Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Biomedical Perspectives of Acute and Chronic Neurological and Neuropsychiatric Sequelae of COVID-19

Author(s): George B. Stefano*, Pascal Büttiker, Simon Weissenberger, Radek Ptacek, Fuzhou Wang, Tobias Esch, Thomas V. Bilfinger, Jiri Raboch and Richard M. Kream

Volume 20, Issue 6, 2022

Published on: 24 February, 2022

Page: [1229 - 1240] Pages: 12

DOI: 10.2174/1570159X20666211223130228

open access plus

Abstract

The incidence of infections from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent for coronavirus disease 2019 (COVID-19), has dramatically escalated following the initial outbreak in China, in late 2019, resulting in a global pandemic with millions of deaths. Although the majority of infected patients survive, and the rapid advent and deployment of vaccines have afforded increased immunity against SARS-CoV-2, long-term sequelae of SARS-CoV-2 infection have become increasingly recognized. These include, but are not limited to, chronic pulmonary disease, cardiovascular disorders, and proinflammatory-associated neurological dysfunction that may lead to psychological and neurocognitive impairment. A major component of cognitive dysfunction is operationally categorized as “brain fog” which comprises difficulty concentrating, forgetfulness, confusion, depression, and fatigue. Multiple parameters associated with long-term neuropsychiatric sequelae of SARS-CoV-2 infection have been detailed in clinical studies. Empirically elucidated mechanisms associated with the neuropsychiatric manifestations of COVID-19 are by nature complex, but broad-based working models have focused on mitochondrial dysregulation, leading to systemic reductions of metabolic activity and cellular bioenergetics within the CNS structures. Multiple factors underlying the expression of brain fog may facilitate future pathogenic insults, leading to repetitive cycles of viral and bacterial propagation. Interestingly, diverse neurocognitive sequelae associated with COVID-19 are not dissimilar from those observed in other historical pandemics, thereby providing a broad and integrative perspective on potential common mechanisms of CNS dysfunction subsequent to viral infection. Poor mental health status may be reciprocally linked to compromised immune processes and enhanced susceptibility to infection by diverse pathogens. By extrapolation, we contend that COVID-19 may potentiate the severity of neurological/neurocognitive deficits in patients afflicted by well-studied neurodegenerative disorders, such as Alzheimer's disease and Parkinson’s disease. Accordingly, the prevention, diagnosis, and management of sustained neuropsychiatric manifestations of COVID-19 are pivotal health care directives and provide a compelling rationale for careful monitoring of infected patients, as early mitigation efforts may reduce short- and long-term complications.

Keywords: Central nervous system, neuroinflammation, neuropsychiatric disease, mitochondria, microglia, SARS-CoV-2, COVID-19, long COVID, cognitive impairment, brain fog, depression, anxiety.

Graphical Abstract

[1]
Ramos-Casals, M.; Brito-Zerón, P.; Mariette, X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat. Rev. Rheumatol., 2021, 17(6), 315-332.
[http://dx.doi.org/10.1038/s41584-021-00608-z] [PMID: 33903743]
[2]
Li, H.; Xiao, X.; Zhang, J.; Zafar, M.I.; Wu, C.; Long, Y.; Lu, W.; Pan, F.; Meng, T.; Zhao, K.; Zhou, L.; Shen, S.; Liu, L.; Liu, Q.; Xiong, C. Impaired spermatogenesis in COVID-19 patients. EClinicalMedicine, 2020, 28, 100604.
[http://dx.doi.org/10.1016/j.eclinm.2020.100604] [PMID: 33134901]
[3]
Singal, C.M.S.; Jaiswal, P.; Seth, P. SARS-CoV-2, More than a respiratory virus: its potential role in neuropathogenesis. ACS Chem. Neurosci., 2020, 11(13), 1887-1899.
[http://dx.doi.org/10.1021/acschemneuro.0c00251] [PMID: 32491829]
[4]
Chou, S.H.; Beghi, E.; Helbok, R.; Moro, E.; Sampson, J.; Altamirano, V.; Mainali, S.; Bassetti, C.; Suarez, J.I.; McNett, M. Global incidence of neurological manifestations among patients hospitalized with COVID-19-a report for the GCS-Neuro COVID consortium and the ENERGY consortium. JAMA Netw. Open, 2021, 4(5), e2112131.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.12131] [PMID: 33974053]
[5]
Wang, F.; Kream, R.M.; Stefano, G.B. Long-term respiratory and neurological sequelae of COVID-19. Med. Sci. Monit., 2020, 26, e928996.
[http://dx.doi.org/10.12659/MSM.928996] [PMID: 33177481]
[6]
Tong, D.M.; Zhou, Y.T.; Wang, Y.W. COVID-19-associated acute brain dysfunction related to sepsis. J. Clin. Med. Res., 2021, 13(2), 82-91.
[http://dx.doi.org/10.14740/jocmr4437] [PMID: 33747322]
[7]
Carfì, A.; Bernabei, R.; Landi, F.; Gemelli Against, C-P-A.C.S.G. Persistent symptoms in patients after acute COVID-19. JAMA, 2020, 324(6), 603-605.
[http://dx.doi.org/10.1001/jama.2020.12603] [PMID: 32644129]
[8]
Correa-Palacio, A.F.; Hernandez-Huerta, D.; Gómez-Arnau, J.; Loeck, C.; Caballero, I. Affective psychosis after COVID-19 infection in a previously healthy patient: a case report. Psychiatry Res., 2020, 290, 113115.
[http://dx.doi.org/10.1016/j.psychres.2020.113115] [PMID: 32512352]
[9]
Ptacek, R.; Ptackova, H.; Martin, A.; Stefano, G.B. Psychiatric manifestations of COVID-19 and their social significance. Med. Sci. Monit., 2020, 26, e930340.
[http://dx.doi.org/10.12659/MSM.930340] [PMID: 33323916]
[10]
Epstein, D.; Andrawis, W.; Lipsky, A.M.; Ziad, H.A.; Matan, M. Anxiety and suicidality in a hospitalized patient with COVID-19 infection. Eur. J. Case Rep. Intern. Med., 2020, 7(5), 001651.
[http://dx.doi.org/10.12890/2020_001651] [PMID: 32399450]
[11]
Mawhinney, J.A.; Wilcock, C.; Haboubi, H.; Roshanzamir, S. Neurotropism of SARS-CoV-2: COVID-19 presenting with an acute manic episode. BMJ Case Rep., 2020, 13(6), e236123.
[http://dx.doi.org/10.1136/bcr-2020-236123] [PMID: 32540882]
[12]
Stefano, G.B. Historical insight into infections and disorders associated with neurological and psychiatric sequelae similar to long COVID. Med. Sci. Monit., 2021, 27, e931447.
[http://dx.doi.org/10.12659/MSM.931447] [PMID: 33633106]
[13]
Maury, A.; Lyoubi, A.; Peiffer-Smadja, N.; de Broucker, T.; Meppiel, E. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: A narrative review for clinicians. Rev. Neurol. (Paris), 2021, 177(1-2), 51-64.
[http://dx.doi.org/10.1016/j.neurol.2020.10.001] [PMID: 33446327]
[14]
Llorente Ayuso, L.; Torres Rubio, P.; Beijinho do Rosário, R.F.; Giganto Arroyo, M.L.; Sierra-Hidalgo, F. Bickerstaff encephalitis after COVID-19. J. Neurol., 2021, 268(6), 2035-2037.
[http://dx.doi.org/10.1007/s00415-020-10201-1] [PMID: 32880723]
[15]
Kremer, S.; Lersy, F.; de Sèze, J.; Ferré, J.C.; Maamar, A.; Carsin-Nicol, B.; Collange, O.; Bonneville, F.; Adam, G.; Martin-Blondel, G.; Rafiq, M.; Geeraerts, T.; Delamarre, L.; Grand, S.; Krainik, A.; Caillard, S.; Constans, J.M.; Metanbou, S.; Heintz, A.; Helms, J.; Schenck, M.; Lefèbvre, N.; Boutet, C.; Fabre, X.; Forestier, G.; de Beaurepaire, I.; Bornet, G.; Lacalm, A.; Oesterlé, H.; Bolognini, F.; Messié, J.; Hmeydia, G.; Benzakoun, J.; Oppenheim, C.; Bapst, B.; Megdiche, I.; Henry Feugeas, M.C.; Khalil, A.; Gaudemer, A.; Jager, L.; Nesser, P.; Talla Mba, Y.; Hemmert, C.; Feuerstein, P.; Sebag, N.; Carré, S.; Alleg, M.; Lecocq, C.; Schmitt, E.; Anxionnat, R.; Zhu, F.; Comby, P.O.; Ricolfi, F.; Thouant, P.; Desal, H.; Boulouis, G.; Berge, J.; Kazémi, A.; Pyatigorskaya, N.; Lecler, A.; Saleme, S.; Edjlali-Goujon, M.; Kerleroux, B.; Zorn, P.E.; Matthieu, M.; Baloglu, S.; Ardellier, F.D.; Willaume, T.; Brisset, J.C.; Boulay, C.; Mutschler, V.; Hansmann, Y.; Mertes, P.M.; Schneider, F.; Fafi-Kremer, S.; Ohana, M.; Meziani, F.; David, J.S.; Meyer, N.; Anheim, M.; Cotton, F. Brain MRI findings in severe COVID-19: a retrospective observational study. Radiology, 2020, 297(2), E242-E251.
[http://dx.doi.org/10.1148/radiol.2020202222] [PMID: 32544034]
[16]
Katal, S.; Balakrishnan, S.; Gholamrezanezhad, A. Neuroimaging and neurologic findings in COVID-19 and other coronavirus infections: A systematic review in 116 patients. J. Neuroradiol., 2021, 48(1), 43-50.
[http://dx.doi.org/10.1016/j.neurad.2020.06.007] [PMID: 32603770]
[17]
Kremer, S.; Lersy, F.; Anheim, M.; Merdji, H.; Schenck, M.; Oesterlé, H.; Bolognini, F.; Messie, J.; Khalil, A.; Gaudemer, A.; Carré, S.; Alleg, M.; Lecocq, C.; Schmitt, E.; Anxionnat, R.; Zhu, F.; Jager, L.; Nesser, P.; Mba, Y.T.; Hmeydia, G.; Benzakoun, J.; Oppenheim, C.; Ferré, J.C.; Maamar, A.; Carsin-Nicol, B.; Comby, P.O.; Ricolfi, F.; Thouant, P.; Boutet, C.; Fabre, X.; Forestier, G.; de Beaurepaire, I.; Bornet, G.; Desal, H.; Boulouis, G.; Berge, J.; Kazémi, A.; Pyatigorskaya, N.; Lecler, A.; Saleme, S.; Edjlali-Goujon, M.; Kerleroux, B.; Constans, J.M.; Zorn, P.E.; Mathieu, M.; Baloglu, S.; Ardellier, F.D.; Willaume, T.; Brisset, J.C.; Caillard, S.; Collange, O.; Mertes, P.M.; Schneider, F.; Fafi-Kremer, S.; Ohana, M.; Meziani, F.; Meyer, N.; Helms, J.; Cotton, F. Neurologic and neuroimaging findings in patients with COVID-19: A retrospective multicenter study. Neurology, 2020, 95(13), e1868-e1882.
[http://dx.doi.org/10.1212/WNL.0000000000010112] [PMID: 32680942]
[18]
Serrano, G.E.; Walker, J.E.; Arce, R.; Glass, M.J.; Vargas, D.; Sue, L.I.; Intorcia, A.J.; Nelson, C.M.; Oliver, J.; Papa, J.; Russell, A.; Suszczewicz, K.E.; Borja, C.I.; Belden, C.; Goldfarb, D.; Shprecher, D.; Atri, A.; Adler, C.H.; Shill, H.A.; Driver-Dunckley, E.; Mehta, S.H.; Readhead, B.; Huentelman, M.J.; Peters, J.L.; Alevritis, E.; Bimi, C.; Mizgerd, J.P.; Reiman, E.M.; Montine, T.J.; Desforges, M.; Zehnder, J.L.; Sahoo, M.K.; Zhang, H.; Solis, D.; Pinsky, B.A.; Deture, M.; Dickson, D.W.; Beach, T.G Mapping of SARS-CoV-2 brain invasion and histopathology in COVID-19 disease. medRxiv, 2021. 2021.02.15.21251511
[http://dx.doi.org/10.1101/2021.02.15.21251511] [PMID: 33619496]
[19]
Solomon, I.H.; Normandin, E.; Bhattacharyya, S.; Mukerji, S.S.; Keller, K.; Ali, A.S.; Adams, G.; Hornick, J.L.; Padera, R.F., Jr; Sabeti, P. Neuropathological Features of Covid-19. N. Engl. J. Med., 2020, 383(10), 989-992.
[http://dx.doi.org/10.1056/NEJMc2019373] [PMID: 32530583]
[20]
Remmelink, M.; De Mendonça, R.; D’Haene, N.; De Clercq, S.; Verocq, C.; Lebrun, L.; Lavis, P.; Racu, M.L.; Trépant, A.L.; Maris, C.; Rorive, S.; Goffard, J.C.; De Witte, O.; Peluso, L.; Vincent, J.L.; Decaestecker, C.; Taccone, F.S.; Salmon, I. Unspecific post-mortem findings despite multiorgan viral spread in COVID-19 patients. Crit. Care, 2020, 24(1), 495.
[http://dx.doi.org/10.1186/s13054-020-03218-5] [PMID: 32787909]
[21]
Calabrese, F.; Pezzuto, F.; Fortarezza, F.; Hofman, P.; Kern, I.; Panizo, A.; von der Thüsen, J.; Timofeev, S.; Gorkiewicz, G.; Lunardi, F. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Arch., 2020, 477(3), 359-372.
[http://dx.doi.org/10.1007/s00428-020-02886-6] [PMID: 32642842]
[22]
Wu, K.K.; Chan, S.K.; Ma, T.M. Posttraumatic stress after SARS. Emerg. Infect. Dis., 2005, 11(8), 1297-1300.
[http://dx.doi.org/10.3201/eid1108.041083] [PMID: 16102324]
[23]
Park, H.Y.; Park, W.B.; Lee, S.H.; Kim, J.L.; Lee, J.J.; Lee, H.; Shin, H.S. Posttraumatic stress disorder and depression of survivors 12 months after the outbreak of Middle East respiratory syndrome in South Korea. BMC Public Health, 2020, 20(1), 605.
[http://dx.doi.org/10.1186/s12889-020-08726-1] [PMID: 32410603]
[24]
Honigsbaum, M.; Krishnan, L. Taking pandemic sequelae seriously: from the Russian influenza to COVID-19 long-haulers. Lancet, 2020, 396(10260), 1389-1391.
[http://dx.doi.org/10.1016/S0140-6736(20)32134-6] [PMID: 33058777]
[25]
Ravenholt, R.T.; Foege, W.H. 1918 influenza, encephalitis lethargica, parkinsonism. Lancet, 1982, 2(8303), 860-864.
[http://dx.doi.org/10.1016/S0140-6736(82)90820-0] [PMID: 6126720]
[26]
Reid, A.H.; McCall, S.; Henry, J.M.; Taubenberger, J.K. Experimenting on the past: the enigma of von Economo’s encephalitis lethargica. J. Neuropathol. Exp. Neurol., 2001, 60(7), 663-670.
[http://dx.doi.org/10.1093/jnen/60.7.663] [PMID: 11444794]
[27]
Meals, R.W.; Hauser, V.F.; Bower, A.G. Poliomyelitis-the Los Angeles epidemic of 1934: part II. Cal. West. Med., 1935, 43(3), 215-222.
[PMID: 18743375]
[28]
Meals, R.W.; Hauser, V.F.; Bower, A.G. Poliomyelitis-the Los Angeles epidemic of 1934 : part I. Cal. West. Med., 1935, 43(2), 123-125.
[PMID: 18743338]
[29]
Acheson, E.D. The clinical syndrome variously called benign myalgic encephalomyelitis, Iceland disease and epidemic neuromyasthenia. Am. J. Med., 1959, 26(4), 569-595.
[http://dx.doi.org/10.1016/0002-9343(59)90280-3] [PMID: 13637100]
[30]
Sharpe, M.C.; Archard, L.C.; Banatvala, J.E.; Borysiewicz, L.K.; Clare, A.W.; David, A.; Edwards, R.H.; Hawton, K.E.; Lambert, H.P.; Lane, R.J. A report-chronic fatigue syndrome: guidelines for research. J. R. Soc. Med., 1991, 84(2), 118-121.
[http://dx.doi.org/10.1177/014107689108400224] [PMID: 1999813]
[31]
Vahidy, F.S.; Pan, A.P.; Ahnstedt, H.; Munshi, Y.; Choi, H.A.; Tiruneh, Y.; Nasir, K.; Kash, B.A.; Andrieni, J.D.; McCullough, L.D. Sex differences in susceptibility, severity, and outcomes of coronavirus disease 2019: Cross-sectional analysis from a diverse US metropolitan area. PLoS One, 2021, 16(1), e0245556.
[http://dx.doi.org/10.1371/journal.pone.0245556] [PMID: 33439908]
[32]
Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; Lu, P.; Venkataraman, A.; Park, A.; Liu, F.; Meir, A.; Sun, J.; Wang, E.Y.; Casanovas-Massana, A.; Wyllie, A.L.; Vogels, C.B.F.; Earnest, R.; Lapidus, S.; Ott, I.M.; Moore, A.J.; Shaw, A.; Fournier, J.B.; Odio, C.D.; Farhadian, S.; Dela Cruz, C.; Grubaugh, N.D.; Schulz, W.L.; Ring, A.M.; Ko, A.I.; Omer, S.B.; Iwasaki, A.; Iwasaki, A. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature, 2020, 588(7837), 315-320.
[http://dx.doi.org/10.1038/s41586-020-2700-3] [PMID: 32846427]
[33]
Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; Molteni, E.; Modat, M.; Jorge Cardoso, M.; May, A.; Ganesh, S.; Davies, R.; Nguyen, L.H.; Drew, D.A.; Astley, C.M.; Joshi, A.D.; Merino, J.; Tsereteli, N.; Fall, T.; Gomez, M.F.; Duncan, E.L.; Menni, C.; Williams, F.M.K.; Franks, P.W.; Chan, A.T.; Wolf, J.; Ourselin, S.; Spector, T.; Steves, C.J. Attributes and predictors of long COVID. Nat. Med., 2021, 27(4), 626-631.
[http://dx.doi.org/10.1038/s41591-021-01292-y] [PMID: 33692530]
[34]
Desforges, M.; Le Coupanec, A.; Dubeau, P.; Bourgouin, A.; Lajoie, L.; Dubé, M.; Talbot, P.J. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses, 2019, 12(1), E14.
[http://dx.doi.org/10.3390/v12010014] [PMID: 31861926]
[35]
Arbour, N.; Day, R.; Newcombe, J.; Talbot, P.J. Neuroinvasion by human respiratory coronaviruses. J. Virol., 2000, 74(19), 8913-8921.
[http://dx.doi.org/10.1128/JVI.74.19.8913-8921.2000] [PMID: 10982334]
[36]
Pezzini, A.; Padovani, A. Lifting the mask on neurological manifestations of COVID-19. Nat. Rev. Neurol., 2020, 16(11), 636-644.
[http://dx.doi.org/10.1038/s41582-020-0398-3] [PMID: 32839585]
[37]
Chen, R.; Wang, K.; Yu, J.; Howard, D.; French, L.; Chen, Z.; Wen, C.; Xu, Z. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front. Neurol., 2021, 11, 573095.
[http://dx.doi.org/10.3389/fneur.2020.573095] [PMID: 33551947]
[38]
Barrantes, F.J. Central nervous system targets and routes for SARS-CoV-2: current views and new hypotheses. ACS Chem. Neurosci., 2020, 11(18), 2793-2803.
[http://dx.doi.org/10.1021/acschemneuro.0c00434] [PMID: 32845609]
[39]
Stefano, M.L.; Kream, R.M.; Stefano, G.B. A novel vaccine employing non-replicating rabies virus expressing chimeric SARS-CoV-2 spike protein domains: functional inhibition of viral/nicotinic acetylcholine receptor complexes. Med. Sci. Monit., 2020, 26, e926016.
[http://dx.doi.org/10.12659/MSM.926016] [PMID: 32463026]
[40]
Farsalinos, K.; Eliopoulos, E.; Leonidas, D.D.; Papadopoulos, G.E.; Tzartos, S.; Poulas, K. Nicotinic cholinergic system and COVID-19: in silico identification of an interaction between SARS-CoV-2 and nicotinic receptors with potential therapeutic targeting implications. Int. J. Mol. Sci., 2020, 21(16), E5807.
[http://dx.doi.org/10.3390/ijms21165807] [PMID: 32823591]
[41]
Tsai, L.K.; Hsieh, S.T.; Chang, Y.C. Neurological manifestations in severe acute respiratory syndrome. Acta Neurol. Taiwan., 2005, 14(3), 113-119.
[PMID: 16252612]
[42]
Kanberg, N.; Ashton, N.J.; Andersson, L.M.; Yilmaz, A.; Lindh, M.; Nilsson, S.; Price, R.W.; Blennow, K.; Zetterberg, H.; Gisslén, M. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology, 2020, 95(12), e1754-e1759.
[http://dx.doi.org/10.1212/WNL.0000000000010111] [PMID: 32546655]
[43]
Yang, A.C.; Kern, F.; Losada, P.M.; Agam, M.R.; Maat, C.A.; Schmartz, G.P.; Fehlmann, T.; Stein, J.A.; Schaum, N.; Lee, D.P.; Calcuttawala, K.; Vest, R.T.; Berdnik, D.; Lu, N.; Hahn, O.; Gate, D.; McNerney, M.W.; Channappa, D.; Cobos, I.; Ludwig, N.; Schulz-Schaeffer, W.J.; Keller, A.; Wyss-Coray, T. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature, 2021, 595(7868), 565-571.
[http://dx.doi.org/10.1038/s41586-021-03710-0] [PMID: 34153974]
[44]
Bilinska, K.; Jakubowska, P.; Von Bartheld, C.S.; Butowt, R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: Identification of cell types and trends with age. ACS Chem. Neurosci., 2020, 11(11), 1555-1562.
[http://dx.doi.org/10.1021/acschemneuro.0c00210] [PMID: 32379417]
[45]
Ding, Y.; Wang, H.; Shen, H.; Li, Z.; Geng, J.; Han, H.; Cai, J.; Li, X.; Kang, W.; Weng, D.; Lu, Y.; Wu, D.; He, L.; Yao, K. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J. Pathol., 2003, 200(3), 282-289.
[http://dx.doi.org/10.1002/path.1440] [PMID: 12845623]
[46]
Esch, T.; Stefano, G.B.; Ptacek, R.; Kream, R.M. Emerging roles of blood-borne intact and respiring mitochondria as bidirectional mediators of pro- and anti-inflammatory processes. Med. Sci. Monit., 2020, 26, e924337.
[http://dx.doi.org/10.12659/MSM.924337] [PMID: 32225126]
[47]
Li, Z.; Okamoto, K.; Hayashi, Y.; Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell, 2004, 119(6), 873-887.
[http://dx.doi.org/10.1016/j.cell.2004.11.003] [PMID: 15607982]
[48]
Ulland, T.K.; Song, W.M.; Huang, S.C.; Ulrich, J.D.; Sergushichev, A.; Beatty, W.L.; Loboda, A.A.; Zhou, Y.; Cairns, N.J.; Kambal, A.; Loginicheva, E.; Gilfillan, S.; Cella, M.; Virgin, H.W.; Unanue, E.R.; Wang, Y.; Artyomov, M.N.; Holtzman, D.M.; Colonna, M. TREM2 maintains microglial metabolic fitness in alzheimer’s disease. Cell, 2017, 170(4), 649-663.e13.
[http://dx.doi.org/10.1016/j.cell.2017.07.023] [PMID: 28802038]
[49]
Krupovic, M.; Dolja, V.V.; Koonin, E.V. The LUCA and its complex virome. Nat. Rev. Microbiol., 2020, 18(11), 661-670.
[http://dx.doi.org/10.1038/s41579-020-0408-x] [PMID: 32665595]
[50]
Krupovic, M.; Dolja, V.V.; Koonin, E.V. Origin of viruses: primordial replicators recruiting capsids from hosts. Nat. Rev. Microbiol., 2019, 17(7), 449-458.
[http://dx.doi.org/10.1038/s41579-019-0205-6] [PMID: 31142823]
[51]
Wu, K.E.; Fazal, F.M.; Parker, K.R.; Zou, J.; Chang, H.Y. RNA-GPS predicts SARS-CoV-2 RNA residency to host mitochondria and nucleolus. Cell Syst., 2020, 11(1), 102-108.e3.
[http://dx.doi.org/10.1016/j.cels.2020.06.008] [PMID: 32673562]
[52]
Stefano, G.B.; Büttiker, P.; Weissenberger, S.; Martin, A.; Ptacek, R.; Kream, R.M. Editorial: the pathogenesis of long-term neuropsychiatric COVID-19 and the role of microglia, mitochondria, and persistent neuroinflammation: a hypothesis. Med. Sci. Monit., 2021, 27, e933015.
[http://dx.doi.org/10.12659/MSM.933015] [PMID: 34016942]
[53]
Stefano, G.B.; Kream, R.M. Mitochondrial DNA heteroplasmy as an informational reservoir dynamically linked to metabolic and immunological processes associated with COVID-19 neurological disorders. Cell. Mol. Neurobiol., 2021.
[http://dx.doi.org/10.1007/s10571-021-01117-z] [PMID: 34117968]
[54]
Singh, K.K.; Chaubey, G.; Chen, J.Y.; Suravajhala, P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am. J. Physiol. Cell Physiol., 2020, 319(2), C258-C267.
[http://dx.doi.org/10.1152/ajpcell.00224.2020] [PMID: 32510973]
[55]
Dutta, S.; Das, N.; Mukherjee, P. Picking up a fight: fine tuning mitochondrial innate immune defenses against RNA viruses. Front. Microbiol., 2020, 11, 1990.
[http://dx.doi.org/10.3389/fmicb.2020.01990] [PMID: 32983015]
[56]
Elesela, S.; Lukacs, N.W. Role of mitochondria in viral infections. Life (Basel), 2021, 11(3), 232.
[http://dx.doi.org/10.3390/life11030232] [PMID: 33799853]
[57]
Stefano, G.B.; Esch, T.; Ptacek, R.; Kream, R.M. Dysregulation of nitric oxide signaling in microglia: multiple points of functional convergence in the complex pathophysiology of alzheimer’s disease. Med. Sci. Monit., In press
[http://dx.doi.org/10.12659/MSM.927739]
[58]
Cheng, J.; Dong, Y.; Ma, J.; Pan, R.; Liao, Y.; Kong, X.; Li, X.; Li, S.; Chen, P.; Wang, L.; Yu, Y.; Yuan, Z. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer’s disease pathology. Sci. Adv., 2021, 7(35), eabe3600.
[http://dx.doi.org/10.1126/sciadv.abe3600] [PMID: 34433553]
[59]
Stefano, G.B.; Bilfinger, T.V.; Fricchione, G.L. The immune-neuro-link and the macrophage: postcardiotomy delirium, HIV-associated dementia and psychiatry. Prog. Neurobiol., 1994, 42(4), 475-488.
[http://dx.doi.org/10.1016/0301-0082(94)90048-5] [PMID: 8090931]
[60]
Shojaei, S.; Suresh, M.; Klionsky, D.J.; Labouta, H.I.; Ghavami, S. Autophagy and SARS-CoV-2 infection: Apossible smart targeting of the autophagy pathway. Virulence, 2020, 11(1), 805-810.
[http://dx.doi.org/10.1080/21505594.2020.1780088] [PMID: 32567972]
[61]
Richard, A.; Tulasne, D. Caspase cleavage of viral proteins, another way for viruses to make the best of apoptosis. Cell Death Dis., 2012, 3, e277.
[http://dx.doi.org/10.1038/cddis.2012.18] [PMID: 22402601]
[62]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[63]
Graham, E.L.; Clark, J.R.; Orban, Z.S.; Lim, P.H.; Szymanski, A.L.; Taylor, C.; DiBiase, R.M.; Jia, D.T.; Balabanov, R.; Ho, S.U.; Batra, A.; Liotta, E.M.; Koralnik, I.J. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 “long haulers”. Ann. Clin. Transl. Neurol., 2021, 8(5), 1073-1085.
[http://dx.doi.org/10.1002/acn3.51350] [PMID: 33755344]
[64]
Jose, R.J.; Manuel, A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir. Med., 2020, 8(6), e46-e47.
[http://dx.doi.org/10.1016/S2213-2600(20)30216-2] [PMID: 32353251]
[65]
de la Torre, J.C.; Stefano, G.B. Evidence that Alzheimer’s disease is a microvascular disorder: the role of constitutive nitric oxide. Brain Res. Brain Res. Rev., 2000, 34(3), 119-136.
[http://dx.doi.org/10.1016/S0165-0173(00)00043-6] [PMID: 11113503]
[66]
Stefano, G.B.; Mantione, K.J.; Capellan, L.; Casares, F.M.; Challenger, S.; Ramin, R.; Samuel, J.M.; Snyder, C.; Kream, R.M. Morphine stimulates nitric oxide release in human mitochondria. J. Bioenerg. Biomembr., 2015, 47(5), 409-417.
[http://dx.doi.org/10.1007/s10863-015-9626-8] [PMID: 26350413]
[67]
Yang, L.; Xie, X.; Tu, Z.; Fu, J.; Xu, D.; Zhou, Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct. Target. Ther., 2021, 6(1), 255.
[http://dx.doi.org/10.1038/s41392-021-00679-0] [PMID: 34234112]
[68]
Stefano, G.B.; Kream, R.M. Convalescent memory T cell immunity in individuals with mild or asymptomatic SARS-CoV-2 infection may result from an evolutionarily adapted immune response to coronavirus and the ‘common cold’. Med. Sci. Monit., 2020, 26, e929789.
[http://dx.doi.org/10.12659/MSM.929789] [PMID: 33239605]
[69]
Dance, A. The Incrediible diversity of viruses. Nature, 2021, 595, 22-25.
[http://dx.doi.org/10.1038/d41586-021-01749-7] [PMID: 34194016]
[70]
Büttiker, P.; Weissenberger, S.; Stefano, G.B.; Kream, R.M.; Ptacek, R. SARS-CoV-2, trait anxiety, and the microbiome. Front. Psychiatry, 2021, 12, 720082.
[http://dx.doi.org/10.3389/fpsyt.2021.720082] [PMID: 34566721]
[71]
Stefano, G.B.; Ptacek, R.; Ptackova, H.; Martin, A.; Kream, R.M. Selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce ‘brain fog’ and results in behavioral changes that favor viral survival. Med. Sci. Monit., 2021, 27, e930886.
[http://dx.doi.org/10.12659/MSM.930886] [PMID: 33487628]
[72]
Stefano, G.B.; Samuel, J.; Kream, R.M. Antibiotics may trigger mitochondrial dysfunction inducing psychiatric disorders. Med. Sci. Monit., 2017, 23, 101-106.
[http://dx.doi.org/10.12659/MSM.899478] [PMID: 28063266]
[73]
Aarts, C.E.M.; Hiemstra, I.H.; Béguin, E.P.; Hoogendijk, A.J.; Bouchmal, S.; van Houdt, M.; Tool, A.T.J.; Mul, E.; Jansen, M.H.; Janssen, H.; van Alphen, F.P.J.; de Boer, J.P.; Zuur, C.L.; Meijer, A.B.; van den Berg, T.K.; Kuijpers, T.W. Activated neutrophils exert myeloid-derived suppressor cell activity damaging T cells beyond repair. Blood Adv., 2019, 3(22), 3562-3574.
[http://dx.doi.org/10.1182/bloodadvances.2019031609] [PMID: 31738831]
[74]
Ngai, J.C.; Ko, F.W.; Ng, S.S.; To, K.W.; Tong, M.; Hui, D.S. The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology, 2010, 15(3), 543-550.
[http://dx.doi.org/10.1111/j.1440-1843.2010.01720.x] [PMID: 20337995]
[75]
Zhang, P.; Li, J.; Liu, H.; Han, N.; Ju, J.; Kou, Y.; Chen, L.; Jiang, M.; Pan, F.; Zheng, Y.; Gao, Z.; Jiang, B. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study. Bone Res., 2020, 8, 8.
[http://dx.doi.org/10.1038/s41413-020-0084-5] [PMID: 32128276]
[76]
Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.; Osterhaus, A.D.; van der Voort, P.H.; Mulder, D.J.; van Goor, H. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol., 2020, 251(3), 228-248.
[http://dx.doi.org/10.1002/path.5471] [PMID: 32418199]
[77]
Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med., 2018, 8(3), a028936.
[http://dx.doi.org/10.1101/cshperspect.a028936] [PMID: 29358320]
[78]
Kempuraj, D.; Selvakumar, G.P.; Ahmed, M.E.; Raikwar, S.P.; Thangavel, R.; Khan, A.; Zaheer, S.A.; Iyer, S.S.; Burton, C.; James, D.; Zaheer, A. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist, 2020, 26(5-6), 402-414.
[http://dx.doi.org/10.1177/1073858420941476] [PMID: 32684080]
[79]
Zanin, L.; Saraceno, G.; Panciani, P.P.; Renisi, G.; Signorini, L.; Migliorati, K.; Fontanella, M.M. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir. (Wien), 2020, 162(7), 1491-1494.
[http://dx.doi.org/10.1007/s00701-020-04374-x] [PMID: 32367205]
[80]
Palao, M.; Fernández-Díaz, E.; Gracia-Gil, J.; Romero-Sánchez, C.M.; Díaz-Maroto, I.; Segura, T. Multiple sclerosis following SARS-CoV-2 infection. Mult. Scler. Relat. Disord., 2020, 45, 102377.
[http://dx.doi.org/10.1016/j.msard.2020.102377] [PMID: 32698095]
[81]
Moore, L.; Ghannam, M.; Manousakis, G. A first presentation of multiple sclerosis with concurrent COVID-19 infection. eNeurologicalSci, 2021, 22, 100299.
[http://dx.doi.org/10.1016/j.ensci.2020.100299] [PMID: 33313429]
[82]
de Maleissye, M.F.; Nicolas, G.; Saiag, P. Pembrolizumab-induced demyelinating polyradiculoneuropathy. N. Engl. J. Med., 2016, 375(3), 296-297.
[http://dx.doi.org/10.1056/NEJMc1515584] [PMID: 27468083]
[83]
Beitz, J.M. Parkinson’s disease: a review. Front. Biosci. (Schol. Ed.), 2014, 6, 65-74.
[http://dx.doi.org/10.2741/S415] [PMID: 24389262]
[84]
Das, T.; Hwang, J.J.; Poston, K.L. Episodic recognition memory and the hippocampus in Parkinson’s disease: A review. Cortex, 2019, 113, 191-209.
[http://dx.doi.org/10.1016/j.cortex.2018.11.021] [PMID: 30660957]
[85]
Bezdicek, O.; Ballarini, T.; Buschke, H.; Růžička, F.; Roth, J.; Albrecht, F.; Růžička, E.; Mueller, K.; Schroeter, M.L.; Jech, R. Memory impairment in Parkinson’s disease: The retrieval versus associative deficit hypothesis revisited and reconciled. Neuropsychology, 2019, 33(3), 391-405.
[http://dx.doi.org/10.1037/neu0000503] [PMID: 30816784]
[86]
Krajcovicova, L.; Klobusiakova, P.; Rektorova, I. Gray matter changes in parkinson’s and alzheimer’s disease and relation to cognition. Curr. Neurol. Neurosci. Rep., 2019, 19(11), 85.
[http://dx.doi.org/10.1007/s11910-019-1006-z] [PMID: 31720859]
[87]
Ponsen, M.M.; Stoffers, D.; Booij, J.; van Eck-Smit, B.L.; Wolters, E.Ch.; Berendse, H.W. Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann. Neurol., 2004, 56(2), 173-181.
[http://dx.doi.org/10.1002/ana.20160] [PMID: 15293269]
[88]
Haddadi, K.; Ghasemian, R.; Shafizad, M. Basal ganglia involvement and altered mental status: a unique neurological manifestation of coronavirus disease 2019. Cureus, 2020, 12(4), e7869.
[http://dx.doi.org/10.7759/cureus.7869] [PMID: 32489724]
[89]
Bernaus, A.; Blanco, S.; Sevilla, A. Glia crosstalk in neuroinflammatory diseases. Front. Cell. Neurosci., 2020, 14, 209.
[http://dx.doi.org/10.3389/fncel.2020.00209] [PMID: 32848613]
[90]
Abers, M.S.; Shandera, W.X.; Kass, J.S. Neurological and psychiatric adverse effects of antiretroviral drugs. CNS Drugs, 2014, 28(2), 131-145.
[http://dx.doi.org/10.1007/s40263-013-0132-4] [PMID: 24362768]
[91]
Fardet, L.; Flahault, A.; Kettaneh, A.; Tiev, K.P.; Généreau, T.; Tolédano, C.; Lebbé, C.; Cabane, J. Corticosteroid-induced clinical adverse events: frequency, risk factors and patient’s opinion. Br. J. Dermatol., 2007, 157(1), 142-148.
[http://dx.doi.org/10.1111/j.1365-2133.2007.07950.x] [PMID: 17501951]
[92]
Sirois, F. [Delirium associated with azithromycin administration]. Can. J. Psychiatry, 2002, 47(6), 585-586.
[http://dx.doi.org/10.1177/070674370204700622] [PMID: 12211892]
[93]
Moore, H.C. An overview of chemotherapy-related cognitive dysfunction, or ‘chemobrain’. Oncology (Williston Park), 2014, 28(9), 797-804.
[PMID: 25224480]

© 2024 Bentham Science Publishers | Privacy Policy