Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Nanotechnology in Cancer Diagnostics and Therapeutics: A Review

Author(s): Neelam Yadav*, Twinkle Dahiya, Anil Kumar Chhillar, Jogender Singh Rana* and Hari Mohan Saini

Volume 23, Issue 13, 2022

Page: [1556 - 1568] Pages: 13

DOI: 10.2174/1389201023666211222165508

Price: $65

Abstract

Cancer is the uncontrolled proliferation of cells that involves accumulation of genetic mutations by different types of mutagens including physical, chemical, and biological. Consequently, normal cell cycles get interrupted. Immunological assays, histopathological tests, polymerase chain reaction, computed tomography, magnetic resonance, and radiation therapy are some conventional techniques for cancer diagnostics. However, these techniques are not only expensive, time-consuming, tedious but also toxic to healthy cells. Therefore, these limitations are overcome by nanodevices that show high sensitivity, selectivity, rapidity, and cost-effectiveness in the detection of cancer biomarkers. Electrochemical biosensors are more efficient in the early diagnosis of cancers that help in patients' effective and timely treatment. Distinct types of nanotools viz. inorganic, organic, and polymeric nanomaterials are used in cancer therapeutics. Nano approaches have shown many advantages: they are site-specific, require meager amounts of drugs, limited toxicity, avoid drug resistance, and are more efficient, sensitive, and reliable. Therefore, future research should focus on developing highly inventive nanotools for the diagnosis and therapeutics of cancers.

Keywords: Cancer, nanoparticles, biosensor, chemotherapy, drug targeting, nanomedicines.

Graphical Abstract

[1]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin., 2013, 63(1), 11-30.
[http://dx.doi.org/10.3322/caac.21166] [PMID: 23335087]
[2]
Wang, X.; Yang, L.; Chen, Z.G.; Shin, D.M. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin., 2008, 58(2), 97-110.
[http://dx.doi.org/10.3322/CA.2007.0003] [PMID: 18227410]
[3]
Deepa; Pundir, S.; Pundir, C.S. Detection of tumor suppressor protein p53 with special emphasis on biosensors: A review. Anal. Biochem., 2020, 588113473
[http://dx.doi.org/10.1016/j.ab.2019.113473] [PMID: 31610154]
[4]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[5]
Danquah, M.K.; Zhang, X.A.; Mahato, R.I. Extravasation of polymeric nanomedicines across tumor vasculature. Adv. Drug Deliv. Rev., 2011, 63(8), 623-639.
[http://dx.doi.org/10.1016/j.addr.2010.11.005] [PMID: 21144874]
[6]
Maeda, H.; Bharate, G.Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm., 2009, 71(3), 409-419.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.010] [PMID: 19070661]
[7]
Janib, S.M.; Moses, A.S.; MacKay, J.A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev., 2010, 62(11), 1052-1063.
[http://dx.doi.org/10.1016/j.addr.2010.08.004] [PMID: 20709124]
[8]
Bajdik, C.D.; Abanto, Z.U.; Spinelli, J.J.; Brooks-Wilson, A.; Gallagher, R.P. Identifying related cancer types based on their incidence among people with multiple cancers. Emerg. Themes Epidemiol., 2006, 3, 17.
[http://dx.doi.org/10.1186/1742-7622-3-17] [PMID: 17090329]
[9]
Srivastava, S.; Gopal-Srivastava, R. Biomarkers in cancer screening: A public health perspective. J. Nutr., 2002, 132(8), 2471S-2475S.
[http://dx.doi.org/10.1093/jn/132.8.2471S] [PMID: 12163714]
[10]
Qian, L.; Li, Q.; Baryeh, K.; Qiu, W.; Li, K.; Zhang, J.; Yu, Q.; Xu, D.; Liu, W.; Brand, R.E.; Zhang, X.; Chen, W.; Liu, G. Biosensors for early diagnosis of pancreatic cancer: A review. Transl. Res., 2019, 213, 67-89.
[http://dx.doi.org/10.1016/j.trsl.2019.08.002] [PMID: 31442419]
[11]
Niloy, M.S.; Shakil, M.S.; Hossen, M.S.; Alam, M.; Rosengren, R.J. Promise of gold nanomaterials as a lung cancer theranostic agent: A systematic review. Int. Nano Lett., 2021, 1, 1-9.
[http://dx.doi.org/10.1007/s40089-021-00332-2]
[12]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[13]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[14]
Namiki, Y.; Fuchigami, T.; Tada, N.; Kawamura, R.; Matsunuma, S.; Kitamoto, Y.; Nakagawa, M. Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring. Acc. Chem. Res., 2011, 44(10), 1080-1093.
[http://dx.doi.org/10.1021/ar200011r] [PMID: 21786832]
[15]
Mousa, S.A.; Bharali, D.J. Nanotechnology-based detection and targeted therapy in cancer: Nano-bio paradigms and applications. Cancers (Basel), 2011, 3(3), 2888-2903.
[http://dx.doi.org/10.3390/cancers3032888] [PMID: 24212938]
[16]
Chai, Y.; Li, X.; Yang, M. Aptamer based determination of the cancer biomarker HER2 by using phosphate-functionalized MnO2 nanosheets as the electrochemical probe; Microchimica Acta, 2019, p. 186.
[17]
Hroncekova, S.; Bertok, T.; Hires, M.; Jane, E.; Lorencova, L.; Vikartovska, A.; Tanvir, A.; Kasak, P.; Tkac, J. Ultrasensitive Ti3C2TX MXene/chitosan nanocomposite-based amperometric biosensor for detection of potential prostate cancer marker in urine samples. Processes (Basel), 2020, 8(5), 580.
[http://dx.doi.org/10.3390/pr8050580] [PMID: 33304843]
[18]
Yang, Q.; Li, N.; Li, Q.; Chen, S.; Wang, H-L.; Yang, H. Amperometric sarcosine biosensor based on hollow magnetic Pt-Fe3O4@C nano-spheres. Anal. Chim. Acta, 2019, 1078, 161-167.
[http://dx.doi.org/10.1016/j.aca.2019.06.031] [PMID: 31358215]
[19]
Garranzo-Asensio, M.; Guzmán-Aránguez, A.; Povedano, E.; Ruiz-Valdepeñas Montiel, V.; Poves, C.; Fernandez-Aceñero, M.J.; Montero-Calle, A.; Solís-Fernández, G.; Fernandez-Diez, S.; Camps, J.; Arenas, M.; Rodríguez-Tomàs, E.; Joven, J.; Sanchez-Martinez, M.; Rodri-guez, N.; Dominguez, G.; Yáñez-Sedeño, P.; Pingarrón, J.M.; Campuzano, S.; Barderas, R. Multiplexed monitoring of a novel autoantibody diagnostic signature of colorectal cancer using HaloTag technology-based electrochemical immunosensing platform. Theranostics, 2020, 10(7), 3022-3034.
[http://dx.doi.org/10.7150/thno.42507] [PMID: 32194852]
[20]
Yazdani, Z.; Yadegari, H.; Heli, H. A molecularly imprinted electrochemical nanobiosensor for prostate specific antigen determination. Anal. Biochem., 2019, 566, 116-125.
[http://dx.doi.org/10.1016/j.ab.2018.11.020] [PMID: 30472220]
[21]
Tan, W.; Sabet, L.; Li, Y.; Yu, T.; Klokkevold, P.R.; Wong, D.T.; Ho, C-M. Optical protein sensor for detecting cancer markers in saliva. Biosens. Bioelectron., 2008, 24(2), 266-271.
[http://dx.doi.org/10.1016/j.bios.2008.03.037] [PMID: 18479906]
[22]
Ladd, J.; Lu, H.; Taylor, A.D.; Goodell, V.; Disis, M.L.; Jiang, S. Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor. Colloids Surf. B Biointerfaces, 2009, 70(1), 1-6.
[http://dx.doi.org/10.1016/j.colsurfb.2008.11.032] [PMID: 19157807]
[23]
Gohring, J.T.; Dale, P.S.; Fan, X. Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor. Sens. Actuators B Chem., 2010, 146, 226-230.
[http://dx.doi.org/10.1016/j.snb.2010.01.067]
[24]
Zhou, L.; Liu, C.; Sun, Z.; Mao, H.; Zhang, L.; Yu, X.; Zhao, J.; Chen, X. Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis. Biosens. Bioelectron., 2019, 137, 140-147.
[http://dx.doi.org/10.1016/j.bios.2019.04.044] [PMID: 31096080]
[25]
Omer, W.E.; El-Kemary, M.A.; Elsaady, M.M.; Abou-Omar, M.N.; Youssef, A.O.; Sayqal, A.A.; Gouda, A.A.; Attia, M.S. Highly efficient gold nano-flower optical biosensor doped in a sol-gel/peg matrix for the determination of a calcitonin biomarker in different serum sam-ples. ACS Omega, 2020, 5(11), 5629-5637.
[http://dx.doi.org/10.1021/acsomega.9b02833] [PMID: 32226838]
[26]
Su, L.; Zou, L.; Fong, C-C.; Wong, W-L.; Wei, F.; Wong, K-Y.; Wu, R.S.S.; Yang, M. Detection of cancer biomarkers by piezoelectric bio-sensor using PZT ceramic resonator as the transducer. Biosens. Bioelectron., 2013, 46, 155-161.
[http://dx.doi.org/10.1016/j.bios.2013.01.074] [PMID: 23542085]
[27]
Pohanka, M. Piezoelectric biosensor for the determination of tumor necrosis factor alpha. Talanta, 2018, 178, 970-973.
[http://dx.doi.org/10.1016/j.talanta.2017.10.031] [PMID: 29136925]
[28]
Anzar, N.; Rahil Hasan, M.; Akram, M.; Yadav, N.; Narang, J. Systematic and validated techniques for the detection of ovarian cancer emphasizing the electro-analytical approach. Process Biochem., 2020, 94, 126-135.
[http://dx.doi.org/10.1016/j.procbio.2020.04.006]
[29]
Roointan, A.; Ahmad Mir, T.; Ibrahim Wani, S. Mati-Ur-Rehman; Hussain, K.K.; Ahmed, B.; Abrahim, S.; Savardashtaki, A.; Gan-domani, G.; Gandomani, M.; Chinnappan, R.; Akhtar, M.H. Early detection of lung cancer biomarkers through biosensor technology: A review. J. Pharm. Biomed. Anal., 2019, 164, 93-103.
[http://dx.doi.org/10.1016/j.jpba.2018.10.017] [PMID: 30366148]
[30]
Wang, H.; Ma, Z.; Han, H. A novel impedance enhancer for amperometric biosensor based ultrasensitive detection of matrix metallopro-teinase-2. Bioelectrochemistry, 2019, 130107324
[http://dx.doi.org/10.1016/j.bioelechem.2019.06.009] [PMID: 31295697]
[31]
Azzouzi, S.; Rotariu, L.; Benito, A.M.; Maser, W.K.; Ben Ali, M.; Bala, C. A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker. Biosens. Bioelectron., 2015, 69, 280-286.
[http://dx.doi.org/10.1016/j.bios.2015.03.012] [PMID: 25771300]
[32]
Dong, W.; Ren, Y.; Bai, Z.; Yang, Y.; Chen, Q. Fabrication of hexahedral Au-Pd/graphene nanocomposites biosensor and its application in cancer cell H2O2 detection. Bioelectrochemistry, 2019, 128, 274-282.
[http://dx.doi.org/10.1016/j.bioelechem.2019.04.018] [PMID: 31059967]
[33]
Liu, J.; Wang, Y.; Liu, X.; Yuan, Q.; Zhang, Y.; Li, Y. Novel molecularly imprinted polymer (MIP) multiple sensors for endogenous redox couples determination and their applications in lung cancer diagnosis. Talanta, 2019, 199, 573-580.
[http://dx.doi.org/10.1016/j.talanta.2019.03.018] [PMID: 30952300]
[34]
Chiu, N-F.; Yang, H-T. High-sensitivity detection of the lung cancer biomarker cyfra21-1 in serum samples using a carboxyl-MoS2 func-tional film for spr-based immunosensors. Front. Bioeng. Biotechnol., 2020, 8, 234.
[http://dx.doi.org/10.3389/fbioe.2020.00234] [PMID: 32274382]
[35]
Kalkal, A.; Pradhan, R.; Kadian, S.; Manik, G.; Packirisamy, G. Biofunctionalized graphene quantum dots based fluorescent biosensor toward efficient detection of small cell lung cancer. ACS Appl. Bio Mater., 2020, 3, 4922-4932.
[http://dx.doi.org/10.1021/acsabm.0c00427]
[36]
Hossain, M.B.; Islam, M.M.; Abdulrazak, L.F.; Rana, M.M.; Akib, T.B.; Hassan, M. Graphene-coated optical fiber spr biosensor for brca1 and brca2 breast cancer biomarker detection: A numerical design-based analysis. Photonic Sens., 2019, 10, 67-79.
[http://dx.doi.org/10.1007/s13320-019-0556-7]
[37]
Loyez, M.; Hassan, E.M.; Lobry, M.; Liu, F.; Caucheteur, C.; Wattiez, R.; DeRosa, M.C.; Willmore, W.G.; Albert, J. Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification. ACS Sens., 2020, 5(2), 454-463.
[http://dx.doi.org/10.1021/acssensors.9b02155] [PMID: 31967461]
[38]
Crivianu-Gaita, V.; Aamer, M.; Posaratnanathan, R.T.; Romaschin, A.; Thompson, M. Acoustic wave biosensor for the detection of the breast and prostate cancer metastasis biomarker protein PTHrP. Biosens. Bioelectron., 2016, 78, 92-99.
[http://dx.doi.org/10.1016/j.bios.2015.11.031] [PMID: 26594891]
[39]
Yang, L.; Huang, X.; Sun, L.; Xu, L. A piezoelectric immunosensor for the rapid detection of p16ink4a expression in liquid-based cervical cytology specimens. Sens. Actuators B Chem., 2016, 224, 863-867.
[http://dx.doi.org/10.1016/j.snb.2015.11.002]
[40]
Loo, L.; Capobianco, J.A.; Wu, W.; Gao, X.; Shih, W.Y.; Shih, W-H.; Pourrezaei, K.; Robinson, M.K.; Adams, G.P. Highly sensitive detec-tion of HER2 extracellular domain in the serum of breast cancer patients by piezoelectric microcantilevers. Anal. Chem., 2011, 83(9), 3392-3397.
[http://dx.doi.org/10.1021/ac103301r] [PMID: 21449604]
[41]
Abdul Rasheed, P.; Sandhyarani, N. Quartz crystal microbalance genosensor for sequence specific detection of attomolar DNA targets. Anal. Chim. Acta, 2016, 905, 134-139.
[http://dx.doi.org/10.1016/j.aca.2015.11.033] [PMID: 26755147]
[42]
Kumar, J.; Gudhoor, M.; Ganachari, M.S. Parallel assessment of chemotherapy adherence and supportive therapy adherence on occur-rence and minimization of adverse drug reactions among cancer patients: A clinical-based observational study. J. Pharm. Technol., 2020, 36(2), 72-77.
[http://dx.doi.org/10.1177/8755122520901739] [PMID: 34752531]
[43]
Dong, J.; Chen, H. Cardiotoxicity of anticancer therapeutics. Front. Cardiovasc. Med., 2018, 5, 9.
[http://dx.doi.org/10.3389/fcvm.2018.00009] [PMID: 29473044]
[44]
Nazir, S.; Hussain, T.; Ayub, A.; Rashid, U.; MacRobert, A.J. Nanomaterials in combating cancer: Therapeutic applications and develop-ments. Nanomedicine, 2014, 10(1), 19-34.
[http://dx.doi.org/10.1016/j.nano.2013.07.001] [PMID: 23871761]
[45]
Chen, P.C.; Mwakwari, S.C.; Oyelere, A.K. Gold nanoparticles: From nanomedicine to nanosensing. Nanotechnol. Sci. Appl., 2008, 1, 45-65.
[http://dx.doi.org/10.2147/NSA.S3707] [PMID: 24198460]
[46]
Huang, H-C.; Barua, S.; Sharma, G.; Dey, S.K.; Rege, K. Inorganic nanoparticles for cancer imaging and therapy. J. Control. Release, 2011, 155(3), 344-357.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.004] [PMID: 21723891]
[47]
Yano, J.; Hirabayashi, K.; Nakagawa, S.; Yamaguchi, T.; Nogawa, M.; Kashimori, I.; Naito, H.; Kitagawa, H.; Ishiyama, K.; Ohgi, T.; Iri-mura, T. Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin. Cancer Res., 2004, 10(22), 7721-7726.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1049] [PMID: 15570006]
[48]
Grossman, J.H.; McNeil, S.E. Nanotechnology in cancer medicine. Phys. Today, 2012, 65, 38-42.
[http://dx.doi.org/10.1063/PT.3.1678]
[49]
Muthu, M.S.; Singh, S. Targeted nanomedicines: Effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine (Lond.), 2009, 4(1), 105-118.
[http://dx.doi.org/10.2217/17435889.4.1.105] [PMID: 19093899]
[50]
Tuantranont, A. Applications of Nanomaterials in Sensors and Diagnostics; Springer Series on Chemical Sensors and Biosensors, 2013.
[http://dx.doi.org/10.1007/978-3-642-36025-1]
[51]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[52]
Fernandes, A.R.; Dias-Ferreira, J.; Teixeira, M.C.; Shimojo, A.A.M.; Severino, P.; Silva, A.M.; Shegokar, R.; Souto, E.B. Bioactive hybrid nanowires; Drug Delivery Trends, 2020, pp. 1-13.
[53]
Zhang, Y.; Li, M.; Gao, X.; Chen, Y.; Liu, T. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. J. Hematol. Oncol., 2019, 12(1), 137.
[http://dx.doi.org/10.1186/s13045-019-0833-3] [PMID: 31847897]
[54]
Zhang, Q.; Li, N.; Goebl, J.; Lu, Z.; Yin, Y. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? J. Am. Chem. Soc., 2011, 133(46), 18931-18939.
[http://dx.doi.org/10.1021/ja2080345] [PMID: 21999679]
[55]
Onitsuka, K.; Fujimoto, M.; Kitajima, H.; Ohshiro, N.; Takei, F.; Takahashi, S. Convergent synthesis of platinum-acetylide dendrimers. Chemistry, 2004, 10(24), 6433-6446.
[http://dx.doi.org/10.1002/chem.200400544] [PMID: 15540268]
[56]
Boas, U.; Heegaard, P.M. Dendrimers in drug research. Chem. Soc. Rev., 2004, 33(1), 43-63.
[http://dx.doi.org/10.1039/b309043b] [PMID: 14737508]
[57]
Kumar, S.S.R. Nanotechnologies Life Sci; Wiley, 2007.
[58]
Lin, Y-Y.; Kao, H-W.; Li, J-J.; Hwang, J-J.; Tseng, Y-L.; Lin, W-J.; Lin, M-H.; Ting, G.; Wang, H-E. Tumor burden talks in cancer treat-ment with PEGylated liposomal drugs. PLoS One, 2013, 8(5)e63078
[http://dx.doi.org/10.1371/journal.pone.0063078] [PMID: 23675454]
[59]
Felber, A.E.; Dufresne, M-H.; Leroux, J-C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev., 2012, 64(11), 979-992.
[http://dx.doi.org/10.1016/j.addr.2011.09.006] [PMID: 21996056]
[60]
Slingerland, M.; Guchelaar, H-J.; Gelderblom, H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov. Today, 2012, 17(3-4), 160-166.
[http://dx.doi.org/10.1016/j.drudis.2011.09.015] [PMID: 21983329]
[61]
Mukherjee, A.; Prasad, T.K.; Rao, N.M.; Banerjee, R. Haloperidol-associated stealth liposomes: A potent carrier for delivering genes to human breast cancer cells. J. Biol. Chem., 2005, 280(16), 15619-15627.
[http://dx.doi.org/10.1074/jbc.M409723200] [PMID: 15695518]
[62]
Massignani, M.; Lomas, H.; Battaglia, G. Polymersomes: A synthetic biological approach to encapsulation and delivery. Modern Techniques for Nano- and Microreactors/-reactions,, 2010, 115-154.
[63]
Sanson, C.; Schatz, C.; Le Meins, J-F.; Brûlet, A.; Soum, A.; Lecommandoux, S. Biocompatible and biodegradable poly(trimethylene car-bonate)-b-poly(L-glutamic acid) polymersomes: size control and stability. Langmuir, 2010, 26(4), 2751-2760.
[http://dx.doi.org/10.1021/la902786t] [PMID: 19791794]
[64]
Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci., 2010, 2(4), 282-289.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[65]
Xu, Z.P.; Zeng, Q.H.; Lu, G.Q.; Yu, A.B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci., 2006, 61, 1027-1040.
[http://dx.doi.org/10.1016/j.ces.2005.06.019]
[66]
Ju-Nam, Y.; Allen, D.W.; Gardiner, P.H.E.; Light, M.E.; Hursthouse, M.B.; Bricklebank, N. The synthesis and characterisation of masked phosphonioalkyl selenoates: Potential ligands for the production of functionalised gold nanoparticles. J. Organomet. Chem., 2007, 692, 5065-5070.
[http://dx.doi.org/10.1016/j.jorganchem.2007.07.038]
[67]
Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 2008, 60(11), 1307-1315.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[68]
Connor, E.E.; Mwamuka, J.; Gole, A.; Murphy, C.J.; Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1(3), 325-327.
[http://dx.doi.org/10.1002/smll.200400093] [PMID: 17193451]
[69]
Lee, S.H.; Bae, K.H.; Kim, S.H.; Lee, K.R.; Park, T.G. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int. J. Pharm., 2008, 364(1), 94-101.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.027] [PMID: 18723087]
[70]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond.), 2007, 2(5), 681-693.
[http://dx.doi.org/10.2217/17435889.2.5.681] [PMID: 17976030]
[71]
Podsiadlo, P.; Sinani, V.A.; Bahng, J.H.; Kam, N.W.; Lee, J.; Kotov, N.A. Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir, 2008, 24(2), 568-574.
[http://dx.doi.org/10.1021/la702782k] [PMID: 18052300]
[72]
Wei, X-L.; Mo, Z-H.; Li, B.; Wei, J-M. Disruption of HepG2 cell adhesion by gold nanoparticle and Paclitaxel disclosed by in situ QCM measurement. Colloids Surf. B Biointerfaces, 2007, 59(1), 100-104.
[http://dx.doi.org/10.1016/j.colsurfb.2007.04.016] [PMID: 17566716]
[73]
Jeyaraj, M.; Sathishkumar, G.; Sivanandhan, G. MubarakAli, D.; Rajesh, M.; Arun, R.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Premkumar, K.; Ganapathi, A. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids Surf. B Biointerfaces, 2013, 106, 86-92.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.027] [PMID: 23434696]
[74]
Gopinath, P.; Gogoi, S.K.; Chattopadhyay, A.; Ghosh, S.S. Implications of silver nanoparticle induced cell apoptosis for in vitro gene ther-apy. Nanotechnology, 2008, 19(7)075104
[http://dx.doi.org/10.1088/0957-4484/19/7/075104] [PMID: 21817629]
[75]
AshaRani. P.V.; Low Kah Mun, G.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2008, 3, 279-290.
[76]
Carlson, C.; Hussain, S.M.; Schrand, A.M.; Braydich-Stolle, L.K.; Hess, K.L.; Jones, R.L.; Schlager, J.J. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J. Phys. Chem. B, 2008, 112(43), 13608-13619.
[http://dx.doi.org/10.1021/jp712087m] [PMID: 18831567]
[77]
Gliga, A.R.; Skoglund, S.; Wallinder, I.O.; Fadeel, B.; Karlsson, H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol., 2014, 11, 11.
[http://dx.doi.org/10.1186/1743-8977-11-11] [PMID: 24529161]
[78]
Johnston, H.J.; Hutchison, G.; Christensen, F.M.; Peters, S.; Hankin, S.; Stone, V. A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit. Rev. Toxicol., 2010, 40(4), 328-346.
[http://dx.doi.org/10.3109/10408440903453074] [PMID: 20128631]
[79]
Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol., 2010, 188(6), 759-768.
[http://dx.doi.org/10.1083/jcb.200910104] [PMID: 20231381]
[80]
Arap, W.; Pasqualini, R.; Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 1998, 279(5349), 377-380.
[http://dx.doi.org/10.1126/science.279.5349.377]
[81]
Huynh, E.; Zheng, G. Cancer nanomedicine: Addressing the dark side of the enhanced permeability and retention effect. Nanomedicine (Lond.), 2015, 10(13), 1993-1995.
[http://dx.doi.org/10.2217/nnm.15.86] [PMID: 26096565]
[82]
Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[83]
Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 131-135.
[http://dx.doi.org/10.1016/j.addr.2010.03.011] [PMID: 20304019]
[84]
Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limita-tions and augmentation of the effect. Adv. Drug Deliv. Rev., 2011, 63(3), 136-151.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[85]
Parveen, S.; Sahoo, S.K. Nanomedicine: Clinical applications of polyethylene glycol conjugated proteins and drugs. Clin. Pharmacokinet., 2006, 45(10), 965-988.
[http://dx.doi.org/10.2165/00003088-200645100-00002] [PMID: 16984211]
[86]
Sahoo, S.K.; Ma, W.; Labhasetwar, V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int. J. Cancer, 2004, 112(2), 335-340.
[http://dx.doi.org/10.1002/ijc.20405] [PMID: 15352049]
[87]
Gmeiner, W.H.; Ghosh, S. nanotechnology for cancer treatment. Nanotechnol. Rev., 2014, 3.
[PMID: 26082884]
[88]
Allen, T.M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer, 2002, 2(10), 750-763.
[http://dx.doi.org/10.1038/nrc903] [PMID: 12360278]
[89]
Zhou, H.; Qian, W.; Uckun, F.M.; Wang, L.; Wang, Y.A.; Chen, H.; Kooby, D.; Yu, Q.; Lipowska, M.; Staley, C.A.; Mao, H.; Yang, L. IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano, 2015, 9(8), 7976-7991.
[http://dx.doi.org/10.1021/acsnano.5b01288] [PMID: 26242412]
[90]
Alavi, M.; Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug metabolism and personalized therapy, 2019, 34(1)
[http://dx.doi.org/10.1515/dmpt-2018-0032]
[91]
Chen, S.C.; Ke, C.Y.; Subeq, Y.M.; Yang, W.T.; Huang, S.G.; Shiao, A.S.; Lee, R.P. Protective effect of calcitriol on organ damage induced by 5-fluorouracil treatment. Nutr. Cancer, 2021, 73(9), 1687-1696.
[http://dx.doi.org/10.1080/01635581.2020.1804948] [PMID: 32777949]
[92]
De Capua, A.; Palladino, A.; Chino, M.; Attanasio, C.; Lombardi, A.; Vecchione, R.; Netti, P.A. Active targeting of cancer cells by CD44 binding peptide-functionalized oil core-based nanocapsules. RSC Advances, 2021, 11, 24487-24499.
[http://dx.doi.org/10.1039/D1RA03322K]
[93]
Jiang, B.; Jia, X.; Ji, T.; Zhou, M.; He, J.; Wang, K.; Fan, K. Ferritin nanocages for early theranostics of tumors via inflammation-enhanced active targeting. Sci. China Life Sci., 2021, 1-13.
[94]
Laroui, H.; Rakhya, P.; Xiao, B.; Viennois, E.; Merlin, D. Nanotechnology in diagnostics and therapeutics for gastrointestinal disorders. Dig. Liver Dis., 2013, 45(12), 995-1002.
[http://dx.doi.org/10.1016/j.dld.2013.03.019] [PMID: 23660079]
[95]
Sabahuddin, S.; Amit, A.; Pooja, Y.; Mukta, A.; Ahmed, M.S.; Mahmoud, A.S.; Syed, A.U.; Mohi, I.M.; Mohamed, A.S. Nanomedicines: Challenges and perspectives for future nanotechnology in the healthcare system. Sci. Res. Essays, 2019, 14, 32-38.
[96]
Tang, H.; Xu, M.; Shi, F.; Ye, G.; Lv, C.; Luo, J.; Zhao, L.; Li, Y. Effects and mechanism of nano-copper exposure on hepatic cytochrome P450 enzymes in rats. Int. J. Mol. Sci., 2018, 19(7), 2140.
[http://dx.doi.org/10.3390/ijms19072140] [PMID: 30041454]
[97]
Magaye, R.R.; Yue, X.; Zou, B.; Shi, H.; Yu, H.; Liu, K.; Lin, X.; Xu, J.; Yang, C.; Wu, A.; Zhao, J. Acute toxicity of nickel nanoparticles in rats after intravenous injection. Int. J. Nanomedicine, 2014, 9, 1393-1402.
[PMID: 24648736]
[98]
Gatoo, M.A.; Naseem, S.; Arfat, M.Y. Mahmood, Dar A.; Qasim, K.; Zubair, S. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Res. Int., 2014, 2014498420
[http://dx.doi.org/10.1155/2014/498420]
[99]
Lin, Y.H.; Chen, Y.P.; Liu, T.P.; Chien, F.C.; Chou, C.M.; Chen, C.T.; Mou, C.Y. Approach to deliver two antioxidant enzymes with mes-oporous silica nanoparticles into cells. ACS Appl. Mater. Interfaces, 2016, 8(28), 17944-17954.
[http://dx.doi.org/10.1021/acsami.6b05834] [PMID: 27353012]
[100]
Ma, X.; Wu, Y.; Jin, S.; Tian, Y.; Zhang, X.; Zhao, Y.; Yu, L.; Liang, X.J. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano, 2011, 5(11), 8629-8639.
[http://dx.doi.org/10.1021/nn202155y] [PMID: 21974862]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy