancreatic cancer when delivered using chitosan-coated solid-lipid nanoparticles. Cell Biosci., 2015, 5(1), 46.
[http://dx.doi.org/10.1186/s13578-015-0041-y] [PMID: 26301084]
[122]
Komatsu, M.; Waguri, S.; Chiba, T.; Murata, S.; Iwata, J.; Tanida, I.; Ueno, T.; Koike, M.; Uchiyama, Y.; Kominami, E.; Tanaka, K. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 2006, 441(7095), 880-884.
[http://dx.doi.org/10.1038/nature04723] [PMID: 16625205]
[123]
Bredesen, D.E.; Rao, R.V.; Mehlen, P. Cell death in the nervous system. Nature, 2006, 443(7113), 796-802.
[http://dx.doi.org/10.1038/nature05293] [PMID: 17051206]
[124]
Winner, B.; Kohl, Z.; Gage, F.H. Neurodegenerative disease and adult neurogenesis. Eur. J. Neurosci., 2011, 33(6), 1139-1151.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07613.x] [PMID: 21395858]
[125]
Pickford, F.; Masliah, E.; Britschgi, M.; Lucin, K.; Narasimhan, R.; Jaeger, P.A.; Small, S.; Spencer, B.; Rockenstein, E.; Levine, B.; Wyss-Coray, T. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J. Clin. Invest., 2008, 118(6), 2190-2199.
[http://dx.doi.org/10.1172/JCI33585] [PMID: 18497889]
[126]
Papassotiropoulos, A.; Bagli, M.; Kurz, A.; Kornhuber, J.; Förstl, H.; Maier, W.; Pauls, J.; Lautenschlager, N.; Heun, R. A genetic variation of cathepsin D is a major risk factor for Alzheimer’s disease. Ann. Neurol., 2000, 47(3), 399-403.
[http://dx.doi.org/10.1002/1531-8249(200003)47:3399::AID-ANA223.0.CO;2-5] [PMID: 10716266]
[127]
Ando, K.; Brion, J-P.; Stygelbout, V.; Suain, V.; Authelet, M.; Dedecker, R.; Chanut, A.; Lacor, P.; Lavaur, J.; Sazdovitch, V.; Rogaeva, E.; Potier, M.C.; Duyckaerts, C. Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer’s brains. Acta Neuropathol., 2013, 125(6), 861-878.
[http://dx.doi.org/10.1007/s00401-013-1111-z] [PMID: 23589030]
[128]
Boland, B.; Yu, W.H.; Corti, O.; Mollereau, B.; Henriques, A.; Bezard, E.; Pastores, G.M.; Rubinsztein, D.C.; Nixon, R.A.; Duchen, M.R.; Mallucci, G.R.; Kroemer, G.; Levine, B.; Eskelinen, E.L.; Mochel, F.; Spedding, M.; Louis, C.; Martin, O.R.; Millan, M.J. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat. Rev. Drug Discov., 2018, 17(9), 660-688.
[http://dx.doi.org/10.1038/nrd.2018.109] [PMID: 30116051]
[129]
Anis, E.; Zafeer, M.F.; Firdaus, F.; Islam, S.N.; Anees Khan, A.; Ali, A.; Hossain, M.M. Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6-hydroxydopamine lesioned rats. Phytother. Res., 2020, 34(1), 214-226.
[http://dx.doi.org/10.1002/ptr.6523] [PMID: 31657074]
[130]
Correia, S.C.; Santos, R.X.; Cardoso, S.; Carvalho, C.; Candeias, E.; Duarte, A.I.; Plácido, A.I.; Santos, M.S.; Moreira, P.I. Alzheimer disease as a vascular disorder: where do mitochondria fit? Exp. Gerontol., 2012, 47(11), 878-886.
[http://dx.doi.org/10.1016/j.exger.2012.07.006] [PMID: 22824543]
[131]
Carvalho, C.; Correia, S.C.; Cardoso, S.; Plácido, A.I.; Candeias, E.; Duarte, A.I.; Moreira, P.I. The role of mitochondrial disturbances in Alzheimer, Parkinson and Huntington diseases. Expert Rev. Neurother., 2015, 15(8), 867-884.
[http://dx.doi.org/10.1586/14737175.2015.1058160] [PMID: 26092668]
[132]
Chen, Z.; Zhong, C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. Prog. Neurobiol., 2013, 108, 21-43.
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.004] [PMID: 23850509]
[133]
Manczak, M.; Reddy, P.H. Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer’s disease. Hum. Mol. Genet., 2012, 21(23), 5131-5146.
[http://dx.doi.org/10.1093/hmg/dds360] [PMID: 22926141]
[134]
Manczak, M.; Reddy, P.H. ABAD directly links a to mitochondrial toxicity in Alzheimer’s disease. Hum. Mol. Genet., 2012, 21(23), 5131-5146.
[http://dx.doi.org/10.1093/hmg/dds360] [PMID: 22926141]
[135]
Manczak, M.; Reddy, P.H. Accumulation of amyloid precursor protein in the mitochondrial import channels of human alzheimer’s disease brain is associated with mitochondrial dysfunction. Hum. Mol. Genet., 2012, 21(23), 5131-5146.
[http://dx.doi.org/10.1093/hmg/dds360] [PMID: 22926141]
[136]
Manczak, M.; Reddy, P.H. Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. Hum. Mol. Genet., 2012, 21(23), 5131-5146.
[http://dx.doi.org/10.1093/hmg/dds360] [PMID: 22926141]
[137]
Nunomura, A.; Perry, G.; Aliev, G.; Hirai, K.; Takeda, A.; Balraj, E.K.; Jones, P.K.; Ghanbari, H.; Wataya, T.; Shimohama, S.; Chiba, S.; Atwood, C.S.; Petersen, R.B.; Smith, M.A. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol., 2001, 60(8), 759-767.
[http://dx.doi.org/10.1093/jnen/60.8.759] [PMID: 11487050]
[138]
Hardingham, G.E.; Fukunaga, Y.; Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci., 2002, 5(5), 405-414.
[http://dx.doi.org/10.1038/nn835] [PMID: 11953750]
[139]
Müller, M.K.; Jacobi, E.; Sakimura, K.; Malinow, R.; von Engelhardt, J. NMDA receptors mediate synaptic depression, but not spine loss in the dentate gyrus of adult amyloid beta (Aβ) overexpressing mice. Acta Neuropathol. Commun., 2018, 6(1), 110.
[http://dx.doi.org/10.1186/s40478-018-0611-4] [PMID: 30352630]
[140]
Lipton, S.A. NMDA receptor activity regulates transcription of antioxidant pathways. Nat. Neurosci., 2008, 11(4), 381-382.
[http://dx.doi.org/10.1038/nn0408-381] [PMID: 18368041]
[141]
Lanni, C.; Fagiani, F.; Racchi, M.; Preda, S.; Pascale, A.; Grilli, M.; Allegri, N.; Govoni, S. Beta-amyloid short- and long-term synaptic entanglement. Pharmacol. Res., 2019, 139, 243-260.
[http://dx.doi.org/10.1016/j.phrs.2018.11.018] [PMID: 30471405]
[142]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(Database issue), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy