Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Short Communication

Transition Metal Catalyst, Solvent, Base Free Synthesis of Diaryl Diselenides under Mechanical Ball Milling

Author(s): Debasish Kundu*, Anup Roy and Subir Panja

Volume 19, Issue 4, 2022

Published on: 01 March, 2022

Page: [477 - 483] Pages: 7

DOI: 10.2174/1570179419666211224144932

Price: $65

Abstract

A convenient, efficient, and general procedure for the synthesis of diaryl diselenides has been developed by the reaction of aryl diazonium tetrafluoroborates and potassium selenocyanate on the surface of alumina under ball-milling in the absence of any solvent, transition metal catalyst, and base in room temperature. A wide range of functionalized diaryl diselenides are obtained in high purity and high yield by this procedure.

Background: Synthesis of diaryl diselenides was restricted into only a few Cu-catalyzed C-Se cross-coupling protocols where the use of ligands, high reaction temp, long reaction time were required.

Objectives: The objective of this study is to achieve a sustainable protocol for the synthesis of diaryl diselenides.

Method: Reaction of aryl diazonium fluoroborate with KSeCN was successfully performed under ball milling in the absence of any transition metal catalyst, ligands, base, and external heating to get diaryl diselenides.

Results: A library of diaryl diselenides were obtained in good yields with different functional groups.

Conclusion: First transition metal free protocol for the synthesis of diaryl diselenides has been developed successfully.

Keywords: Diaryl selenides, phenyl selenocyanate, diazonium salts, ball milling, green chemistry, transition metal catalysis.

Next »
Graphical Abstract

[1]
Braga, A.L.; Alberto, E.E.; Soares, L.C.; Rocha, J.B.; Sudati, J.H.; Roos, D.H. Synthesis of telluroamino acid derivatives with remarkable GPx like activity. Org. Biomol. Chem., 2009, 7(1), 43-45.
[http://dx.doi.org/10.1039/B814990A] [PMID: 19081943]
[2]
Mugesh, G.; Panda, A.; Singh, H.B.; Punekar, N.S.; Butcher, R.J. Glutathione peroxidase-like antioxidant activity of diaryl diselenides: a mechanistic study. J. Am. Chem. Soc., 2001, 123(5), 839-850.
[http://dx.doi.org/10.1021/ja994467p] [PMID: 11456617]
[3]
Iwaoka, M.; Tomoda, S. A Model Study on the Effect of an Amino Group on the Antioxidant Activity of Glutathione Peroxidase. J. Am. Chem. Soc., 1994, 116, 2557-2561.
[http://dx.doi.org/10.1021/ja00085a040]
[4]
Wirth, T. Chiral selenium compounds in organic synthesis. Tetrahedron, 1999, 55, 1-28.
[http://dx.doi.org/10.1016/S0040-4020(98)00946-6]
[5]
Wirth, T. Organoselenium Chemistry - Modern Developments in Organic Synthesis; Springer- Verlag: Heidelberg, 2000.
[6]
Freudendahl, D.M.; Santoro, S.; Shahzad, S.A.; Santi, C.; Wirth, T. Green chemistry with selenium reagents: development of efficient catalytic reactions. Angew. Chem. Int. Ed. Engl., 2009, 48(45), 8409-8411.
[http://dx.doi.org/10.1002/anie.200903893] [PMID: 19802863]
[7]
Beletskaya, I.P.; Ananikov, V.P. Transition-Metal-Catalyzed CS, CSe, and CTe Bond Formation via Cross-Coupling and Atom-Economic Addition Reactions. Chem. Rev., 2011, 111, 1596-1636.
[8]
Barcellos, A.M.; Sacramento, M.; da Cost, G.P.; Lenardao, E.J. Alves, Organoboron compounds as versatile reagents in the transition metal-catalyzed C–S, C–Se and C–Te bond formation. D. Coord. Chem. Rev., 2021, 441214012
[http://dx.doi.org/10.1016/j.ccr.2021.214012]
[9]
Wang, X-Y.; Zhong, Y-F.; Mo, Z-Y.; Wu, S-H.; Xu, Y-L.; Tang, H-T.; Pan, Y-M. synthesis of seleno oxindoles via electrochemical cyclization of n-arylacrylamides with diorganyl diselenides. Adv. Synth. Catal., 2021, 363, 208-214.
[http://dx.doi.org/10.1002/adsc.202001192]
[10]
Li, H.; Liao, L.; Zhao, X. Organoselenium-Catalyzed Aza-Wacker Reactions: Efficient Access to Isoquinolinium Imides and an Isoquinoline N-Oxide. Synlett, 2019, 30, 1688-1692.
[http://dx.doi.org/10.1055/s-0039-1690103]
[11]
Meng, X-J.; Zhong, P-F.; Wang, Y-M.; Wang, H-S.; Tang, H-T.; Pan, Y-M. electrochemical difunctionalization of olefines: access to selenomethyl-substituted cyclic ethers or lactones. Adv. Synth. Catal., 2020, 362, 506-511.
[http://dx.doi.org/10.1002/adsc.201901115]
[12]
Cui, F-H.; Chen, J.; Mo, Z-Y.; Su, S-X.; Chen, Y-Y.; Ma, X-L.; Tang, H-T.; Wang, H-S.; Pan, Y-M.; Xu, Y-L. copper-catalyzed decarboxylative/click cascade reaction: regioselective assembly of 5-selenotriazole anticancer agents. Org. Lett., 2018, 20(4), 925-929.
[http://dx.doi.org/10.1021/acs.orglett.7b03734] [PMID: 29388780]
[13]
Guo, R.; Huang, J.; Zhao, X. organoselenium-catalyzed oxidative allylic fluorination with electrophilic n–f reagent. ACS Catal., 2018, 8, 926-930.
[http://dx.doi.org/10.1021/acscatal.7b03829]
[14]
Kundu, K. Synthetic strategies for aryl/heterocyclic selenides and tellurides under transition-metal-catalyst free conditions. RSC Advances, 2021, 11, 6682-6698.
[http://dx.doi.org/10.1039/D0RA10629A]
[15]
Singh, D.; Deobald, A.M.; Camargo, L.R.S.; Tabarelli, G.; Rodrigues, O.E.D.; Braga, A.L. An efficient one-pot synthesis of symmetrical diselenides or ditellurides from halides with CuO nanopowder/Se0 or Te0/base. Org. Lett., 2010, 12(15), 3288-3291.
[http://dx.doi.org/10.1021/ol100558b] [PMID: 20586442]
[16]
Taniguchi, N. Copper-catalyzed chalcogenation of aryl iodides via reduction of chalcogen elements by aluminum or magnesium. Tetrahedron, 2012, 68, 10510-10515.
[http://dx.doi.org/10.1016/j.tet.2012.09.019]
[17]
Li, Z.; Ke, F.; Deng, H.; Xu, H.; Xiang, H.; Zhou, X. Synthesis of disulfides and diselenides by copper-catalyzed coupling reactions in water. Org. Biomol. Chem., 2013, 11(18), 2943-2946.
[http://dx.doi.org/10.1039/c3ob40464a] [PMID: 23538860]
[18]
Beigi, M.S.; Yavari, I.; Sadeghizadeh, F. The direct synthesis of symmetrical disulfides and diselenides by metal–organic framework MOF-199 as an efficient heterogenous catalyst. RSC Advances, 2015, 5, 87564-87570.
[http://dx.doi.org/10.1039/C5RA16879A]
[19]
James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P. Friščić,T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A.G.; Parkin, I.P.; Shearouse, W.C.; Steed, J.W.; Waddell, D.C. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev., 2012, 41(1), 413-447.
[http://dx.doi.org/10.1039/C1CS15171A] [PMID: 21892512]
[20]
Stolle, A.; Szuppa, T.; Leonhardt, S.E.S.; Ondruschka, B. Ball milling in organic synthesis: solutions and challenges. Chem. Soc. Rev., 2011, 40(5), 2317-2329.
[http://dx.doi.org/10.1039/c0cs00195c] [PMID: 21387034]
[21]
Rodriguez, B.; Bruckmann, A.; Rantanen, T.; Bolm, C. solvent-free carbon-carbon bond formations in ball mills. Adv. Synth. Catal., 2007, 349, 2213-2233.
[http://dx.doi.org/10.1002/adsc.200700252]
[22]
Schmidt, R.; Thorwirth, R.; Szuppa, T.; Stolle, A.; Ondruschka, B.; Hopf, H. Fast, ligand- and solvent-free synthesis of 1,4-substituted buta-1,3-diynes by Cu-catalyzed homocoupling of terminal alkynes in a ball mill. Chemistry, 2011, 17(29), 8129-8138.
[http://dx.doi.org/10.1002/chem.201100604] [PMID: 21626591]
[23]
Thorwirth, R.; Stolle, A.; Ondruschka, B. Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill. Green Chem., 2010, 12, 985-991.
[http://dx.doi.org/10.1039/c000674b]
[24]
Ze, Z. -Wei, D. Y; –Wu, W. G.; Koichi, K. mechanochemical michael reactions of chalcones and azachalcones with ethyl acetoacetate catalyzed by k2co3 under solvent-free conditions. Chem. Lett., 2004, 33, 168-169.
[http://dx.doi.org/10.1246/cl.2004.168]
[25]
Hernandez, J.G.; Juaristi, E. Efficient ball-mill procedure in the ‘green’ asymmetric aldol reaction organocatalyzed by (S)-proline-containing dipeptides in the presence of water. Tetrahedron, 2011, 67, 6953-6959.
[http://dx.doi.org/10.1016/j.tet.2011.06.042]
[26]
Shao, Q.L.; Jiang, Z.J.; Su, W.K. Solvent-free mechanochemical Buchwald-Hartwig amination of aryl chlorides without inert gas protection. Tetrahedron Lett., 2018, 59, 2277-2280.
[http://dx.doi.org/10.1016/j.tetlet.2018.04.078]
[27]
Cao, Q.; Nicholson, W.; Jones, A.C. Robust Buchwald–Hartwig amination enabled by ball-milling. Org. Biomol. Chem., 2019, 17, 1722-1726.
[28]
Chatterjee, T.; Saha, D.; Ranu, B.C. Solvent-free transesterification in a ball-mill over alumina surface. Tetrahedron Lett., 2012, 53, 4142-4144.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.127]
[29]
Jones, A.C.; Nicholson, W.I.; Smallman, H.R.; Browne, D.L. A robust pd-catalyzed c-s cross-coupling process enabled by ball-milling. Org. Lett., 2020, 22(19), 7433-7438.
[http://dx.doi.org/10.1021/acs.orglett.0c02418] [PMID: 32941045]
[30]
Mukherjee, N.; Chatterjee, T.; Ranu, B.C. Transition metal- and solvent-free synthesis of unsymmetrical diaryl sulfides and selenides under ball-milling. ARKIVOC, 2016, 53-61.
[31]
Kubota, K.; Ito, H. Mechanochemical Cross-Coupling Reactions. Trends Chem., 2020, 2, 1066-1081.
[http://dx.doi.org/10.1016/j.trechm.2020.09.006]
[32]
Krief, A.; Dumont, W.; Delmotte, C. Reaction of selenocyanates with hydroxides: The one-pot synthesis of dialkyl diselenides from alkyl bromides. Angew. Chem. Int. Ed. Engl., 2000, 39(9), 1669-1672.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000502)39:9<1669:AID-ANIE1669>3.0.CO;2-6] [PMID: 10820472]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy